/* $OpenBSD: ieee80211.c,v 1.24 2007/07/03 20:25:32 damien Exp $ */ /* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * IEEE 802.11 generic handler */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #ifdef INET #include #include #endif #include #ifdef IEEE80211_DEBUG int ieee80211_debug = 0; #endif int ieee80211_cache_size = IEEE80211_CACHE_SIZE; struct ieee80211com_head ieee80211com_head = LIST_HEAD_INITIALIZER(ieee80211com_head); void ieee80211_setbasicrates(struct ieee80211com *); int ieee80211_findrate(struct ieee80211com *, enum ieee80211_phymode, int); void ieee80211_ifattach(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; struct ieee80211_channel *c; int i; memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr, ETHER_ADDR_LEN); ether_ifattach(ifp); ifp->if_output = ieee80211_output; #if NBPFILTER > 0 bpfattach(&ic->ic_rawbpf, ifp, DLT_IEEE802_11, sizeof(struct ieee80211_frame_addr4)); #endif ieee80211_crypto_attach(ifp); /* * Fill in 802.11 available channel set, mark * all available channels as active, and pick * a default channel if not already specified. */ memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); ic->ic_modecaps |= 1<ic_channels[i]; if (c->ic_flags) { /* * Verify driver passed us valid data. */ if (i != ieee80211_chan2ieee(ic, c)) { printf("%s: bad channel ignored; " "freq %u flags %x number %u\n", ifp->if_xname, c->ic_freq, c->ic_flags, i); c->ic_flags = 0; /* NB: remove */ continue; } setbit(ic->ic_chan_avail, i); /* * Identify mode capabilities. */ if (IEEE80211_IS_CHAN_A(c)) ic->ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_curmode */ if ((ic->ic_modecaps & (1<ic_curmode)) == 0) ic->ic_curmode = IEEE80211_MODE_AUTO; ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; /* IEEE 802.11 defines a MTU >= 2290 */ ifp->if_capabilities |= IFCAP_VLAN_MTU; ieee80211_setbasicrates(ic); (void) ieee80211_setmode(ic, ic->ic_curmode); if (ic->ic_lintval == 0) ic->ic_lintval = 100; /* default sleep */ ic->ic_bmisstimeout = 7*ic->ic_lintval; /* default 7 beacons */ ic->ic_dtim_period = 1; /* all TIMs are DTIMs */ LIST_INSERT_HEAD(&ieee80211com_head, ic, ic_list); ieee80211_node_attach(ifp); ieee80211_proto_attach(ifp); if_addgroup(ifp, "wlan"); } void ieee80211_ifdetach(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; ieee80211_proto_detach(ifp); ieee80211_crypto_detach(ifp); ieee80211_node_detach(ifp); LIST_REMOVE(ic, ic_list); ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY); ether_ifdetach(ifp); } /* * Convert MHz frequency to IEEE channel number. */ u_int ieee80211_mhz2ieee(u_int freq, u_int flags) { if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; else return 15 + ((freq - 2512) / 20); } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ return (freq - 5000) / 5; } else { /* either, guess */ if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; if (freq < 5000) return 15 + ((freq - 2512) / 20); return (freq - 5000) / 5; } } /* * Convert channel to IEEE channel number. */ u_int ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) { struct ifnet *ifp = &ic->ic_if; if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX]) return c - ic->ic_channels; else if (c == IEEE80211_CHAN_ANYC) return IEEE80211_CHAN_ANY; else if (c != NULL) { printf("%s: invalid channel freq %u flags %x\n", ifp->if_xname, c->ic_freq, c->ic_flags); return 0; /* XXX */ } else { printf("%s: invalid channel (NULL)\n", ifp->if_xname); return 0; /* XXX */ } } /* * Convert IEEE channel number to MHz frequency. */ u_int ieee80211_ieee2mhz(u_int chan, u_int flags) { if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (chan == 14) return 2484; if (chan < 14) return 2407 + chan*5; else return 2512 + ((chan-15)*20); } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ return 5000 + (chan*5); } else { /* either, guess */ if (chan == 14) return 2484; if (chan < 14) /* 0-13 */ return 2407 + chan*5; if (chan < 27) /* 15-26 */ return 2512 + ((chan-15)*20); return 5000 + (chan*5); } } /* * Setup the media data structures according to the channel and * rate tables. This must be called by the driver after * ieee80211_attach and before most anything else. */ void ieee80211_media_init(struct ifnet *ifp, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) { #define ADD(_ic, _s, _o) \ ifmedia_add(&(_ic)->ic_media, \ IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) struct ieee80211com *ic = (void *)ifp; struct ifmediareq imr; int i, j, mode, rate, maxrate, mword, mopt, r; const struct ieee80211_rateset *rs; struct ieee80211_rateset allrates; /* * Do late attach work that must wait for any subclass * (i.e. driver) work such as overriding methods. */ ieee80211_node_lateattach(ifp); /* * Fill in media characteristics. */ ifmedia_init(&ic->ic_media, 0, media_change, media_stat); maxrate = 0; memset(&allrates, 0, sizeof(allrates)); for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_MAX; mode++) { static const u_int mopts[] = { IFM_AUTO, IFM_IEEE80211_11A, IFM_IEEE80211_11B, IFM_IEEE80211_11G, IFM_IEEE80211_FH, IFM_IEEE80211_11A | IFM_IEEE80211_TURBO, }; if ((ic->ic_modecaps & (1<ic_caps & IEEE80211_C_IBSS) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC); if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); if (mode == IEEE80211_MODE_AUTO) continue; rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; mword = ieee80211_rate2media(ic, rate, mode); if (mword == 0) continue; ADD(ic, mword, mopt); if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, mword, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC); if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR); /* * Add rate to the collection of all rates. */ r = rate & IEEE80211_RATE_VAL; for (j = 0; j < allrates.rs_nrates; j++) if (allrates.rs_rates[j] == r) break; if (j == allrates.rs_nrates) { /* unique, add to the set */ allrates.rs_rates[j] = r; allrates.rs_nrates++; } rate = (rate & IEEE80211_RATE_VAL) / 2; if (rate > maxrate) maxrate = rate; } } for (i = 0; i < allrates.rs_nrates; i++) { mword = ieee80211_rate2media(ic, allrates.rs_rates[i], IEEE80211_MODE_AUTO); if (mword == 0) continue; mword = IFM_SUBTYPE(mword); /* remove media options */ ADD(ic, mword, 0); if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, mword, IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, mword, IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, mword, IFM_IEEE80211_ADHOC); if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, mword, IFM_IEEE80211_MONITOR); } ieee80211_media_status(ifp, &imr); ifmedia_set(&ic->ic_media, imr.ifm_active); if (maxrate) ifp->if_baudrate = IF_Mbps(maxrate); #undef ADD } int ieee80211_findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, int rate) { #define IEEERATE(_ic,_m,_i) \ ((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL) int i, nrates = ic->ic_sup_rates[mode].rs_nrates; for (i = 0; i < nrates; i++) if (IEEERATE(ic, mode, i) == rate) return i; return -1; #undef IEEERATE } /* * Handle a media change request. */ int ieee80211_media_change(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; struct ifmedia_entry *ime; enum ieee80211_opmode newopmode; enum ieee80211_phymode newphymode; int i, j, newrate, error = 0; ime = ic->ic_media.ifm_cur; /* * First, identify the phy mode. */ switch (IFM_MODE(ime->ifm_media)) { case IFM_IEEE80211_11A: newphymode = IEEE80211_MODE_11A; break; case IFM_IEEE80211_11B: newphymode = IEEE80211_MODE_11B; break; case IFM_IEEE80211_11G: newphymode = IEEE80211_MODE_11G; break; case IFM_IEEE80211_FH: newphymode = IEEE80211_MODE_FH; break; case IFM_AUTO: newphymode = IEEE80211_MODE_AUTO; break; default: return EINVAL; } /* * Turbo mode is an ``option''. Eventually it * needs to be applied to 11g too. */ if (ime->ifm_media & IFM_IEEE80211_TURBO) { if (newphymode != IEEE80211_MODE_11A) return EINVAL; newphymode = IEEE80211_MODE_TURBO; } /* * Validate requested mode is available. */ if ((ic->ic_modecaps & (1<ifm_media) != IFM_AUTO) { /* * Convert media subtype to rate. */ newrate = ieee80211_media2rate(ime->ifm_media); if (newrate == 0) return EINVAL; /* * Check the rate table for the specified/current phy. */ if (newphymode == IEEE80211_MODE_AUTO) { /* * In autoselect mode search for the rate. */ for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++) { if ((ic->ic_modecaps & (1<ifm_media & IFM_IEEE80211_ADHOC) newopmode = IEEE80211_M_AHDEMO; else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) newopmode = IEEE80211_M_HOSTAP; else if (ime->ifm_media & IFM_IEEE80211_IBSS) newopmode = IEEE80211_M_IBSS; else if (ime->ifm_media & IFM_IEEE80211_MONITOR) newopmode = IEEE80211_M_MONITOR; else newopmode = IEEE80211_M_STA; /* * Autoselect doesn't make sense when operating as an AP. * If no phy mode has been selected, pick one and lock it * down so rate tables can be used in forming beacon frames * and the like. */ if (newopmode == IEEE80211_M_HOSTAP && newphymode == IEEE80211_MODE_AUTO) { for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++) if (ic->ic_modecaps & (1<ic_curmode != newphymode) { /* change phy mode */ error = ieee80211_setmode(ic, newphymode); if (error != 0) return error; error = ENETRESET; } /* * Committed to changes, install the rate setting. */ if (ic->ic_fixed_rate != i) { ic->ic_fixed_rate = i; /* set fixed tx rate */ error = ENETRESET; } /* * Handle operating mode change. */ if (ic->ic_opmode != newopmode) { ic->ic_opmode = newopmode; switch (newopmode) { case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: case IEEE80211_M_STA: case IEEE80211_M_MONITOR: ic->ic_flags &= ~IEEE80211_F_IBSSON; break; case IEEE80211_M_IBSS: ic->ic_flags |= IEEE80211_F_IBSSON; break; } /* * Yech, slot time may change depending on the * operating mode so reset it to be sure everything * is setup appropriately. */ ieee80211_reset_erp(ic); error = ENETRESET; } #ifdef notdef if (error == 0) ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media); #endif return error; } void ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211com *ic = (void *)ifp; const struct ieee80211_node *ni = NULL; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; imr->ifm_active |= IFM_AUTO; switch (ic->ic_opmode) { case IEEE80211_M_STA: ni = ic->ic_bss; /* calculate rate subtype */ imr->ifm_active |= ieee80211_rate2media(ic, ni->ni_rates.rs_rates[ni->ni_txrate], ic->ic_curmode); break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_IBSS; break; case IEEE80211_M_AHDEMO: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_HOSTAP: imr->ifm_active |= IFM_IEEE80211_HOSTAP; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; } switch (ic->ic_curmode) { case IEEE80211_MODE_11A: imr->ifm_active |= IFM_IEEE80211_11A; break; case IEEE80211_MODE_11B: imr->ifm_active |= IFM_IEEE80211_11B; break; case IEEE80211_MODE_11G: imr->ifm_active |= IFM_IEEE80211_11G; break; case IEEE80211_MODE_FH: imr->ifm_active |= IFM_IEEE80211_FH; break; case IEEE80211_MODE_TURBO: imr->ifm_active |= IFM_IEEE80211_11A | IFM_IEEE80211_TURBO; break; } } void ieee80211_watchdog(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); if (ic->ic_mgt_timer != 0) ifp->if_timer = 1; } const struct ieee80211_rateset ieee80211_std_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; const struct ieee80211_rateset ieee80211_std_rateset_11b = { 4, { 2, 4, 11, 22 } }; const struct ieee80211_rateset ieee80211_std_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; /* * Mark the basic rates for the 11g rate table based on the * operating mode. For real 11g we mark all the 11b rates * and 6, 12, and 24 OFDM. For 11b compatibility we mark only * 11b rates. There's also a pseudo 11a-mode used to mark only * the basic OFDM rates. */ void ieee80211_setbasicrates(struct ieee80211com *ic) { static const struct ieee80211_rateset basic[] = { { 0 }, /* IEEE80211_MODE_AUTO */ { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */ { 2, { 2, 4 } }, /* IEEE80211_MODE_11B */ { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */ { 2, { 2, 4 } }, /* IEEE80211_MODE_FH */ { 0 }, /* IEEE80211_MODE_TURBO */ }; enum ieee80211_phymode mode; struct ieee80211_rateset *rs; int i, j; for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) { rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rs->rs_rates[i] &= IEEE80211_RATE_VAL; for (j = 0; j < basic[mode].rs_nrates; j++) { if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { rs->rs_rates[i] |= IEEE80211_RATE_BASIC; break; } } } } } /* * Set the current phy mode and recalculate the active channel * set based on the available channels for this mode. Also * select a new default/current channel if the current one is * inappropriate for this mode. */ int ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) { #define N(a) (sizeof(a) / sizeof(a[0])) struct ifnet *ifp = &ic->ic_if; static const u_int chanflags[] = { 0, /* IEEE80211_MODE_AUTO */ IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */ IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */ IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */ IEEE80211_CHAN_FHSS, /* IEEE80211_MODE_FH */ IEEE80211_CHAN_T, /* IEEE80211_MODE_TURBO */ }; const struct ieee80211_channel *c; u_int modeflags; int i; /* validate new mode */ if ((ic->ic_modecaps & (1<ic_modecaps)); return EINVAL; } /* * Verify at least one channel is present in the available * channel list before committing to the new mode. */ if (mode >= N(chanflags)) panic("Unexpected mode %u", mode); modeflags = chanflags[mode]; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { c = &ic->ic_channels[i]; if (mode == IEEE80211_MODE_AUTO) { /* ignore turbo channels for autoselect */ if ((c->ic_flags &~ IEEE80211_CHAN_TURBO) != 0) break; } else { if ((c->ic_flags & modeflags) == modeflags) break; } } if (i > IEEE80211_CHAN_MAX) { IEEE80211_DPRINTF(("%s: no channels found for mode %u\n", __func__, mode)); return EINVAL; } /* * Calculate the active channel set. */ memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active)); for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { c = &ic->ic_channels[i]; if (mode == IEEE80211_MODE_AUTO) { /* take anything but pure turbo channels */ if ((c->ic_flags &~ IEEE80211_CHAN_TURBO) != 0) setbit(ic->ic_chan_active, i); } else { if ((c->ic_flags & modeflags) == modeflags) setbit(ic->ic_chan_active, i); } } /* * If no current/default channel is setup or the current * channel is wrong for the mode then pick the first * available channel from the active list. This is likely * not the right one. */ if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) { for (i = 0; i <= IEEE80211_CHAN_MAX; i++) if (isset(ic->ic_chan_active, i)) { ic->ic_ibss_chan = &ic->ic_channels[i]; break; } if ((ic->ic_ibss_chan == NULL) || isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) panic("Bad IBSS channel %u\n", ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); } /* * Reset the scan state for the new mode. This avoids scanning * of invalid channels, ie. 5GHz channels in 11b mode. */ ieee80211_reset_scan(ifp); ic->ic_curmode = mode; ieee80211_reset_erp(ic); /* reset ERP state */ return 0; #undef N } enum ieee80211_phymode ieee80211_next_mode(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) != IFM_AUTO) { /* * Reset the scan state and indicate a wrap around * if we're running in a fixed, user-specified phy mode. */ ieee80211_reset_scan(ifp); return (IEEE80211_MODE_AUTO); } /* * Get the next supported mode */ for (++ic->ic_curmode; ic->ic_curmode <= IEEE80211_MODE_TURBO; ic->ic_curmode++) { /* Wrap around and ignore turbo mode */ if (ic->ic_curmode >= IEEE80211_MODE_TURBO) { ic->ic_curmode = IEEE80211_MODE_AUTO; break; } if (ic->ic_modecaps & (1 << ic->ic_curmode)) break; } ieee80211_setmode(ic, ic->ic_curmode); return (ic->ic_curmode); } /* * Return the phy mode for with the specified channel so the * caller can select a rate set. This is problematic and the * work here assumes how things work elsewhere in this code. * * XXX never returns turbo modes -dcy */ enum ieee80211_phymode ieee80211_chan2mode(struct ieee80211com *ic, const struct ieee80211_channel *chan) { /* * NB: this assumes the channel would not be supplied to us * unless it was already compatible with the current mode. */ if (ic->ic_curmode != IEEE80211_MODE_AUTO || chan == IEEE80211_CHAN_ANYC) return ic->ic_curmode; /* * In autoselect mode; deduce a mode based on the channel * characteristics. We assume that turbo-only channels * are not considered when the channel set is constructed. */ if (IEEE80211_IS_CHAN_T(chan)) return IEEE80211_MODE_TURBO; else if (IEEE80211_IS_CHAN_5GHZ(chan)) return IEEE80211_MODE_11A; else if (IEEE80211_IS_CHAN_FHSS(chan)) return IEEE80211_MODE_FH; else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) return IEEE80211_MODE_11G; else return IEEE80211_MODE_11B; } /* * convert IEEE80211 rate value to ifmedia subtype. * ieee80211 rate is in unit of 0.5Mbps. */ int ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) { #define N(a) (sizeof(a) / sizeof(a[0])) static const struct { u_int m; /* rate + mode */ u_int r; /* if_media rate */ } rates[] = { { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, /* NB: OFDM72 doesn't realy exist so we don't handle it */ }; u_int mask, i; mask = rate & IEEE80211_RATE_VAL; switch (mode) { case IEEE80211_MODE_11A: case IEEE80211_MODE_TURBO: mask |= IFM_IEEE80211_11A; break; case IEEE80211_MODE_11B: mask |= IFM_IEEE80211_11B; break; case IEEE80211_MODE_FH: mask |= IFM_IEEE80211_FH; break; case IEEE80211_MODE_AUTO: /* NB: ic may be NULL for some drivers */ if (ic && ic->ic_phytype == IEEE80211_T_FH) { mask |= IFM_IEEE80211_FH; break; } /* NB: hack, 11g matches both 11b+11a rates */ /* FALLTHROUGH */ case IEEE80211_MODE_11G: mask |= IFM_IEEE80211_11G; break; } for (i = 0; i < N(rates); i++) if (rates[i].m == mask) return rates[i].r; return IFM_AUTO; #undef N } int ieee80211_media2rate(int mword) { #define N(a) (sizeof(a) / sizeof(a[0])) int i; static const struct { int subtype; int rate; } ieeerates[] = { { IFM_AUTO, -1 }, { IFM_MANUAL, 0 }, { IFM_NONE, 0 }, { IFM_IEEE80211_FH1, 2 }, { IFM_IEEE80211_FH2, 4 }, { IFM_IEEE80211_DS1, 2 }, { IFM_IEEE80211_DS2, 4 }, { IFM_IEEE80211_DS5, 11 }, { IFM_IEEE80211_DS11, 22 }, { IFM_IEEE80211_DS22, 44 }, { IFM_IEEE80211_OFDM6, 12 }, { IFM_IEEE80211_OFDM9, 18 }, { IFM_IEEE80211_OFDM12, 24 }, { IFM_IEEE80211_OFDM18, 36 }, { IFM_IEEE80211_OFDM24, 48 }, { IFM_IEEE80211_OFDM36, 72 }, { IFM_IEEE80211_OFDM48, 96 }, { IFM_IEEE80211_OFDM54, 108 }, { IFM_IEEE80211_OFDM72, 144 }, }; for (i = 0; i < N(ieeerates); i++) { if (ieeerates[i].subtype == IFM_SUBTYPE(mword)) return ieeerates[i].rate; } return 0; #undef N }