/* $OpenBSD: rf_paritylogDiskMgr.c,v 1.6 2002/12/16 07:01:04 tdeval Exp $ */ /* $NetBSD: rf_paritylogDiskMgr.c,v 1.10 2000/01/15 01:57:57 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Code for flushing and reintegrating operations related to parity logging. */ #include "rf_archs.h" #if RF_INCLUDE_PARITYLOGGING > 0 #include "rf_types.h" #include "rf_threadstuff.h" #include "rf_mcpair.h" #include "rf_raid.h" #include "rf_dag.h" #include "rf_dagfuncs.h" #include "rf_desc.h" #include "rf_layout.h" #include "rf_diskqueue.h" #include "rf_paritylog.h" #include "rf_general.h" #include "rf_etimer.h" #include "rf_paritylogging.h" #include "rf_engine.h" #include "rf_dagutils.h" #include "rf_map.h" #include "rf_parityscan.h" #include "rf_paritylogDiskMgr.h" caddr_t rf_AcquireReintBuffer(RF_RegionBufferQueue_t *); void rf_ReleaseReintBuffer(RF_RegionBufferQueue_t *, caddr_t); void rf_ReadRegionLog(RF_RegionId_t, RF_MCPair_t *, caddr_t, RF_Raid_t *, RF_DagHeader_t **, RF_AllocListElem_t **, RF_PhysDiskAddr_t **); void rf_WriteCoreLog(RF_ParityLog_t *, RF_MCPair_t *, RF_Raid_t *, RF_DagHeader_t **, RF_AllocListElem_t **, RF_PhysDiskAddr_t **); void rf_ReadRegionParity(RF_RegionId_t, RF_MCPair_t *, caddr_t, RF_Raid_t *, RF_DagHeader_t **, RF_AllocListElem_t **, RF_PhysDiskAddr_t **); void rf_WriteRegionParity(RF_RegionId_t, RF_MCPair_t *, caddr_t, RF_Raid_t *, RF_DagHeader_t **, RF_AllocListElem_t **, RF_PhysDiskAddr_t **); void rf_FlushLogsToDisk(RF_Raid_t *, RF_ParityLog_t *); void rf_ReintegrateRegion(RF_Raid_t *, RF_RegionId_t, RF_ParityLog_t *); void rf_ReintegrateLogs(RF_Raid_t *, RF_ParityLog_t *); caddr_t rf_AcquireReintBuffer(RF_RegionBufferQueue_t *pool) { caddr_t bufPtr = NULL; /* * Return a region buffer from the free list (pool). If the free list * is empty, WAIT. BLOCKING */ RF_LOCK_MUTEX(pool->mutex); if (pool->availableBuffers > 0) { bufPtr = pool->buffers[pool->availBuffersIndex]; pool->availableBuffers--; pool->availBuffersIndex++; if (pool->availBuffersIndex == pool->totalBuffers) pool->availBuffersIndex = 0; RF_UNLOCK_MUTEX(pool->mutex); } else { RF_PANIC(); /* * Should never happen in correct config, * single reint. */ RF_WAIT_COND(pool->cond, pool->mutex); } return (bufPtr); } void rf_ReleaseReintBuffer(RF_RegionBufferQueue_t *pool, caddr_t bufPtr) { /* * Insert a region buffer (bufPtr) into the free list (pool). * NON-BLOCKING */ RF_LOCK_MUTEX(pool->mutex); pool->availableBuffers++; pool->buffers[pool->emptyBuffersIndex] = bufPtr; pool->emptyBuffersIndex++; if (pool->emptyBuffersIndex == pool->totalBuffers) pool->emptyBuffersIndex = 0; RF_ASSERT(pool->availableBuffers <= pool->totalBuffers); RF_UNLOCK_MUTEX(pool->mutex); RF_SIGNAL_COND(pool->cond); } void rf_ReadRegionLog(RF_RegionId_t regionID, RF_MCPair_t *rrd_mcpair, caddr_t regionBuffer, RF_Raid_t *raidPtr, RF_DagHeader_t **rrd_dag_h, RF_AllocListElem_t **rrd_alloclist, RF_PhysDiskAddr_t **rrd_pda) { /* * Initiate the read a region log from disk. Once initiated, return * to the calling routine. * * NON-BLOCKING */ RF_AccTraceEntry_t *tracerec; RF_DagNode_t *rrd_rdNode; /* Create DAG to read region log from disk. */ rf_MakeAllocList(*rrd_alloclist); *rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer, rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rrl", *rrd_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY); /* Create and initialize PDA for the core log. */ /* RF_Malloc(*rrd_pda, sizeof(RF_PhysDiskAddr_t), * (RF_PhysDiskAddr_t *)); */ *rrd_pda = rf_AllocPDAList(1); rf_MapLogParityLogging(raidPtr, regionID, 0, &((*rrd_pda)->row), &((*rrd_pda)->col), &((*rrd_pda)->startSector)); (*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity; if ((*rrd_pda)->next) { (*rrd_pda)->next = NULL; printf("set rrd_pda->next to NULL\n"); } /* Initialize DAG parameters. */ RF_Malloc(tracerec, sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t)); (*rrd_dag_h)->tracerec = tracerec; rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0]; rrd_rdNode->params[0].p = *rrd_pda; /* rrd_rdNode->params[1] = regionBuffer; */ rrd_rdNode->params[2].v = 0; rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0); /* Launch region log read dag. */ rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, (void *) rrd_mcpair); } void rf_WriteCoreLog(RF_ParityLog_t *log, RF_MCPair_t *fwr_mcpair, RF_Raid_t *raidPtr, RF_DagHeader_t **fwr_dag_h, RF_AllocListElem_t **fwr_alloclist, RF_PhysDiskAddr_t **fwr_pda) { RF_RegionId_t regionID = log->regionID; RF_AccTraceEntry_t *tracerec; RF_SectorNum_t regionOffset; RF_DagNode_t *fwr_wrNode; /* * Initiate the write of a core log to a region log disk. Once * initiated, return to the calling routine. * * NON-BLOCKING */ /* Create DAG to write a core log to a region log disk. */ rf_MakeAllocList(*fwr_alloclist); *fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY); /* Create and initialize PDA for the region log. */ /* RF_Malloc(*fwr_pda, sizeof(RF_PhysDiskAddr_t), * (RF_PhysDiskAddr_t *)); */ *fwr_pda = rf_AllocPDAList(1); regionOffset = log->diskOffset; rf_MapLogParityLogging(raidPtr, regionID, regionOffset, &((*fwr_pda)->row), &((*fwr_pda)->col), &((*fwr_pda)->startSector)); (*fwr_pda)->numSector = raidPtr->numSectorsPerLog; /* Initialize DAG parameters. */ RF_Malloc(tracerec, sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t)); (*fwr_dag_h)->tracerec = tracerec; fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0]; fwr_wrNode->params[0].p = *fwr_pda; /* fwr_wrNode->params[1] = log->bufPtr; */ fwr_wrNode->params[2].v = 0; fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0); /* Launch the dag to write the core log to disk. */ rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, (void *) fwr_mcpair); } void rf_ReadRegionParity(RF_RegionId_t regionID, RF_MCPair_t *prd_mcpair, caddr_t parityBuffer, RF_Raid_t *raidPtr, RF_DagHeader_t **prd_dag_h, RF_AllocListElem_t **prd_alloclist, RF_PhysDiskAddr_t **prd_pda) { /* * Initiate the read region parity from disk. Once initiated, return * to the calling routine. * * NON-BLOCKING */ RF_AccTraceEntry_t *tracerec; RF_DagNode_t *prd_rdNode; /* Create DAG to read region parity from disk. */ rf_MakeAllocList(*prd_alloclist); *prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rrp", *prd_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY); /* Create and initialize PDA for region parity. */ /* RF_Malloc(*prd_pda, sizeof(RF_PhysDiskAddr_t), * (RF_PhysDiskAddr_t *)); */ *prd_pda = rf_AllocPDAList(1); rf_MapRegionParity(raidPtr, regionID, &((*prd_pda)->row), &((*prd_pda)->col), &((*prd_pda)->startSector), &((*prd_pda)->numSector)); if (rf_parityLogDebug) printf("[reading %d sectors of parity from region %d]\n", (int) (*prd_pda)->numSector, regionID); if ((*prd_pda)->next) { (*prd_pda)->next = NULL; printf("set prd_pda->next to NULL\n"); } /* Initialize DAG parameters. */ RF_Malloc(tracerec, sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t)); (*prd_dag_h)->tracerec = tracerec; prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0]; prd_rdNode->params[0].p = *prd_pda; prd_rdNode->params[1].p = parityBuffer; prd_rdNode->params[2].v = 0; prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0); if (rf_validateDAGDebug) rf_ValidateDAG(*prd_dag_h); /* Launch region parity read dag. */ rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, (void *) prd_mcpair); } void rf_WriteRegionParity(RF_RegionId_t regionID, RF_MCPair_t *pwr_mcpair, caddr_t parityBuffer, RF_Raid_t *raidPtr, RF_DagHeader_t **pwr_dag_h, RF_AllocListElem_t **pwr_alloclist, RF_PhysDiskAddr_t **pwr_pda) { /* * Initiate the write of region parity to disk. Once initiated, return * to the calling routine. * * NON-BLOCKING */ RF_AccTraceEntry_t *tracerec; RF_DagNode_t *pwr_wrNode; /* Create DAG to write region log from disk. */ rf_MakeAllocList(*pwr_alloclist); *pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wrp", *pwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY); /* Create and initialize PDA for region parity. */ /* RF_Malloc(*pwr_pda, sizeof(RF_PhysDiskAddr_t), * (RF_PhysDiskAddr_t *)); */ *pwr_pda = rf_AllocPDAList(1); rf_MapRegionParity(raidPtr, regionID, &((*pwr_pda)->row), &((*pwr_pda)->col), &((*pwr_pda)->startSector), &((*pwr_pda)->numSector)); /* Initialize DAG parameters. */ RF_Malloc(tracerec, sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t)); (*pwr_dag_h)->tracerec = tracerec; pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0]; pwr_wrNode->params[0].p = *pwr_pda; /* pwr_wrNode->params[1] = parityBuffer; */ pwr_wrNode->params[2].v = 0; pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0); /* Launch the dag to write region parity to disk. */ rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, (void *) pwr_mcpair); } void rf_FlushLogsToDisk(RF_Raid_t *raidPtr, RF_ParityLog_t *logList) { /* * Flush a linked list of core logs to the log disk. Logs contain the * disk location where they should be written. Logs were written in * FIFO order and that order must be preserved. * * Recommended optimizations: * 1) Allow multiple flushes to occur simultaneously. * 2) Coalesce contiguous flush operations. * * BLOCKING */ RF_ParityLog_t *log; RF_RegionId_t regionID; RF_MCPair_t *fwr_mcpair; RF_DagHeader_t *fwr_dag_h; RF_AllocListElem_t *fwr_alloclist; RF_PhysDiskAddr_t *fwr_pda; fwr_mcpair = rf_AllocMCPair(); RF_LOCK_MUTEX(fwr_mcpair->mutex); RF_ASSERT(logList); log = logList; while (log) { regionID = log->regionID; /* Create and launch a DAG to write the core log. */ if (rf_parityLogDebug) printf("[initiating write of core log for region" " %d]\n", regionID); fwr_mcpair->flag = RF_FALSE; rf_WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h, &fwr_alloclist, &fwr_pda); /* Wait for the DAG to complete. */ while (!fwr_mcpair->flag) RF_WAIT_COND(fwr_mcpair->cond, fwr_mcpair->mutex); if (fwr_dag_h->status != rf_enable) { RF_ERRORMSG1("Unable to write core log to disk" " (region %d)\n", regionID); RF_ASSERT(0); } /* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */ rf_FreePhysDiskAddr(fwr_pda); rf_FreeDAG(fwr_dag_h); rf_FreeAllocList(fwr_alloclist); log = log->next; } RF_UNLOCK_MUTEX(fwr_mcpair->mutex); rf_FreeMCPair(fwr_mcpair); rf_ReleaseParityLogs(raidPtr, logList); } void rf_ReintegrateRegion(RF_Raid_t *raidPtr, RF_RegionId_t regionID, RF_ParityLog_t *coreLog) { RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair; RF_DagHeader_t *rrd_dag_h, *prd_dag_h, *pwr_dag_h; RF_AllocListElem_t *rrd_alloclist, *prd_alloclist, *pwr_alloclist; RF_PhysDiskAddr_t *rrd_pda, *prd_pda, *pwr_pda; caddr_t parityBuffer, regionBuffer = NULL; /* * Reintegrate a region (regionID). * * 1. Acquire region and parity buffers. * 2. Read log from disk. * 3. Read parity from disk. * 4. Apply log to parity. * 5. Apply core log to parity. * 6. Write new parity to disk. * * BLOCKING */ if (rf_parityLogDebug) printf("[reintegrating region %d]\n", regionID); /* Initiate read of region parity. */ if (rf_parityLogDebug) printf("[initiating read of parity for region %d]\n", regionID); parityBuffer = rf_AcquireReintBuffer(&raidPtr->parityBufferPool); prd_mcpair = rf_AllocMCPair(); RF_LOCK_MUTEX(prd_mcpair->mutex); prd_mcpair->flag = RF_FALSE; rf_ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr, &prd_dag_h, &prd_alloclist, &prd_pda); /* If region log nonempty, initiate read. */ if (raidPtr->regionInfo[regionID].diskCount > 0) { if (rf_parityLogDebug) printf("[initiating read of disk log for region %d]\n", regionID); regionBuffer = rf_AcquireReintBuffer(&raidPtr->regionBufferPool); rrd_mcpair = rf_AllocMCPair(); RF_LOCK_MUTEX(rrd_mcpair->mutex); rrd_mcpair->flag = RF_FALSE; rf_ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr, &rrd_dag_h, &rrd_alloclist, &rrd_pda); } /* Wait on read of region parity to complete. */ while (!prd_mcpair->flag) { RF_WAIT_COND(prd_mcpair->cond, prd_mcpair->mutex); } RF_UNLOCK_MUTEX(prd_mcpair->mutex); if (prd_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to read parity from disk\n"); /* Add code to fail the parity disk. */ RF_ASSERT(0); } /* Apply core log to parity. */ /* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */ if (raidPtr->regionInfo[regionID].diskCount > 0) { /* Wait on read of region log to complete. */ while (!rrd_mcpair->flag) RF_WAIT_COND(rrd_mcpair->cond, rrd_mcpair->mutex); RF_UNLOCK_MUTEX(rrd_mcpair->mutex); if (rrd_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to read region log from disk\n"); /* Add code to fail the log disk. */ RF_ASSERT(0); } /* Apply region log to parity. */ /* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */ /* Release resources associated with region log. */ /* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */ rf_FreePhysDiskAddr(rrd_pda); rf_FreeDAG(rrd_dag_h); rf_FreeAllocList(rrd_alloclist); rf_FreeMCPair(rrd_mcpair); rf_ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer); } /* Write reintegrated parity to disk. */ if (rf_parityLogDebug) printf("[initiating write of parity for region %d]\n", regionID); pwr_mcpair = rf_AllocMCPair(); RF_LOCK_MUTEX(pwr_mcpair->mutex); pwr_mcpair->flag = RF_FALSE; rf_WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr, &pwr_dag_h, &pwr_alloclist, &pwr_pda); while (!pwr_mcpair->flag) RF_WAIT_COND(pwr_mcpair->cond, pwr_mcpair->mutex); RF_UNLOCK_MUTEX(pwr_mcpair->mutex); if (pwr_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to write parity to disk\n"); /* Add code to fail the parity disk. */ RF_ASSERT(0); } /* Release resources associated with read of old parity. */ /* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */ rf_FreePhysDiskAddr(prd_pda); rf_FreeDAG(prd_dag_h); rf_FreeAllocList(prd_alloclist); rf_FreeMCPair(prd_mcpair); /* Release resources associated with write of new parity. */ rf_ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer); /* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */ rf_FreePhysDiskAddr(pwr_pda); rf_FreeDAG(pwr_dag_h); rf_FreeAllocList(pwr_alloclist); rf_FreeMCPair(pwr_mcpair); if (rf_parityLogDebug) printf("[finished reintegrating region %d]\n", regionID); } void rf_ReintegrateLogs(RF_Raid_t *raidPtr, RF_ParityLog_t *logList) { RF_ParityLog_t *log, *freeLogList = NULL; RF_ParityLogData_t *logData, *logDataList; RF_RegionId_t regionID; RF_ASSERT(logList); while (logList) { log = logList; logList = logList->next; log->next = NULL; regionID = log->regionID; rf_ReintegrateRegion(raidPtr, regionID, log); log->numRecords = 0; /* * Remove all items which are blocked on reintegration of this * region. */ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail, RF_TRUE); logDataList = logData; while (logData) { logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail, RF_TRUE); logData = logData->next; } RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); /* * Process blocked log data and clear reintInProgress flag for * this region. */ if (logDataList) rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE); else { /* * Enable flushing for this region. Holding both * locks provides a synchronization barrier with * DumpParityLogToDisk. */ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); raidPtr->regionInfo[regionID].diskCount = 0; raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE; RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID] .reintMutex); /* Flushing is now enabled. */ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); } /* * If log wasn't used, attach it to the list of logs to be * returned. */ if (log) { log->next = freeLogList; freeLogList = log; } } if (freeLogList) rf_ReleaseParityLogs(raidPtr, freeLogList); } int rf_ShutdownLogging(RF_Raid_t *raidPtr) { /* * Shutdown parity logging: * 1) Disable parity logging in all regions. * 2) Reintegrate all regions. */ RF_SectorCount_t diskCount; RF_RegionId_t regionID; RF_ParityLog_t *log; if (rf_parityLogDebug) printf("[shutting down parity logging]\n"); /* * Since parity log maps are volatile, we must reintegrate all * regions. */ if (rf_forceParityLogReint) { for (regionID = 0; regionID < rf_numParityRegions; regionID++) { RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); raidPtr->regionInfo[regionID].loggingEnabled = RF_FALSE; log = raidPtr->regionInfo[regionID].coreLog; raidPtr->regionInfo[regionID].coreLog = NULL; diskCount = raidPtr->regionInfo[regionID].diskCount; RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); if (diskCount > 0 || log != NULL) rf_ReintegrateRegion(raidPtr, regionID, log); if (log != NULL) rf_ReleaseParityLogs(raidPtr, log); } } if (rf_parityLogDebug) { printf("[parity logging disabled]\n"); printf("[should be done !]\n"); } return (0); } int rf_ParityLoggingDiskManager(RF_Raid_t *raidPtr) { RF_ParityLog_t *reintQueue, *flushQueue; int workNeeded, done = RF_FALSE; int s; /* * Main program for parity logging disk thread. This routine waits * for work to appear in either the flush or reintegration queues and * is responsible for flushing core logs to the log disk as well as * reintegrating parity regions. * * BLOCKING */ s = splbio(); RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); /* * Inform our creator that we're running. Don't bother doing the * mutex lock/unlock dance: we locked above, and we'll unlock * below with nothing to do, yet. */ raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING; RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond); /* Empty the work queues. */ flushQueue = raidPtr->parityLogDiskQueue.flushQueue; raidPtr->parityLogDiskQueue.flushQueue = NULL; reintQueue = raidPtr->parityLogDiskQueue.reintQueue; raidPtr->parityLogDiskQueue.reintQueue = NULL; workNeeded = (flushQueue || reintQueue); while (!done) { while (workNeeded) { /* * First, flush all logs in the flush queue, freeing * buffers. Second, reintegrate all regions that are * reported as full. Third, append queued log data * until blocked. * * Note: Incoming appends (ParityLogAppend) can block * on either 1. empty buffer pool 2. region under * reintegration. To preserve a global FIFO ordering of * appends, buffers are not released to the world * until those appends blocked on buffers are removed * from the append queue. Similarly, regions that are * reintegrated are not opened for general use until * the append queue has been emptied. */ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); /* * Empty flushQueue, using free'd log buffers to * process bufTail. */ if (flushQueue) rf_FlushLogsToDisk(raidPtr, flushQueue); /* * Empty reintQueue, flushing from reintTail as we go. */ if (reintQueue) rf_ReintegrateLogs(raidPtr, reintQueue); RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); flushQueue = raidPtr->parityLogDiskQueue.flushQueue; raidPtr->parityLogDiskQueue.flushQueue = NULL; reintQueue = raidPtr->parityLogDiskQueue.reintQueue; raidPtr->parityLogDiskQueue.reintQueue = NULL; workNeeded = (flushQueue || reintQueue); } /* No work is needed at this point. */ if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) { /* * Shutdown parity logging: * 1. Disable parity logging in all regions. * 2. Reintegrate all regions. */ done = RF_TRUE; /* Thread disabled, no work needed. */ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); rf_ShutdownLogging(raidPtr); } if (!done) { /* Thread enabled, no work needed, so sleep. */ if (rf_parityLogDebug) printf("[parity logging disk manager" " sleeping]\n"); RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, raidPtr->parityLogDiskQueue.mutex); if (rf_parityLogDebug) printf("[parity logging disk manager just" " woke up]\n"); flushQueue = raidPtr->parityLogDiskQueue.flushQueue; raidPtr->parityLogDiskQueue.flushQueue = NULL; reintQueue = raidPtr->parityLogDiskQueue.reintQueue; raidPtr->parityLogDiskQueue.reintQueue = NULL; workNeeded = (flushQueue || reintQueue); } } /* * Announce that we're done. */ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN; RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond); splx(s); /* * In the Net- & OpenBSD kernel, the thread must exit; returning would * cause the proc trampoline to attempt to return to userspace. */ kthread_exit(0); /* does not return */ } #endif /* RF_INCLUDE_PARITYLOGGING > 0 */