/* $OpenBSD: rf_dagffwr.c,v 1.5 2002/12/16 07:01:03 tdeval Exp $ */ /* $NetBSD: rf_dagffwr.c,v 1.5 2000/01/07 03:40:58 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * rf_dagff.c * * Code for creating fault-free DAGs. * */ #include "rf_types.h" #include "rf_raid.h" #include "rf_dag.h" #include "rf_dagutils.h" #include "rf_dagfuncs.h" #include "rf_debugMem.h" #include "rf_dagffrd.h" #include "rf_memchunk.h" #include "rf_general.h" #include "rf_dagffwr.h" /***************************************************************************** * * General comments on DAG creation: * * All DAGs in this file use roll-away error recovery. Each DAG has a single * commit node, usually called "Cmt." If an error occurs before the Cmt node * is reached, the execution engine will halt forward execution and work * backward through the graph, executing the undo functions. Assuming that * each node in the graph prior to the Cmt node are undoable and atomic - or - * does not make changes to permanent state, the graph will fail atomically. * If an error occurs after the Cmt node executes, the engine will roll-forward * through the graph, blindly executing nodes until it reaches the end. * If a graph reaches the end, it is assumed to have completed successfully. * * A graph has only 1 Cmt node. * *****************************************************************************/ /***************************************************************************** * * The following wrappers map the standard DAG creation interface to the * DAG creation routines. Additionally, these wrappers enable experimentation * with new DAG structures by providing an extra level of indirection, allowing * the DAG creation routines to be replaced at this single point. * *****************************************************************************/ void rf_CreateNonRedundantWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList, RF_IoType_t type) { rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList, RF_IO_TYPE_WRITE); } void rf_CreateRAID0WriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList, RF_IoType_t type) { rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList, RF_IO_TYPE_WRITE); } void rf_CreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList) { /* "normal" rollaway. */ rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL); } void rf_CreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList) { /* "normal" rollaway. */ rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc, RF_TRUE); } /***************************************************************************** * * DAG creation code begins here. * *****************************************************************************/ /***************************************************************************** * * creates a DAG to perform a large-write operation: * * / Rod \ / Wnd \ * H -- block- Rod - Xor - Cmt - Wnd --- T * \ Rod / \ Wnp / * \[Wnq]/ * * The XOR node also does the Q calculation in the P+Q architecture. * All nodes that are before the commit node (Cmt) are assumed to be atomic * and undoable - or - they make no changes to permanent state. * * Rod = read old data * Cmt = commit node * Wnp = write new parity * Wnd = write new data * Wnq = write new "q" * [] denotes optional segments in the graph. * * Parameters: raidPtr - description of the physical array * asmap - logical & physical addresses for this access * bp - buffer ptr (holds write data) * flags - general flags (e.g. disk locking) * allocList - list of memory allocated in DAG creation * nfaults - number of faults array can tolerate * (equal to # redundancy units in stripe) * redfuncs - list of redundancy generating functions * *****************************************************************************/ void rf_CommonCreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList, int nfaults, int (*redFunc) (RF_DagNode_t *), int allowBufferRecycle) { RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode; RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode; int nWndNodes, nRodNodes, i, nodeNum, asmNum; RF_AccessStripeMapHeader_t *new_asm_h[2]; RF_StripeNum_t parityStripeID; char *sosBuffer, *eosBuffer; RF_ReconUnitNum_t which_ru; RF_RaidLayout_t *layoutPtr; RF_PhysDiskAddr_t *pda; layoutPtr = &(raidPtr->Layout); parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru); if (rf_dagDebug) { printf("[Creating large-write DAG]\n"); } dag_h->creator = "LargeWriteDAG"; dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* Alloc the nodes: Wnd, xor, commit, block, term, and Wnp. */ nWndNodes = asmap->numStripeUnitsAccessed; RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; wndNodes = &nodes[i]; i += nWndNodes; xorNode = &nodes[i]; i += 1; wnpNode = &nodes[i]; i += 1; blockNode = &nodes[i]; i += 1; commitNode = &nodes[i]; i += 1; termNode = &nodes[i]; i += 1; if (nfaults == 2) { wnqNode = &nodes[i]; i += 1; } else { wnqNode = NULL; } rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList); if (nRodNodes > 0) { RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); } else { rodNodes = NULL; } /* Begin node initialization. */ if (nRodNodes > 0) { rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList); } else { rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); } rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList); /* Initialize the Rod nodes. */ for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { if (new_asm_h[asmNum]) { pda = new_asm_h[asmNum]->stripeMap->physInfo; while (pda) { rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList); rodNodes[nodeNum].params[0].p = pda; rodNodes[nodeNum].params[1].p = pda->bufPtr; rodNodes[nodeNum].params[2].v = parityStripeID; rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); nodeNum++; pda = pda->next; } } } RF_ASSERT(nodeNum == nRodNodes); /* Initialize the wnd nodes. */ pda = asmap->physInfo; for (i = 0; i < nWndNodes; i++) { rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); RF_ASSERT(pda != NULL); wndNodes[i].params[0].p = pda; wndNodes[i].params[1].p = pda->bufPtr; wndNodes[i].params[2].v = parityStripeID; wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); pda = pda->next; } /* Initialize the redundancy node. */ if (nRodNodes > 0) { rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); } else { rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); } xorNode->flags |= RF_DAGNODE_FLAG_YIELD; for (i = 0; i < nWndNodes; i++) { xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */ xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */ } for (i = 0; i < nRodNodes; i++) { xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */ xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */ } /* Xor node needs to get at RAID information. */ xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* * Look for an Rod node that reads a complete SU. If none, alloc * a buffer to receive the parity info. Note that we can't use a * new data buffer because it will not have gotten written when * the xor occurs. */ if (allowBufferRecycle) { for (i = 0; i < nRodNodes; i++) { if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p) ->numSector == raidPtr->Layout.sectorsPerStripeUnit) break; } } if ((!allowBufferRecycle) || (i == nRodNodes)) { RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); } else { xorNode->results[0] = rodNodes[i].params[1].p; } /* Initialize the Wnp node. */ rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); wnpNode->params[0].p = asmap->parityInfo; wnpNode->params[1].p = xorNode->results[0]; wnpNode->params[2].v = parityStripeID; wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); /* parityInfo must describe entire parity unit. */ RF_ASSERT(asmap->parityInfo->next == NULL); if (nfaults == 2) { /* * We never try to recycle a buffer for the Q calculation * in addition to the parity. This would cause two buffers * to get smashed during the P and Q calculation, guaranteeing * one would be wrong. */ RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); wnqNode->params[0].p = asmap->qInfo; wnqNode->params[1].p = xorNode->results[1]; wnqNode->params[2].v = parityStripeID; wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); /* parityInfo must describe entire parity unit. */ RF_ASSERT(asmap->parityInfo->next == NULL); } /* * Connect nodes to form graph. */ /* Connect dag header to block node. */ RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; if (nRodNodes > 0) { /* Connect the block node to the Rod nodes. */ RF_ASSERT(blockNode->numSuccedents == nRodNodes); RF_ASSERT(xorNode->numAntecedents == nRodNodes); for (i = 0; i < nRodNodes; i++) { RF_ASSERT(rodNodes[i].numAntecedents == 1); blockNode->succedents[i] = &rodNodes[i]; rodNodes[i].antecedents[0] = blockNode; rodNodes[i].antType[0] = rf_control; /* Connect the Rod nodes to the Xor node. */ RF_ASSERT(rodNodes[i].numSuccedents == 1); rodNodes[i].succedents[0] = xorNode; xorNode->antecedents[i] = &rodNodes[i]; xorNode->antType[i] = rf_trueData; } } else { /* Connect the block node to the Xor node. */ RF_ASSERT(blockNode->numSuccedents == 1); RF_ASSERT(xorNode->numAntecedents == 1); blockNode->succedents[0] = xorNode; xorNode->antecedents[0] = blockNode; xorNode->antType[0] = rf_control; } /* Connect the xor node to the commit node. */ RF_ASSERT(xorNode->numSuccedents == 1); RF_ASSERT(commitNode->numAntecedents == 1); xorNode->succedents[0] = commitNode; commitNode->antecedents[0] = xorNode; commitNode->antType[0] = rf_control; /* Connect the commit node to the write nodes. */ RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes->numAntecedents == 1); commitNode->succedents[i] = &wndNodes[i]; wndNodes[i].antecedents[0] = commitNode; wndNodes[i].antType[0] = rf_control; } RF_ASSERT(wnpNode->numAntecedents == 1); commitNode->succedents[nWndNodes] = wnpNode; wnpNode->antecedents[0] = commitNode; wnpNode->antType[0] = rf_trueData; if (nfaults == 2) { RF_ASSERT(wnqNode->numAntecedents == 1); commitNode->succedents[nWndNodes + 1] = wnqNode; wnqNode->antecedents[0] = commitNode; wnqNode->antType[0] = rf_trueData; } /* Connect the write nodes to the term node. */ RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults); RF_ASSERT(termNode->numSuccedents == 0); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes->numSuccedents == 1); wndNodes[i].succedents[0] = termNode; termNode->antecedents[i] = &wndNodes[i]; termNode->antType[i] = rf_control; } RF_ASSERT(wnpNode->numSuccedents == 1); wnpNode->succedents[0] = termNode; termNode->antecedents[nWndNodes] = wnpNode; termNode->antType[nWndNodes] = rf_control; if (nfaults == 2) { RF_ASSERT(wnqNode->numSuccedents == 1); wnqNode->succedents[0] = termNode; termNode->antecedents[nWndNodes + 1] = wnqNode; termNode->antType[nWndNodes + 1] = rf_control; } } /***************************************************************************** * * Create a DAG to perform a small-write operation (either raid 5 or pq), * which is as follows: * * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm * \- Rod X / \----> Wnd [Und]-/ * [\- Rod X / \---> Wnd [Und]-/] * [\- Roq -> Q / \--> Wnq [Unq]-/] * * Rop = read old parity * Rod = read old data * Roq = read old "q" * Cmt = commit node * Und = unlock data disk * Unp = unlock parity disk * Unq = unlock q disk * Wnp = write new parity * Wnd = write new data * Wnq = write new "q" * [ ] denotes optional segments in the graph. * * Parameters: raidPtr - description of the physical array * asmap - logical & physical addresses for this access * bp - buffer ptr (holds write data) * flags - general flags (e.g. disk locking) * allocList - list of memory allocated in DAG creation * pfuncs - list of parity generating functions * qfuncs - list of q generating functions * * A null qfuncs indicates single fault tolerant. *****************************************************************************/ void rf_CommonCreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList, RF_RedFuncs_t *pfuncs, RF_RedFuncs_t *qfuncs) { RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode; RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes; RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes; RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes; int i, j, nNodes, totalNumNodes, lu_flag; RF_ReconUnitNum_t which_ru; int (*func) (RF_DagNode_t *); int (*undoFunc) (RF_DagNode_t *); int (*qfunc) (RF_DagNode_t *); int numDataNodes, numParityNodes; RF_StripeNum_t parityStripeID; RF_PhysDiskAddr_t *pda; char *name, *qname; long nfaults; nfaults = qfuncs ? 2 : 1; lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* Lock/unlock flag. */ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); pda = asmap->physInfo; numDataNodes = asmap->numStripeUnitsAccessed; numParityNodes = (asmap->parityInfo->next) ? 2 : 1; if (rf_dagDebug) { printf("[Creating small-write DAG]\n"); } RF_ASSERT(numDataNodes > 0); dag_h->creator = "SmallWriteDAG"; dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* * DAG creation occurs in four steps: * 1. Count the number of nodes in the DAG. * 2. Create the nodes. * 3. Initialize the nodes. * 4. Connect the nodes. */ /* * Step 1. Compute number of nodes in the graph. */ /* * Number of nodes: a read and write for each data unit, a redundancy * computation node for each parity node (nfaults * nparity), a read * and write for each parity unit, a block and commit node (2), a * terminate node if atomic RMW, an unlock node for each * data/redundancy unit. */ totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 3; if (lu_flag) { totalNumNodes += (numDataNodes + (nfaults * numParityNodes)); } /* * Step 2. Create the nodes. */ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; blockNode = &nodes[i]; i += 1; commitNode = &nodes[i]; i += 1; readDataNodes = &nodes[i]; i += numDataNodes; readParityNodes = &nodes[i]; i += numParityNodes; writeDataNodes = &nodes[i]; i += numDataNodes; writeParityNodes = &nodes[i]; i += numParityNodes; xorNodes = &nodes[i]; i += numParityNodes; termNode = &nodes[i]; i += 1; if (lu_flag) { unlockDataNodes = &nodes[i]; i += numDataNodes; unlockParityNodes = &nodes[i]; i += numParityNodes; } else { unlockDataNodes = unlockParityNodes = NULL; } if (nfaults == 2) { readQNodes = &nodes[i]; i += numParityNodes; writeQNodes = &nodes[i]; i += numParityNodes; qNodes = &nodes[i]; i += numParityNodes; if (lu_flag) { unlockQNodes = &nodes[i]; i += numParityNodes; } else { unlockQNodes = NULL; } } else { readQNodes = writeQNodes = qNodes = unlockQNodes = NULL; } RF_ASSERT(i == totalNumNodes); /* * Step 3. Initialize the nodes. */ /* Initialize block node (Nil). */ nNodes = numDataNodes + (nfaults * numParityNodes); rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); /* Initialize commit node (Cmt). */ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList); /* Initialize terminate node (Trm). */ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList); /* Initialize nodes which read old data (Rod). */ for (i = 0; i < numDataNodes; i++) { rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h, "Rod", allocList); RF_ASSERT(pda != NULL); /* Physical disk addr desc. */ readDataNodes[i].params[0].p = pda; /* Buffer to hold old data. */ readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); readDataNodes[i].params[2].v = parityStripeID; readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); pda = pda->next; for (j = 0; j < readDataNodes[i].numSuccedents; j++) { readDataNodes[i].propList[j] = NULL; } } /* Initialize nodes which read old parity (Rop). */ pda = asmap->parityInfo; i = 0; for (i = 0; i < numParityNodes; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList); readParityNodes[i].params[0].p = pda; /* Buffer to hold old parity. */ readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); readParityNodes[i].params[2].v = parityStripeID; readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); pda = pda->next; for (j = 0; j < readParityNodes[i].numSuccedents; j++) { readParityNodes[i].propList[0] = NULL; } } /* Initialize nodes which read old Q (Roq). */ if (nfaults == 2) { pda = asmap->qInfo; for (i = 0; i < numParityNodes; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList); readQNodes[i].params[0].p = pda; /* Buffer to hold old Q. */ readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); readQNodes[i].params[2].v = parityStripeID; readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); pda = pda->next; for (j = 0; j < readQNodes[i].numSuccedents; j++) { readQNodes[i].propList[0] = NULL; } } } /* Initialize nodes which write new data (Wnd). */ pda = asmap->physInfo; for (i = 0; i < numDataNodes; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); /* Physical disk addr desc. */ writeDataNodes[i].params[0].p = pda; /* Buffer holding new data to be written. */ writeDataNodes[i].params[1].p = pda->bufPtr; writeDataNodes[i].params[2].v = parityStripeID; writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); if (lu_flag) { /* Initialize node to unlock the disk queue. */ rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList); /* Physical disk addr desc. */ unlockDataNodes[i].params[0].p = pda; unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); } pda = pda->next; } /* * Initialize nodes which compute new parity and Q. */ /* * We use the simple XOR func in the double-XOR case, and when * we're accessing only a portion of one stripe unit. * The distinction between the two is that the regular XOR func * assumes that the targbuf is a full SU in size, and examines * the pda associated with the buffer to decide where within * the buffer to XOR the data, whereas the simple XOR func just * XORs the data into the start of the buffer. */ if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) { func = pfuncs->simple; undoFunc = rf_NullNodeUndoFunc; name = pfuncs->SimpleName; if (qfuncs) { qfunc = qfuncs->simple; qname = qfuncs->SimpleName; } else { qfunc = NULL; qname = NULL; } } else { func = pfuncs->regular; undoFunc = rf_NullNodeUndoFunc; name = pfuncs->RegularName; if (qfuncs) { qfunc = qfuncs->regular; qname = qfuncs->RegularName; } else { qfunc = NULL; qname = NULL; } } /* * Initialize the xor nodes: params are {pda,buf}. * From {Rod,Wnd,Rop} nodes, and raidPtr. */ if (numParityNodes == 2) { /* Double-xor case. */ for (i = 0; i < numParityNodes; i++) { /* Note: no wakeup func for xor. */ rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, 1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList); xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD; xorNodes[i].params[0] = readDataNodes[i].params[0]; xorNodes[i].params[1] = readDataNodes[i].params[1]; xorNodes[i].params[2] = readParityNodes[i].params[0]; xorNodes[i].params[3] = readParityNodes[i].params[1]; xorNodes[i].params[4] = writeDataNodes[i].params[0]; xorNodes[i].params[5] = writeDataNodes[i].params[1]; xorNodes[i].params[6].p = raidPtr; /* Use old parity buf as target buf. */ xorNodes[i].results[0] = readParityNodes[i].params[1].p; if (nfaults == 2) { /* Note: no wakeup func for qor. */ rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1, (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList); qNodes[i].params[0] = readDataNodes[i].params[0]; qNodes[i].params[1] = readDataNodes[i].params[1]; qNodes[i].params[2] = readQNodes[i].params[0]; qNodes[i].params[3] = readQNodes[i].params[1]; qNodes[i].params[4] = writeDataNodes[i].params[0]; qNodes[i].params[5] = writeDataNodes[i].params[1]; qNodes[i].params[6].p = raidPtr; /* Use old Q buf as target buf. */ qNodes[i].results[0] = readQNodes[i].params[1].p; } } } else { /* There is only one xor node in this case. */ rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1, (numDataNodes + numParityNodes), (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList); xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD; for (i = 0; i < numDataNodes + 1; i++) { /* Set up params related to Rod and Rop nodes. */ xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */ } for (i = 0; i < numDataNodes; i++) { /* Set up params related to Wnd and Wnp nodes. */ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer ptr */ } /* Xor node needs to get at RAID information. */ xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; xorNodes[0].results[0] = readParityNodes[0].params[1].p; if (nfaults == 2) { rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1, (numDataNodes + numParityNodes), (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList); for (i = 0; i < numDataNodes; i++) { /* Set up params related to Rod. */ qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */ } /* And read old q. */ qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0]; /* pda */ qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1]; /* buffer ptr */ for (i = 0; i < numDataNodes; i++) { /* Set up params related to Wnd nodes. */ qNodes[0].params [2 * (numDataNodes + 1 + i) + 0] = /* pda */ writeDataNodes[i].params[0]; qNodes[0].params [2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */ writeDataNodes[i].params[1]; } /* Xor node needs to get at RAID information. */ qNodes[0].params [2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; qNodes[0].results[0] = readQNodes[0].params[1].p; } } /* Initialize nodes which write new parity (Wnp). */ pda = asmap->parityInfo; for (i = 0; i < numParityNodes; i++) { rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); RF_ASSERT(pda != NULL); /* Param 1 (bufPtr) filled in by xor node. */ writeParityNodes[i].params[0].p = pda; /* Buffer pointer for parity write operation. */ writeParityNodes[i].params[1].p = xorNodes[i].results[0]; writeParityNodes[i].params[2].v = parityStripeID; writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); if (lu_flag) { /* Initialize node to unlock the disk queue. */ rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList); /* Physical disk addr desc. */ unlockParityNodes[i].params[0].p = pda; unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); } pda = pda->next; } /* Initialize nodes which write new Q (Wnq). */ if (nfaults == 2) { pda = asmap->qInfo; for (i = 0; i < numParityNodes; i++) { rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); RF_ASSERT(pda != NULL); /* Param 1 (bufPtr) filled in by xor node. */ writeQNodes[i].params[0].p = pda; writeQNodes[i].params[1].p = qNodes[i].results[0]; /* Buffer pointer for parity write operation. */ writeQNodes[i].params[2].v = parityStripeID; writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); if (lu_flag) { /* Initialize node to unlock the disk queue. */ rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList); /* Physical disk addr desc. */ unlockQNodes[i].params[0].p = pda; unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); } pda = pda->next; } } /* * Step 4. Connect the nodes. */ /* Connect header to block node. */ dag_h->succedents[0] = blockNode; /* Connect block node to read old data nodes. */ RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults))); for (i = 0; i < numDataNodes; i++) { blockNode->succedents[i] = &readDataNodes[i]; RF_ASSERT(readDataNodes[i].numAntecedents == 1); readDataNodes[i].antecedents[0] = blockNode; readDataNodes[i].antType[0] = rf_control; } /* Connect block node to read old parity nodes. */ for (i = 0; i < numParityNodes; i++) { blockNode->succedents[numDataNodes + i] = &readParityNodes[i]; RF_ASSERT(readParityNodes[i].numAntecedents == 1); readParityNodes[i].antecedents[0] = blockNode; readParityNodes[i].antType[0] = rf_control; } /* Connect block node to read old Q nodes. */ if (nfaults == 2) { for (i = 0; i < numParityNodes; i++) { blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i]; RF_ASSERT(readQNodes[i].numAntecedents == 1); readQNodes[i].antecedents[0] = blockNode; readQNodes[i].antType[0] = rf_control; } } /* Connect read old data nodes to xor nodes. */ for (i = 0; i < numDataNodes; i++) { RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes)); for (j = 0; j < numParityNodes; j++) { RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes); readDataNodes[i].succedents[j] = &xorNodes[j]; xorNodes[j].antecedents[i] = &readDataNodes[i]; xorNodes[j].antType[i] = rf_trueData; } } /* Connect read old data nodes to q nodes. */ if (nfaults == 2) { for (i = 0; i < numDataNodes; i++) { for (j = 0; j < numParityNodes; j++) { RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes); readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j]; qNodes[j].antecedents[i] = &readDataNodes[i]; qNodes[j].antType[i] = rf_trueData; } } } /* Connect read old parity nodes to xor nodes. */ for (i = 0; i < numParityNodes; i++) { RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); for (j = 0; j < numParityNodes; j++) { readParityNodes[i].succedents[j] = &xorNodes[j]; xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; xorNodes[j].antType[numDataNodes + i] = rf_trueData; } } /* Connect read old q nodes to q nodes. */ if (nfaults == 2) { for (i = 0; i < numParityNodes; i++) { RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); for (j = 0; j < numParityNodes; j++) { readQNodes[i].succedents[j] = &qNodes[j]; qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i]; qNodes[j].antType[numDataNodes + i] = rf_trueData; } } } /* Connect xor nodes to commit node. */ RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes)); for (i = 0; i < numParityNodes; i++) { RF_ASSERT(xorNodes[i].numSuccedents == 1); xorNodes[i].succedents[0] = commitNode; commitNode->antecedents[i] = &xorNodes[i]; commitNode->antType[i] = rf_control; } /* Connect q nodes to commit node. */ if (nfaults == 2) { for (i = 0; i < numParityNodes; i++) { RF_ASSERT(qNodes[i].numSuccedents == 1); qNodes[i].succedents[0] = commitNode; commitNode->antecedents[i + numParityNodes] = &qNodes[i]; commitNode->antType[i + numParityNodes] = rf_control; } } /* Connect commit node to write nodes. */ RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes))); for (i = 0; i < numDataNodes; i++) { RF_ASSERT(writeDataNodes[i].numAntecedents == 1); commitNode->succedents[i] = &writeDataNodes[i]; writeDataNodes[i].antecedents[0] = commitNode; writeDataNodes[i].antType[0] = rf_trueData; } for (i = 0; i < numParityNodes; i++) { RF_ASSERT(writeParityNodes[i].numAntecedents == 1); commitNode->succedents[i + numDataNodes] = &writeParityNodes[i]; writeParityNodes[i].antecedents[0] = commitNode; writeParityNodes[i].antType[0] = rf_trueData; } if (nfaults == 2) { for (i = 0; i < numParityNodes; i++) { RF_ASSERT(writeQNodes[i].numAntecedents == 1); commitNode->succedents [i + numDataNodes + numParityNodes] = &writeQNodes[i]; writeQNodes[i].antecedents[0] = commitNode; writeQNodes[i].antType[0] = rf_trueData; } } RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); RF_ASSERT(termNode->numSuccedents == 0); for (i = 0; i < numDataNodes; i++) { if (lu_flag) { /* Connect write new data nodes to unlock nodes. */ RF_ASSERT(writeDataNodes[i].numSuccedents == 1); RF_ASSERT(unlockDataNodes[i].numAntecedents == 1); writeDataNodes[i].succedents[0] = &unlockDataNodes[i]; unlockDataNodes[i].antecedents[0] = &writeDataNodes[i]; unlockDataNodes[i].antType[0] = rf_control; /* Connect unlock nodes to term node. */ RF_ASSERT(unlockDataNodes[i].numSuccedents == 1); unlockDataNodes[i].succedents[0] = termNode; termNode->antecedents[i] = &unlockDataNodes[i]; termNode->antType[i] = rf_control; } else { /* Connect write new data nodes to term node. */ RF_ASSERT(writeDataNodes[i].numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); writeDataNodes[i].succedents[0] = termNode; termNode->antecedents[i] = &writeDataNodes[i]; termNode->antType[i] = rf_control; } } for (i = 0; i < numParityNodes; i++) { if (lu_flag) { /* Connect write new parity nodes to unlock nodes. */ RF_ASSERT(writeParityNodes[i].numSuccedents == 1); RF_ASSERT(unlockParityNodes[i].numAntecedents == 1); writeParityNodes[i].succedents[0] = &unlockParityNodes[i]; unlockParityNodes[i].antecedents[0] = &writeParityNodes[i]; unlockParityNodes[i].antType[0] = rf_control; /* Connect unlock nodes to term node. */ RF_ASSERT(unlockParityNodes[i].numSuccedents == 1); unlockParityNodes[i].succedents[0] = termNode; termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i]; termNode->antType[numDataNodes + i] = rf_control; } else { RF_ASSERT(writeParityNodes[i].numSuccedents == 1); writeParityNodes[i].succedents[0] = termNode; termNode->antecedents[numDataNodes + i] = &writeParityNodes[i]; termNode->antType[numDataNodes + i] = rf_control; } } if (nfaults == 2) { for (i = 0; i < numParityNodes; i++) { if (lu_flag) { /* Connect write new Q nodes to unlock nodes. */ RF_ASSERT(writeQNodes[i].numSuccedents == 1); RF_ASSERT(unlockQNodes[i].numAntecedents == 1); writeQNodes[i].succedents[0] = &unlockQNodes[i]; unlockQNodes[i].antecedents[0] = &writeQNodes[i]; unlockQNodes[i].antType[0] = rf_control; /* Connect unlock nodes to unblock node. */ RF_ASSERT(unlockQNodes[i].numSuccedents == 1); unlockQNodes[i].succedents[0] = termNode; termNode->antecedents [numDataNodes + numParityNodes + i] = &unlockQNodes[i]; termNode->antType [numDataNodes + numParityNodes + i] = rf_control; } else { RF_ASSERT(writeQNodes[i].numSuccedents == 1); writeQNodes[i].succedents[0] = termNode; termNode->antecedents [numDataNodes + numParityNodes + i] = &writeQNodes[i]; termNode->antType [numDataNodes + numParityNodes + i] = rf_control; } } } } /***************************************************************************** * Create a write graph (fault-free or degraded) for RAID level 1. * * Hdr -> Commit -> Wpd -> Nil -> Trm * -> Wsd -> * * The "Wpd" node writes data to the primary copy in the mirror pair. * The "Wsd" node writes data to the secondary copy in the mirror pair. * * Parameters: raidPtr - description of the physical array * asmap - logical & physical addresses for this access * bp - buffer ptr (holds write data) * flags - general flags (e.g. disk locking) * allocList - list of memory allocated in DAG creation *****************************************************************************/ void rf_CreateRaidOneWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList) { RF_DagNode_t *unblockNode, *termNode, *commitNode; RF_DagNode_t *nodes, *wndNode, *wmirNode; int nWndNodes, nWmirNodes, i; RF_ReconUnitNum_t which_ru; RF_PhysDiskAddr_t *pda, *pdaP; RF_StripeNum_t parityStripeID; parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); if (rf_dagDebug) { printf("[Creating RAID level 1 write DAG]\n"); } dag_h->creator = "RaidOneWriteDAG"; /* 2 implies access not SU aligned. */ nWmirNodes = (asmap->parityInfo->next) ? 2 : 1; nWndNodes = (asmap->physInfo->next) ? 2 : 1; /* Alloc the Wnd nodes and the Wmir node. */ if (asmap->numDataFailed == 1) nWndNodes--; if (asmap->numParityFailed == 1) nWmirNodes--; /* * Total number of nodes = nWndNodes + nWmirNodes * + (commit + unblock + terminator) */ RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; wndNode = &nodes[i]; i += nWndNodes; wmirNode = &nodes[i]; i += nWmirNodes; commitNode = &nodes[i]; i += 1; unblockNode = &nodes[i]; i += 1; termNode = &nodes[i]; i += 1; RF_ASSERT(i == (nWndNodes + nWmirNodes + 3)); /* This dag can commit immediately. */ dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* Initialize the commit, unblock, and term nodes. */ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList); rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); /* Initialize the wnd nodes. */ if (nWndNodes > 0) { pda = asmap->physInfo; for (i = 0; i < nWndNodes; i++) { rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList); RF_ASSERT(pda != NULL); wndNode[i].params[0].p = pda; wndNode[i].params[1].p = pda->bufPtr; wndNode[i].params[2].v = parityStripeID; wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); pda = pda->next; } RF_ASSERT(pda == NULL); } /* Initialize the mirror nodes. */ if (nWmirNodes > 0) { pda = asmap->physInfo; pdaP = asmap->parityInfo; for (i = 0; i < nWmirNodes; i++) { rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList); RF_ASSERT(pda != NULL); wmirNode[i].params[0].p = pdaP; wmirNode[i].params[1].p = pda->bufPtr; wmirNode[i].params[2].v = parityStripeID; wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); pda = pda->next; pdaP = pdaP->next; } RF_ASSERT(pda == NULL); RF_ASSERT(pdaP == NULL); } /* Link the header node to the commit node. */ RF_ASSERT(dag_h->numSuccedents == 1); RF_ASSERT(commitNode->numAntecedents == 0); dag_h->succedents[0] = commitNode; /* Link the commit node to the write nodes. */ RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes)); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNode[i].numAntecedents == 1); commitNode->succedents[i] = &wndNode[i]; wndNode[i].antecedents[0] = commitNode; wndNode[i].antType[0] = rf_control; } for (i = 0; i < nWmirNodes; i++) { RF_ASSERT(wmirNode[i].numAntecedents == 1); commitNode->succedents[i + nWndNodes] = &wmirNode[i]; wmirNode[i].antecedents[0] = commitNode; wmirNode[i].antType[0] = rf_control; } /* Link the write nodes to the unblock node. */ RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes)); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNode[i].numSuccedents == 1); wndNode[i].succedents[0] = unblockNode; unblockNode->antecedents[i] = &wndNode[i]; unblockNode->antType[i] = rf_control; } for (i = 0; i < nWmirNodes; i++) { RF_ASSERT(wmirNode[i].numSuccedents == 1); wmirNode[i].succedents[0] = unblockNode; unblockNode->antecedents[i + nWndNodes] = &wmirNode[i]; unblockNode->antType[i + nWndNodes] = rf_control; } /* Link the unblock node to the term node. */ RF_ASSERT(unblockNode->numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == 1); RF_ASSERT(termNode->numSuccedents == 0); unblockNode->succedents[0] = termNode; termNode->antecedents[0] = unblockNode; termNode->antType[0] = rf_control; } /* * DAGs that have no commit points. * * The following DAGs are used in forward and backward error recovery * experiments. * They are identical to the DAGs above this comment with the exception that * the commit points have been removed. */ void rf_CommonCreateLargeWriteDAGFwd(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList, int nfaults, int (*redFunc) (RF_DagNode_t *), int allowBufferRecycle) { RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode; RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode; int nWndNodes, nRodNodes, i, nodeNum, asmNum; RF_AccessStripeMapHeader_t *new_asm_h[2]; RF_StripeNum_t parityStripeID; char *sosBuffer, *eosBuffer; RF_ReconUnitNum_t which_ru; RF_RaidLayout_t *layoutPtr; RF_PhysDiskAddr_t *pda; layoutPtr = &(raidPtr->Layout); parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); if (rf_dagDebug) printf("[Creating large-write DAG]\n"); dag_h->creator = "LargeWriteDAGFwd"; dag_h->numCommitNodes = 0; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* Alloc the nodes: Wnd, xor, commit, block, term, and Wnp. */ nWndNodes = asmap->numStripeUnitsAccessed; RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; wndNodes = &nodes[i]; i += nWndNodes; xorNode = &nodes[i]; i += 1; wnpNode = &nodes[i]; i += 1; blockNode = &nodes[i]; i += 1; syncNode = &nodes[i]; i += 1; termNode = &nodes[i]; i += 1; if (nfaults == 2) { wnqNode = &nodes[i]; i += 1; } else { wnqNode = NULL; } rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList); if (nRodNodes > 0) { RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); } else { rodNodes = NULL; } /* Begin node initialization. */ if (nRodNodes > 0) { rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList); rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList); } else { rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList); } rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList); /* Initialize the Rod nodes. */ for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { if (new_asm_h[asmNum]) { pda = new_asm_h[asmNum]->stripeMap->physInfo; while (pda) { rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList); rodNodes[nodeNum].params[0].p = pda; rodNodes[nodeNum].params[1].p = pda->bufPtr; rodNodes[nodeNum].params[2].v = parityStripeID; rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); nodeNum++; pda = pda->next; } } } RF_ASSERT(nodeNum == nRodNodes); /* Initialize the wnd nodes. */ pda = asmap->physInfo; for (i = 0; i < nWndNodes; i++) { rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); RF_ASSERT(pda != NULL); wndNodes[i].params[0].p = pda; wndNodes[i].params[1].p = pda->bufPtr; wndNodes[i].params[2].v = parityStripeID; wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); pda = pda->next; } /* Initialize the redundancy node. */ rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); xorNode->flags |= RF_DAGNODE_FLAG_YIELD; for (i = 0; i < nWndNodes; i++) { xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */ xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */ } for (i = 0; i < nRodNodes; i++) { xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */ xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */ } /* Xor node needs to get at RAID information. */ xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* * Look for an Rod node that reads a complete SU. If none, alloc a * buffer to receive the parity info. Note that we can't use a new * data buffer because it will not have gotten written when the xor * occurs. */ if (allowBufferRecycle) { for (i = 0; i < nRodNodes; i++) if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p) ->numSector == raidPtr->Layout.sectorsPerStripeUnit) break; } if ((!allowBufferRecycle) || (i == nRodNodes)) { RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); } else xorNode->results[0] = rodNodes[i].params[1].p; /* Initialize the Wnp node. */ rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); wnpNode->params[0].p = asmap->parityInfo; wnpNode->params[1].p = xorNode->results[0]; wnpNode->params[2].v = parityStripeID; wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); /* parityInfo must describe entire parity unit. */ RF_ASSERT(asmap->parityInfo->next == NULL); if (nfaults == 2) { /* * Never try to recycle a buffer for the Q calcuation in * addition to the parity. This would cause two buffers to * get smashed during the P and Q calculation, guaranteeing * one would be wrong. */ RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); wnqNode->params[0].p = asmap->qInfo; wnqNode->params[1].p = xorNode->results[1]; wnqNode->params[2].v = parityStripeID; wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); /* parityInfo must describe entire parity unit. */ RF_ASSERT(asmap->parityInfo->next == NULL); } /* Connect nodes to form graph. */ /* Connect dag header to block node. */ RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; if (nRodNodes > 0) { /* Connect the block node to the Rod nodes. */ RF_ASSERT(blockNode->numSuccedents == nRodNodes); RF_ASSERT(syncNode->numAntecedents == nRodNodes); for (i = 0; i < nRodNodes; i++) { RF_ASSERT(rodNodes[i].numAntecedents == 1); blockNode->succedents[i] = &rodNodes[i]; rodNodes[i].antecedents[0] = blockNode; rodNodes[i].antType[0] = rf_control; /* Connect the Rod nodes to the Nil node. */ RF_ASSERT(rodNodes[i].numSuccedents == 1); rodNodes[i].succedents[0] = syncNode; syncNode->antecedents[i] = &rodNodes[i]; syncNode->antType[i] = rf_trueData; } } else { /* Connect the block node to the Nil node. */ RF_ASSERT(blockNode->numSuccedents == 1); RF_ASSERT(syncNode->numAntecedents == 1); blockNode->succedents[0] = syncNode; syncNode->antecedents[0] = blockNode; syncNode->antType[0] = rf_control; } /* Connect the sync node to the Wnd nodes. */ RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes)); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes->numAntecedents == 1); syncNode->succedents[i] = &wndNodes[i]; wndNodes[i].antecedents[0] = syncNode; wndNodes[i].antType[0] = rf_control; } /* Connect the sync node to the Xor node. */ RF_ASSERT(xorNode->numAntecedents == 1); syncNode->succedents[nWndNodes] = xorNode; xorNode->antecedents[0] = syncNode; xorNode->antType[0] = rf_control; /* Connect the xor node to the write parity node. */ RF_ASSERT(xorNode->numSuccedents == nfaults); RF_ASSERT(wnpNode->numAntecedents == 1); xorNode->succedents[0] = wnpNode; wnpNode->antecedents[0] = xorNode; wnpNode->antType[0] = rf_trueData; if (nfaults == 2) { RF_ASSERT(wnqNode->numAntecedents == 1); xorNode->succedents[1] = wnqNode; wnqNode->antecedents[0] = xorNode; wnqNode->antType[0] = rf_trueData; } /* Connect the write nodes to the term node. */ RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults); RF_ASSERT(termNode->numSuccedents == 0); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes->numSuccedents == 1); wndNodes[i].succedents[0] = termNode; termNode->antecedents[i] = &wndNodes[i]; termNode->antType[i] = rf_control; } RF_ASSERT(wnpNode->numSuccedents == 1); wnpNode->succedents[0] = termNode; termNode->antecedents[nWndNodes] = wnpNode; termNode->antType[nWndNodes] = rf_control; if (nfaults == 2) { RF_ASSERT(wnqNode->numSuccedents == 1); wnqNode->succedents[0] = termNode; termNode->antecedents[nWndNodes + 1] = wnqNode; termNode->antType[nWndNodes + 1] = rf_control; } } /***************************************************************************** * * Create a DAG to perform a small-write operation (either raid 5 or pq), * which is as follows: * * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm * \- Rod X- Wnd [Und] -------/ * [\- Rod X- Wnd [Und] ------/] * [\- Roq - Q --> Wnq [Unq]-/] * * Rop = read old parity * Rod = read old data * Roq = read old "q" * Cmt = commit node * Und = unlock data disk * Unp = unlock parity disk * Unq = unlock q disk * Wnp = write new parity * Wnd = write new data * Wnq = write new "q" * [ ] denotes optional segments in the graph. * * Parameters: raidPtr - description of the physical array * asmap - logical & physical addresses for this access * bp - buffer ptr (holds write data) * flags - general flags (e.g. disk locking) * allocList - list of memory allocated in DAG creation * pfuncs - list of parity generating functions * qfuncs - list of q generating functions * * A null qfuncs indicates single fault tolerant. *****************************************************************************/ void rf_CommonCreateSmallWriteDAGFwd(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList, RF_RedFuncs_t *pfuncs, RF_RedFuncs_t *qfuncs) { RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode; RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes; RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes; RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes; int i, j, nNodes, totalNumNodes, lu_flag; RF_ReconUnitNum_t which_ru; int (*func) (RF_DagNode_t *); int (*undoFunc) (RF_DagNode_t *); int (*qfunc) (RF_DagNode_t *); int numDataNodes, numParityNodes; RF_StripeNum_t parityStripeID; RF_PhysDiskAddr_t *pda; char *name, *qname; long nfaults; nfaults = qfuncs ? 2 : 1; lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* Lock/unlock flag. */ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); pda = asmap->physInfo; numDataNodes = asmap->numStripeUnitsAccessed; numParityNodes = (asmap->parityInfo->next) ? 2 : 1; if (rf_dagDebug) printf("[Creating small-write DAG]\n"); RF_ASSERT(numDataNodes > 0); dag_h->creator = "SmallWriteDAGFwd"; dag_h->numCommitNodes = 0; dag_h->numCommits = 0; dag_h->numSuccedents = 1; qfunc = NULL; qname = NULL; /* * DAG creation occurs in four steps: * 1. Count the number of nodes in the DAG. * 2. Create the nodes. * 3. Initialize the nodes. * 4. Connect the nodes. */ /* Step 1. Compute number of nodes in the graph. */ /* * Number of nodes: a read and write for each data unit, a redundancy * computation node for each parity node (nfaults * nparity), a read * and write for each parity unit, a block node, a terminate node if * atomic RMW, an unlock node for each data/redundancy unit. */ totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2; if (lu_flag) totalNumNodes += (numDataNodes + (nfaults * numParityNodes)); /* Step 2. Create the nodes. */ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; blockNode = &nodes[i]; i += 1; readDataNodes = &nodes[i]; i += numDataNodes; readParityNodes = &nodes[i]; i += numParityNodes; writeDataNodes = &nodes[i]; i += numDataNodes; writeParityNodes = &nodes[i]; i += numParityNodes; xorNodes = &nodes[i]; i += numParityNodes; termNode = &nodes[i]; i += 1; if (lu_flag) { unlockDataNodes = &nodes[i]; i += numDataNodes; unlockParityNodes = &nodes[i]; i += numParityNodes; } else { unlockDataNodes = unlockParityNodes = NULL; } if (nfaults == 2) { readQNodes = &nodes[i]; i += numParityNodes; writeQNodes = &nodes[i]; i += numParityNodes; qNodes = &nodes[i]; i += numParityNodes; if (lu_flag) { unlockQNodes = &nodes[i]; i += numParityNodes; } else { unlockQNodes = NULL; } } else { readQNodes = writeQNodes = qNodes = unlockQNodes = NULL; } RF_ASSERT(i == totalNumNodes); /* Step 3. Initialize the nodes. */ /* Initialize block node (Nil). */ nNodes = numDataNodes + (nfaults * numParityNodes); rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); /* Initialize terminate node (Trm). */ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList); /* Initialize nodes which read old data (Rod). */ for (i = 0; i < numDataNodes; i++) { rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList); RF_ASSERT(pda != NULL); /* Physical disk addr desc. */ readDataNodes[i].params[0].p = pda; /* Buffer to hold old data. */ readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); readDataNodes[i].params[2].v = parityStripeID; readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); pda = pda->next; for (j = 0; j < readDataNodes[i].numSuccedents; j++) readDataNodes[i].propList[j] = NULL; } /* Initialize nodes which read old parity (Rop). */ pda = asmap->parityInfo; i = 0; for (i = 0; i < numParityNodes; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList); readParityNodes[i].params[0].p = pda; /* Buffer to hold old parity. */ readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); readParityNodes[i].params[2].v = parityStripeID; readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); for (j = 0; j < readParityNodes[i].numSuccedents; j++) readParityNodes[i].propList[0] = NULL; pda = pda->next; } /* Initialize nodes which read old Q (Roq). */ if (nfaults == 2) { pda = asmap->qInfo; for (i = 0; i < numParityNodes; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList); readQNodes[i].params[0].p = pda; /* Buffer to hold old Q. */ readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); readQNodes[i].params[2].v = parityStripeID; readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); for (j = 0; j < readQNodes[i].numSuccedents; j++) readQNodes[i].propList[0] = NULL; pda = pda->next; } } /* Initialize nodes which write new data (Wnd). */ pda = asmap->physInfo; for (i = 0; i < numDataNodes; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); /* Physical disk addr desc. */ writeDataNodes[i].params[0].p = pda; /* Buffer holding new data to be written. */ writeDataNodes[i].params[1].p = pda->bufPtr; writeDataNodes[i].params[2].v = parityStripeID; writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); if (lu_flag) { /* Initialize node to unlock the disk queue. */ rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList); /* Physical disk addr desc. */ unlockDataNodes[i].params[0].p = pda; unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); } pda = pda->next; } /* Initialize nodes which compute new parity and Q. */ /* * Use the simple XOR func in the double-XOR case, and when * accessing only a portion of one stripe unit. The distinction * between the two is that the regular XOR func assumes that the * targbuf is a full SU in size, and examines the pda associated with * the buffer to decide where within the buffer to XOR the data, * whereas the simple XOR func just XORs the data into the start of * the buffer. */ if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) { func = pfuncs->simple; undoFunc = rf_NullNodeUndoFunc; name = pfuncs->SimpleName; if (qfuncs) { qfunc = qfuncs->simple; qname = qfuncs->SimpleName; } } else { func = pfuncs->regular; undoFunc = rf_NullNodeUndoFunc; name = pfuncs->RegularName; if (qfuncs) { qfunc = qfuncs->regular; qname = qfuncs->RegularName; } } /* * Initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop} * nodes, and raidPtr. */ if (numParityNodes == 2) { /* Double-xor case. */ for (i = 0; i < numParityNodes; i++) { /* No wakeup func for xor. */ rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList); xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD; xorNodes[i].params[0] = readDataNodes[i].params[0]; xorNodes[i].params[1] = readDataNodes[i].params[1]; xorNodes[i].params[2] = readParityNodes[i].params[0]; xorNodes[i].params[3] = readParityNodes[i].params[1]; xorNodes[i].params[4] = writeDataNodes[i].params[0]; xorNodes[i].params[5] = writeDataNodes[i].params[1]; xorNodes[i].params[6].p = raidPtr; /* Use old parity buf as target buf. */ xorNodes[i].results[0] = readParityNodes[i].params[1].p; if (nfaults == 2) { /* No wakeup func for xor. */ rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList); qNodes[i].params[0] = readDataNodes[i].params[0]; qNodes[i].params[1] = readDataNodes[i].params[1]; qNodes[i].params[2] = readQNodes[i].params[0]; qNodes[i].params[3] = readQNodes[i].params[1]; qNodes[i].params[4] = writeDataNodes[i].params[0]; qNodes[i].params[5] = writeDataNodes[i].params[1]; qNodes[i].params[6].p = raidPtr; /* Use old Q buf as target buf. */ qNodes[i].results[0] = readQNodes[i].params[1].p; } } } else { /* There is only one xor node in this case. */ rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList); xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD; for (i = 0; i < numDataNodes + 1; i++) { /* Set up params related to Rod and Rop nodes. */ xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */ } for (i = 0; i < numDataNodes; i++) { /* Set up params related to Wnd and Wnp nodes. */ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */ } xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get at RAID information */ xorNodes[0].results[0] = readParityNodes[0].params[1].p; if (nfaults == 2) { rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList); for (i = 0; i < numDataNodes; i++) { /* Set up params related to Rod. */ /* pda */ qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* buffer pointer */ qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; } /* And read old q. */ qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0]; /* pda */ qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1]; /* buffer pointer */ for (i = 0; i < numDataNodes; i++) { /* Set up params related to Wnd nodes. */ /* pda */ qNodes[0].params [2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* buffer pointer */ qNodes[0].params [2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; } /* Xor node needs to get at RAID information. */ qNodes[0].params [2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; qNodes[0].results[0] = readQNodes[0].params[1].p; } } /* Initialize nodes which write new parity (Wnp). */ pda = asmap->parityInfo; for (i = 0; i < numParityNodes; i++) { rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList); RF_ASSERT(pda != NULL); /* Param 1 (bufPtr) filled in by xor node. */ writeParityNodes[i].params[0].p = pda; /* Buffer pointer for parity write operation. */ writeParityNodes[i].params[1].p = xorNodes[i].results[0]; writeParityNodes[i].params[2].v = parityStripeID; writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); if (lu_flag) { /* Initialize node to unlock the disk queue. */ rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList); unlockParityNodes[i].params[0].p = pda; /* Physical disk addr desc. */ unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); } pda = pda->next; } /* Initialize nodes which write new Q (Wnq). */ if (nfaults == 2) { pda = asmap->qInfo; for (i = 0; i < numParityNodes; i++) { rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList); RF_ASSERT(pda != NULL); /* Param 1 (bufPtr) filled in by xor node. */ writeQNodes[i].params[0].p = pda; /* Buffer pointer for parity write operation. */ writeQNodes[i].params[1].p = qNodes[i].results[0]; writeQNodes[i].params[2].v = parityStripeID; writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); if (lu_flag) { /* Initialize node to unlock the disk queue. */ rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList); /* Physical disk addr desc. */ unlockQNodes[i].params[0].p = pda; unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); } pda = pda->next; } } /* Step 4. Connect the nodes. */ /* Connect header to block node. */ dag_h->succedents[0] = blockNode; /* Connect block node to read old data nodes. */ RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults))); for (i = 0; i < numDataNodes; i++) { blockNode->succedents[i] = &readDataNodes[i]; RF_ASSERT(readDataNodes[i].numAntecedents == 1); readDataNodes[i].antecedents[0] = blockNode; readDataNodes[i].antType[0] = rf_control; } /* Connect block node to read old parity nodes. */ for (i = 0; i < numParityNodes; i++) { blockNode->succedents[numDataNodes + i] = &readParityNodes[i]; RF_ASSERT(readParityNodes[i].numAntecedents == 1); readParityNodes[i].antecedents[0] = blockNode; readParityNodes[i].antType[0] = rf_control; } /* Connect block node to read old Q nodes. */ if (nfaults == 2) for (i = 0; i < numParityNodes; i++) { blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i]; RF_ASSERT(readQNodes[i].numAntecedents == 1); readQNodes[i].antecedents[0] = blockNode; readQNodes[i].antType[0] = rf_control; } /* Connect read old data nodes to write new data nodes. */ for (i = 0; i < numDataNodes; i++) { RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1)); RF_ASSERT(writeDataNodes[i].numAntecedents == 1); readDataNodes[i].succedents[0] = &writeDataNodes[i]; writeDataNodes[i].antecedents[0] = &readDataNodes[i]; writeDataNodes[i].antType[0] = rf_antiData; } /* Connect read old data nodes to xor nodes. */ for (i = 0; i < numDataNodes; i++) { for (j = 0; j < numParityNodes; j++) { RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes); readDataNodes[i].succedents[1 + j] = &xorNodes[j]; xorNodes[j].antecedents[i] = &readDataNodes[i]; xorNodes[j].antType[i] = rf_trueData; } } /* Connect read old data nodes to q nodes. */ if (nfaults == 2) for (i = 0; i < numDataNodes; i++) for (j = 0; j < numParityNodes; j++) { RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes); readDataNodes[i].succedents [1 + numParityNodes + j] = &qNodes[j]; qNodes[j].antecedents[i] = &readDataNodes[i]; qNodes[j].antType[i] = rf_trueData; } /* Connect read old parity nodes to xor nodes. */ for (i = 0; i < numParityNodes; i++) { for (j = 0; j < numParityNodes; j++) { RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); readParityNodes[i].succedents[j] = &xorNodes[j]; xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; xorNodes[j].antType[numDataNodes + i] = rf_trueData; } } /* Connect read old q nodes to q nodes. */ if (nfaults == 2) for (i = 0; i < numParityNodes; i++) { for (j = 0; j < numParityNodes; j++) { RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes); readQNodes[i].succedents[j] = &qNodes[j]; qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i]; qNodes[j].antType[numDataNodes + i] = rf_trueData; } } /* Connect xor nodes to the write new parity nodes. */ for (i = 0; i < numParityNodes; i++) { RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes); for (j = 0; j < numParityNodes; j++) { RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes); xorNodes[i].succedents[j] = &writeParityNodes[j]; writeParityNodes[j].antecedents[i] = &xorNodes[i]; writeParityNodes[j].antType[i] = rf_trueData; } } /* Connect q nodes to the write new q nodes. */ if (nfaults == 2) for (i = 0; i < numParityNodes; i++) { RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes); for (j = 0; j < numParityNodes; j++) { RF_ASSERT(qNodes[j].numSuccedents == 1); qNodes[i].succedents[j] = &writeQNodes[j]; writeQNodes[j].antecedents[i] = &qNodes[i]; writeQNodes[j].antType[i] = rf_trueData; } } RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); RF_ASSERT(termNode->numSuccedents == 0); for (i = 0; i < numDataNodes; i++) { if (lu_flag) { /* Connect write new data nodes to unlock nodes. */ RF_ASSERT(writeDataNodes[i].numSuccedents == 1); RF_ASSERT(unlockDataNodes[i].numAntecedents == 1); writeDataNodes[i].succedents[0] = &unlockDataNodes[i]; unlockDataNodes[i].antecedents[0] = &writeDataNodes[i]; unlockDataNodes[i].antType[0] = rf_control; /* Connect unlock nodes to term nodes. */ RF_ASSERT(unlockDataNodes[i].numSuccedents == 1); unlockDataNodes[i].succedents[0] = termNode; termNode->antecedents[i] = &unlockDataNodes[i]; termNode->antType[i] = rf_control; } else { /* Connect write new data nodes to term node. */ RF_ASSERT(writeDataNodes[i].numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); writeDataNodes[i].succedents[0] = termNode; termNode->antecedents[i] = &writeDataNodes[i]; termNode->antType[i] = rf_control; } } for (i = 0; i < numParityNodes; i++) { if (lu_flag) { /* Connect write new parity nodes to unlock nodes. */ RF_ASSERT(writeParityNodes[i].numSuccedents == 1); RF_ASSERT(unlockParityNodes[i].numAntecedents == 1); writeParityNodes[i].succedents[0] = &unlockParityNodes[i]; unlockParityNodes[i].antecedents[0] = &writeParityNodes[i]; unlockParityNodes[i].antType[0] = rf_control; /* Connect unlock nodes to term node. */ RF_ASSERT(unlockParityNodes[i].numSuccedents == 1); unlockParityNodes[i].succedents[0] = termNode; termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i]; termNode->antType[numDataNodes + i] = rf_control; } else { RF_ASSERT(writeParityNodes[i].numSuccedents == 1); writeParityNodes[i].succedents[0] = termNode; termNode->antecedents[numDataNodes + i] = &writeParityNodes[i]; termNode->antType[numDataNodes + i] = rf_control; } } if (nfaults == 2) for (i = 0; i < numParityNodes; i++) { if (lu_flag) { /* Connect write new Q nodes to unlock nodes. */ RF_ASSERT(writeQNodes[i].numSuccedents == 1); RF_ASSERT(unlockQNodes[i].numAntecedents == 1); writeQNodes[i].succedents[0] = &unlockQNodes[i]; unlockQNodes[i].antecedents[0] = &writeQNodes[i]; unlockQNodes[i].antType[0] = rf_control; /* Connect unlock nodes to unblock node. */ RF_ASSERT(unlockQNodes[i].numSuccedents == 1); unlockQNodes[i].succedents[0] = termNode; termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i]; termNode->antType[numDataNodes + numParityNodes + i] = rf_control; } else { RF_ASSERT(writeQNodes[i].numSuccedents == 1); writeQNodes[i].succedents[0] = termNode; termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i]; termNode->antType[numDataNodes + numParityNodes + i] = rf_control; } } } /***************************************************************************** * Create a write graph (fault-free or degraded) for RAID level 1. * * Hdr Nil -> Wpd -> Nil -> Trm * Nil -> Wsd -> * * The "Wpd" node writes data to the primary copy in the mirror pair. * The "Wsd" node writes data to the secondary copy in the mirror pair. * * Parameters: raidPtr - description of the physical array * asmap - logical & physical addresses for this access * bp - buffer ptr (holds write data) * flags - general flags (e.g. disk locking) * allocList - list of memory allocated in DAG creation *****************************************************************************/ void rf_CreateRaidOneWriteDAGFwd(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList) { RF_DagNode_t *blockNode, *unblockNode, *termNode; RF_DagNode_t *nodes, *wndNode, *wmirNode; int nWndNodes, nWmirNodes, i; RF_ReconUnitNum_t which_ru; RF_PhysDiskAddr_t *pda, *pdaP; RF_StripeNum_t parityStripeID; parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); if (rf_dagDebug) { printf("[Creating RAID level 1 write DAG]\n"); } /* 2 implies access not SU aligned. */ nWmirNodes = (asmap->parityInfo->next) ? 2 : 1; nWndNodes = (asmap->physInfo->next) ? 2 : 1; /* Alloc the Wnd nodes and the Wmir node. */ if (asmap->numDataFailed == 1) nWndNodes--; if (asmap->numParityFailed == 1) nWmirNodes--; /* * Total number of nodes = nWndNodes + nWmirNodes + * (block + unblock + terminator) */ RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; wndNode = &nodes[i]; i += nWndNodes; wmirNode = &nodes[i]; i += nWmirNodes; blockNode = &nodes[i]; i += 1; unblockNode = &nodes[i]; i += 1; termNode = &nodes[i]; i += 1; RF_ASSERT(i == (nWndNodes + nWmirNodes + 3)); /* This dag can commit immediately. */ dag_h->numCommitNodes = 0; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* Initialize the unblock and term nodes. */ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList); rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); /* Initialize the wnd nodes. */ if (nWndNodes > 0) { pda = asmap->physInfo; for (i = 0; i < nWndNodes; i++) { rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList); RF_ASSERT(pda != NULL); wndNode[i].params[0].p = pda; wndNode[i].params[1].p = pda->bufPtr; wndNode[i].params[2].v = parityStripeID; wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); pda = pda->next; } RF_ASSERT(pda == NULL); } /* Initialize the mirror nodes. */ if (nWmirNodes > 0) { pda = asmap->physInfo; pdaP = asmap->parityInfo; for (i = 0; i < nWmirNodes; i++) { rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList); RF_ASSERT(pda != NULL); wmirNode[i].params[0].p = pdaP; wmirNode[i].params[1].p = pda->bufPtr; wmirNode[i].params[2].v = parityStripeID; wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); pda = pda->next; pdaP = pdaP->next; } RF_ASSERT(pda == NULL); RF_ASSERT(pdaP == NULL); } /* Link the header node to the block node. */ RF_ASSERT(dag_h->numSuccedents == 1); RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; /* Link the block node to the write nodes. */ RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes)); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNode[i].numAntecedents == 1); blockNode->succedents[i] = &wndNode[i]; wndNode[i].antecedents[0] = blockNode; wndNode[i].antType[0] = rf_control; } for (i = 0; i < nWmirNodes; i++) { RF_ASSERT(wmirNode[i].numAntecedents == 1); blockNode->succedents[i + nWndNodes] = &wmirNode[i]; wmirNode[i].antecedents[0] = blockNode; wmirNode[i].antType[0] = rf_control; } /* Link the write nodes to the unblock node. */ RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes)); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNode[i].numSuccedents == 1); wndNode[i].succedents[0] = unblockNode; unblockNode->antecedents[i] = &wndNode[i]; unblockNode->antType[i] = rf_control; } for (i = 0; i < nWmirNodes; i++) { RF_ASSERT(wmirNode[i].numSuccedents == 1); wmirNode[i].succedents[0] = unblockNode; unblockNode->antecedents[i + nWndNodes] = &wmirNode[i]; unblockNode->antType[i + nWndNodes] = rf_control; } /* Link the unblock node to the term node. */ RF_ASSERT(unblockNode->numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == 1); RF_ASSERT(termNode->numSuccedents == 0); unblockNode->succedents[0] = termNode; termNode->antecedents[0] = unblockNode; termNode->antType[0] = rf_control; return; }