/* $OpenBSD: rf_chaindecluster.c,v 1.4 2002/12/16 07:01:03 tdeval Exp $ */ /* $NetBSD: rf_chaindecluster.c,v 1.4 2000/01/07 03:40:56 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Khalil Amiri * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /***************************************************************************** * * rf_chaindecluster.c -- implements chained declustering * *****************************************************************************/ #include "rf_archs.h" #include "rf_types.h" #include "rf_raid.h" #include "rf_chaindecluster.h" #include "rf_dag.h" #include "rf_dagutils.h" #include "rf_dagffrd.h" #include "rf_dagffwr.h" #include "rf_dagdegrd.h" #include "rf_dagfuncs.h" #include "rf_general.h" #include "rf_utils.h" typedef struct RF_ChaindeclusterConfigInfo_s { RF_RowCol_t **stripeIdentifier; /* * Filled in at config time and * used by IdentifyStripe. */ RF_StripeCount_t numSparingRegions; RF_StripeCount_t stripeUnitsPerSparingRegion; RF_SectorNum_t mirrorStripeOffset; } RF_ChaindeclusterConfigInfo_t; int rf_ConfigureChainDecluster(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr, RF_Config_t *cfgPtr) { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_StripeCount_t num_used_stripeUnitsPerDisk; RF_ChaindeclusterConfigInfo_t *info; RF_RowCol_t i; /* Create a Chained Declustering configuration structure. */ RF_MallocAndAdd(info, sizeof(RF_ChaindeclusterConfigInfo_t), (RF_ChaindeclusterConfigInfo_t *), raidPtr->cleanupList); if (info == NULL) return (ENOMEM); layoutPtr->layoutSpecificInfo = (void *) info; /* Fill in the config structure. */ info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, 2, raidPtr->cleanupList); if (info->stripeIdentifier == NULL) return (ENOMEM); for (i = 0; i < raidPtr->numCol; i++) { info->stripeIdentifier[i][0] = i % raidPtr->numCol; info->stripeIdentifier[i][1] = (i + 1) % raidPtr->numCol; } RF_ASSERT(raidPtr->numRow == 1); /* Fill in the remaining layout parameters. */ num_used_stripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk - (layoutPtr->stripeUnitsPerDisk % (2 * raidPtr->numCol - 2)); info->numSparingRegions = num_used_stripeUnitsPerDisk / (2 * raidPtr->numCol - 2); info->stripeUnitsPerSparingRegion = raidPtr->numCol * (raidPtr->numCol - 1); info->mirrorStripeOffset = info->numSparingRegions * (raidPtr->numCol - 1); layoutPtr->numStripe = info->numSparingRegions * info->stripeUnitsPerSparingRegion; layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; layoutPtr->numDataCol = 1; layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; layoutPtr->numParityCol = 1; layoutPtr->dataStripeUnitsPerDisk = num_used_stripeUnitsPerDisk; raidPtr->sectorsPerDisk = num_used_stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; raidPtr->totalSectors = (layoutPtr->numStripe) * layoutPtr->sectorsPerStripeUnit; layoutPtr->stripeUnitsPerDisk = raidPtr->sectorsPerDisk / layoutPtr->sectorsPerStripeUnit; return (0); } RF_ReconUnitCount_t rf_GetNumSpareRUsChainDecluster(RF_Raid_t *raidPtr) { RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; /* * The layout uses two stripe units per disk as spare within each * sparing region. */ return (2 * info->numSparingRegions); } /* Maps to the primary copy of the data, i.e. the first mirror pair. */ void rf_MapSectorChainDecluster(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t *row, RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap) { RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; RF_SectorNum_t index_within_region, index_within_disk; RF_StripeNum_t sparing_region_id; int col_before_remap; *row = 0; sparing_region_id = SUID / info->stripeUnitsPerSparingRegion; index_within_region = SUID % info->stripeUnitsPerSparingRegion; index_within_disk = index_within_region / raidPtr->numCol; col_before_remap = SUID % raidPtr->numCol; if (!remap) { *col = col_before_remap; *diskSector = (index_within_disk + ((raidPtr->numCol - 1) * sparing_region_id)) * raidPtr->Layout.sectorsPerStripeUnit; *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); } else { /* Remap sector to spare space... */ *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit; *diskSector += (raidPtr->numCol - 1) * raidPtr->Layout.sectorsPerStripeUnit; *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); index_within_disk = index_within_region / raidPtr->numCol; if (index_within_disk < col_before_remap) *col = index_within_disk; else if (index_within_disk == raidPtr->numCol - 2) { *col = (col_before_remap + raidPtr->numCol - 1) % raidPtr->numCol; *diskSector += raidPtr->Layout.sectorsPerStripeUnit; } else *col = (index_within_disk + 2) % raidPtr->numCol; } } /* * Maps to the second copy of the mirror pair, which is chain declustered. * The second copy is contained in the next disk (mod numCol) after the disk * containing the primary copy. * The offset into the disk is one-half disk down. */ void rf_MapParityChainDecluster(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t *row, RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap) { RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; RF_SectorNum_t index_within_region, index_within_disk; RF_StripeNum_t sparing_region_id; int col_before_remap; *row = 0; if (!remap) { *col = SUID % raidPtr->numCol; *col = (*col + 1) % raidPtr->numCol; *diskSector = info->mirrorStripeOffset * raidPtr->Layout.sectorsPerStripeUnit; *diskSector += (SUID / raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit; *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); } else { /* Remap parity to spare space... */ sparing_region_id = SUID / info->stripeUnitsPerSparingRegion; index_within_region = SUID % info->stripeUnitsPerSparingRegion; index_within_disk = index_within_region / raidPtr->numCol; *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit; *diskSector += (raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit; *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); col_before_remap = SUID % raidPtr->numCol; if (index_within_disk < col_before_remap) *col = index_within_disk; else if (index_within_disk == raidPtr->numCol - 2) { *col = (col_before_remap + 2) % raidPtr->numCol; *diskSector -= raidPtr->Layout.sectorsPerStripeUnit; } else *col = (index_within_disk + 2) % raidPtr->numCol; } } void rf_IdentifyStripeChainDecluster(RF_Raid_t *raidPtr, RF_RaidAddr_t addr, RF_RowCol_t **diskids, RF_RowCol_t *outRow) { RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; RF_StripeNum_t SUID; RF_RowCol_t col; SUID = addr / raidPtr->Layout.sectorsPerStripeUnit; col = SUID % raidPtr->numCol; *outRow = 0; *diskids = info->stripeIdentifier[col]; } void rf_MapSIDToPSIDChainDecluster(RF_RaidLayout_t *layoutPtr, RF_StripeNum_t stripeID, RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru) { *which_ru = 0; *psID = stripeID; } /**************************************************************************** * Select a graph to perform a single-stripe access. * * Parameters: raidPtr - description of the physical array * type - type of operation (read or write) requested * asmap - logical & physical addresses for this access * createFunc - function to use to create the graph (return value) *****************************************************************************/ void rf_RAIDCDagSelect(RF_Raid_t *raidPtr, RF_IoType_t type, RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc) { RF_ASSERT(RF_IO_IS_R_OR_W(type)); RF_ASSERT(raidPtr->numRow == 1); if (asmap->numDataFailed + asmap->numParityFailed > 1) { RF_ERRORMSG("Multiple disks failed in a single group !" " Aborting I/O operation.\n"); *createFunc = NULL; return; } *createFunc = (type == RF_IO_TYPE_READ) ? (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG : (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; if (type == RF_IO_TYPE_READ) { if ((raidPtr->status[0] == rf_rs_degraded) || (raidPtr->status[0] == rf_rs_reconstructing)) /* * Array status is degraded, * implement workload shifting. */ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidCDegradedReadDAG; else /* * Array status not degraded, * so use mirror partition dag. */ *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorPartitionReadDAG; } else *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; }