/* $OpenBSD: macros.h,v 1.14 2006/11/06 21:31:36 miod Exp $ */ /* $NetBSD: macros.h,v 1.20 2000/07/19 01:02:52 matt Exp $ */ /* * Copyright (c) 1994, 1998, 2000 Ludd, University of Lule}, Sweden. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed at Ludd, University of Lule}. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* All bugs are subject to removal without further notice */ #if !defined(_VAX_MACROS_H_) && !defined(lint) #define _VAX_MACROS_H_ /* Here general macros are supposed to be stored */ static __inline__ int ffs(int reg) { register int val; __asm__ __volatile ("ffs $0,$32,%1,%0 bneq 1f mnegl $1,%0 1: incl %0" : "=&r" (val) : "r" (reg) ); return val; } static __inline__ void * memcpy(void *toe, const void *from, size_t len) { __asm__ __volatile ("movc3 %0,(%1),(%2)" : : "r" (len),"r" (from),"r"(toe) :"r0","r1","r2","r3","r4","r5","memory","cc"); return toe; } static __inline__ void * memmove(void *toe, const void *from, size_t len) { __asm__ __volatile ("movc3 %0,(%1),(%2)" : : "r" (len),"r" (from),"r"(toe) :"r0","r1","r2","r3","r4","r5","memory","cc"); return toe; } #ifdef notnow static __inline__ void bcopy(const void *from, void *toe, size_t len) { __asm__ __volatile ("movc3 %0,(%1),(%2)" : : "r" (len),"r" (from),"r"(toe) :"r0","r1","r2","r3","r4","r5","memory","cc"); } #endif void blkfill(void *, int, size_t); static __inline__ void * memset(void *block, int c, size_t len) { if (len > 65535) blkfill(block, c, len); else { __asm__ __volatile ("movc5 $0,(%0),%2,%1,(%0)" : : "r" (block), "r" (len), "r"(c) :"r0","r1","r2","r3","r4","r5","memory","cc"); } return block; } static __inline__ void bzero(void *block, size_t len) { if (len > 65535) blkfill(block, 0, len); else { __asm__ __volatile ("movc5 $0,(%0),$0,%1,(%0)" : : "r" (block), "r" (len) :"r0","r1","r2","r3","r4","r5","memory","cc"); } } /* XXX - the return syntax of memcmp is wrong */ static __inline__ int memcmp(const void *b1, const void *b2, size_t len) { register int ret; __asm__ __volatile("cmpc3 %3,(%1),(%2);movl r0,%0" : "=r" (ret) : "r" (b1), "r" (b2), "r" (len) : "r0","r1","r2","r3" ); return ret; } static __inline__ int bcmp(const void *b1, const void *b2, size_t len) { register int ret; __asm__ __volatile("cmpc3 %3,(%1),(%2);movl r0,%0" : "=r" (ret) : "r" (b1), "r" (b2), "r" (len) : "r0","r1","r2","r3" ); return ret; } /* Begin nya */ static __inline__ size_t strlen(const char *cp) { register size_t ret; __asm__ __volatile("locc $0,$65535,(%1);subl3 r0,$65535,%0" : "=r" (ret) : "r" (cp) : "r0","r1","cc" ); return ret; } static __inline__ char * strncat(char *cp, const char *c2, size_t count) { __asm__ __volatile("locc $0,%2,(%1);subl3 r0,%2,r2; locc $0,$65535,(%0);movc3 r2,(%1),(r1);movb $0,(r3)" : : "r" (cp), "r" (c2), "g"(count) : "r0","r1","r2","r3","r4","r5","memory","cc"); return cp; } static __inline__ char * strncpy(char *cp, const char *c2, size_t len) { __asm__ __volatile("movl %2,r2;locc $0,r2,(%1);beql 1f;subl3 r0,%2,r2; clrb (%0)[r2];1:;movc3 r2,(%1),(%0)" : : "r" (cp), "r" (c2), "g"(len) : "r0","r1","r2","r3","r4","r5","memory","cc"); return cp; } static __inline__ void * memchr(const void *cp, int c, size_t len) { void *ret; __asm__ __volatile("locc %2,%3,(%1);bneq 1f;clrl r1;1:movl r1,%0" : "=g"(ret) : "r" (cp), "r" (c), "g"(len) : "r0","r1","cc"); return ret; } static __inline__ int strcmp(const char *cp, const char *c2) { register int ret; __asm__ __volatile("locc $0,$65535,(%1);subl3 r0,$65535,r0;incl r0; cmpc3 r0,(%1),(%2);beql 1f;movl $1,r2; cmpb (r1),(r3);bcc 1f;movl $-1,r2;1:movl r2,%0" : "=g"(ret) : "r" (cp), "r" (c2) : "r0","r1","r2","r3","cc"); return ret; } /* End nya */ #if 0 /* unused, but no point in deleting it since it _is_ an instruction */ static __inline__ int locc(int mask, char *cp, size_t size){ register ret; __asm__ __volatile("locc %1,%2,(%3);movl r0,%0" : "=r" (ret) : "r" (mask),"r"(size),"r"(cp) : "r0","r1" ); return ret; } #endif static __inline__ int scanc(u_int size, const u_char *cp, const u_char *table, int mask) { register int ret; __asm__ __volatile("scanc %1,(%2),(%3),%4;movl r0,%0" : "=g"(ret) : "r"(size),"r"(cp),"r"(table),"r"(mask) : "r0","r1","r2","r3" ); return ret; } static __inline__ int skpc(int mask, size_t size, u_char *cp) { register int ret; __asm__ __volatile("skpc %1,%2,(%3);movl r0,%0" : "=g"(ret) : "r"(mask),"r"(size),"r"(cp) : "r0","r1" ); return ret; } #define setrunqueue(p) \ __asm__ __volatile("movl %0,r0;jsb Setrq":: "g"(p):"r0","r1","r2"); #define remrunqueue(p) \ __asm__ __volatile("movl %0,r0;jsb Remrq":: "g"(p):"r0","r1","r2"); #define cpu_switch(p) \ __asm__ __volatile("movl %0,r0;movpsl -(sp);jsb Swtch" \ ::"g"(p):"r0","r1","r2","r3"); /* * Interlock instructions. Used both in multiprocessor environments to * lock between CPUs and in uniprocessor systems when locking is required * between I/O devices and the master CPU. */ /* * Insqti() locks and inserts an element into the end of a queue. * Returns -1 if interlock failed, 1 if inserted OK and 0 if first in queue. */ static __inline__ int insqti(void *entry, void *header) { register int ret; __asm__ __volatile(" mnegl $1,%0; insqti (%1),(%2); bcs 1f; # failed insert beql 2f; # jump if first entry movl $1,%0; brb 1f; 2: clrl %0; 1:;" : "=&g"(ret) : "r"(entry), "r"(header) : "memory"); return ret; } /* * Remqhi() removes an element from the head of the queue. * Returns -1 if interlock failed, 0 if queue empty, address of the * removed element otherwise. */ static __inline__ void * remqhi(void *header) { register void *ret; __asm__ __volatile(" remqhi (%1),%0; bcs 1f; # failed interlock bvs 2f; # nothing was removed brb 3f; 1: mnegl $1,%0; brb 3f; 2: clrl %0; 3:;" : "=&g"(ret) : "r"(header) : "memory"); return ret; } #define ILCK_FAILED -1 /* Interlock failed */ #define Q_EMPTY 0 /* Queue is/was empty */ #define Q_OK 1 /* Inserted OK */ #endif /* _VAX_MACROS_H_ */