/* $OpenBSD: amd7930.c,v 1.30 2005/08/14 10:58:33 miod Exp $ */ /* $NetBSD: amd7930.c,v 1.37 1998/03/30 14:23:40 pk Exp $ */ /* * Copyright (c) 1995 Rolf Grossmann * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Rolf Grossmann. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #define AUDIO_ROM_NAME "audio" #ifdef AUDIO_DEBUG int amd7930debug = 0; #define DPRINTF(x) if (amd7930debug) printf x #else #define DPRINTF(x) #endif /* * Define AUDIO_C_HANDLER to force using non-fast trap routines. */ /* #define AUDIO_C_HANDLER */ /* * Software state, per AMD79C30 audio chip. */ struct amd7930_softc { struct device sc_dev; /* base device */ struct intrhand sc_swih; /* software interrupt vector */ int sc_open; /* single use device */ int sc_locked; /* true when transferring data */ struct mapreg sc_map; /* current contents of map registers */ u_char sc_rlevel; /* record level */ u_char sc_plevel; /* play level */ u_char sc_mlevel; /* monitor level */ u_char sc_out_port; /* output port */ /* interfacing with the interrupt handlers */ void (*sc_rintr)(void *); /* input completion intr handler */ void *sc_rarg; /* arg for sc_rintr() */ void (*sc_pintr)(void *); /* output completion intr handler */ void *sc_parg; /* arg for sc_pintr() */ /* sc_au is special in that the hardware interrupt handler uses it */ struct auio sc_au; /* recv and xmit buffers, etc */ #define sc_hwih sc_au.au_ih /* hardware interrupt vector */ }; /* interrupt interfaces */ #if defined(SUN4M) #define AUDIO_SET_SWINTR do { \ if (CPU_ISSUN4M) \ raise(0, 4); \ else \ ienab_bis(IE_L4); \ } while(0); #else #define AUDIO_SET_SWINTR ienab_bis(IE_L4) #endif /* defined(SUN4M) */ #ifndef AUDIO_C_HANDLER struct auio *auiop; #endif /* AUDIO_C_HANDLER */ int amd7930hwintr(void *); int amd7930swintr(void *); /* forward declarations */ void audio_setmap(volatile struct amd7930 *, struct mapreg *); static void init_amd(volatile struct amd7930 *); int amd7930_shareintr(void *); /* autoconfiguration driver */ void amd7930attach(struct device *, struct device *, void *); int amd7930match(struct device *, void *, void *); struct cfattach audioamd_ca = { sizeof(struct amd7930_softc), amd7930match, amd7930attach }; struct cfdriver audioamd_cd = { NULL, "audioamd", DV_DULL }; struct audio_device amd7930_device = { "amd7930", "x", "audioamd" }; /* Write 16 bits of data from variable v to the data port of the audio chip */ #define WAMD16(amd, v) ((amd)->dr = (v), (amd)->dr = (v) >> 8) /* The following tables stolen from former (4.4Lite's) sys/sparc/bsd_audio.c */ /* * gx, gr & stg gains. this table must contain 256 elements with * the 0th being "infinity" (the magic value 9008). The remaining * elements match sun's gain curve (but with higher resolution): * -18 to 0dB in .16dB steps then 0 to 12dB in .08dB steps. */ static const u_short gx_coeff[256] = { 0x9008, 0x8e7c, 0x8e51, 0x8e45, 0x8d42, 0x8d3b, 0x8c36, 0x8c33, 0x8b32, 0x8b2a, 0x8b2b, 0x8b2c, 0x8b25, 0x8b23, 0x8b22, 0x8b22, 0x9122, 0x8b1a, 0x8aa3, 0x8aa3, 0x8b1c, 0x8aa6, 0x912d, 0x912b, 0x8aab, 0x8b12, 0x8aaa, 0x8ab2, 0x9132, 0x8ab4, 0x913c, 0x8abb, 0x9142, 0x9144, 0x9151, 0x8ad5, 0x8aeb, 0x8a79, 0x8a5a, 0x8a4a, 0x8b03, 0x91c2, 0x91bb, 0x8a3f, 0x8a33, 0x91b2, 0x9212, 0x9213, 0x8a2c, 0x921d, 0x8a23, 0x921a, 0x9222, 0x9223, 0x922d, 0x9231, 0x9234, 0x9242, 0x925b, 0x92dd, 0x92c1, 0x92b3, 0x92ab, 0x92a4, 0x92a2, 0x932b, 0x9341, 0x93d3, 0x93b2, 0x93a2, 0x943c, 0x94b2, 0x953a, 0x9653, 0x9782, 0x9e21, 0x9d23, 0x9cd2, 0x9c23, 0x9baa, 0x9bde, 0x9b33, 0x9b22, 0x9b1d, 0x9ab2, 0xa142, 0xa1e5, 0x9a3b, 0xa213, 0xa1a2, 0xa231, 0xa2eb, 0xa313, 0xa334, 0xa421, 0xa54b, 0xada4, 0xac23, 0xab3b, 0xaaab, 0xaa5c, 0xb1a3, 0xb2ca, 0xb3bd, 0xbe24, 0xbb2b, 0xba33, 0xc32b, 0xcb5a, 0xd2a2, 0xe31d, 0x0808, 0x72ba, 0x62c2, 0x5c32, 0x52db, 0x513e, 0x4cce, 0x43b2, 0x4243, 0x41b4, 0x3b12, 0x3bc3, 0x3df2, 0x34bd, 0x3334, 0x32c2, 0x3224, 0x31aa, 0x2a7b, 0x2aaa, 0x2b23, 0x2bba, 0x2c42, 0x2e23, 0x25bb, 0x242b, 0x240f, 0x231a, 0x22bb, 0x2241, 0x2223, 0x221f, 0x1a33, 0x1a4a, 0x1acd, 0x2132, 0x1b1b, 0x1b2c, 0x1b62, 0x1c12, 0x1c32, 0x1d1b, 0x1e71, 0x16b1, 0x1522, 0x1434, 0x1412, 0x1352, 0x1323, 0x1315, 0x12bc, 0x127a, 0x1235, 0x1226, 0x11a2, 0x1216, 0x0a2a, 0x11bc, 0x11d1, 0x1163, 0x0ac2, 0x0ab2, 0x0aab, 0x0b1b, 0x0b23, 0x0b33, 0x0c0f, 0x0bb3, 0x0c1b, 0x0c3e, 0x0cb1, 0x0d4c, 0x0ec1, 0x079a, 0x0614, 0x0521, 0x047c, 0x0422, 0x03b1, 0x03e3, 0x0333, 0x0322, 0x031c, 0x02aa, 0x02ba, 0x02f2, 0x0242, 0x0232, 0x0227, 0x0222, 0x021b, 0x01ad, 0x0212, 0x01b2, 0x01bb, 0x01cb, 0x01f6, 0x0152, 0x013a, 0x0133, 0x0131, 0x012c, 0x0123, 0x0122, 0x00a2, 0x011b, 0x011e, 0x0114, 0x00b1, 0x00aa, 0x00b3, 0x00bd, 0x00ba, 0x00c5, 0x00d3, 0x00f3, 0x0062, 0x0051, 0x0042, 0x003b, 0x0033, 0x0032, 0x002a, 0x002c, 0x0025, 0x0023, 0x0022, 0x001a, 0x0021, 0x001b, 0x001b, 0x001d, 0x0015, 0x0013, 0x0013, 0x0012, 0x0012, 0x000a, 0x000a, 0x0011, 0x0011, 0x000b, 0x000b, 0x000c, 0x000e, }; /* * second stage play gain. */ static const u_short ger_coeff[] = { 0x431f, /* 5. dB */ 0x331f, /* 5.5 dB */ 0x40dd, /* 6. dB */ 0x11dd, /* 6.5 dB */ 0x440f, /* 7. dB */ 0x411f, /* 7.5 dB */ 0x311f, /* 8. dB */ 0x5520, /* 8.5 dB */ 0x10dd, /* 9. dB */ 0x4211, /* 9.5 dB */ 0x410f, /* 10. dB */ 0x111f, /* 10.5 dB */ 0x600b, /* 11. dB */ 0x00dd, /* 11.5 dB */ 0x4210, /* 12. dB */ 0x110f, /* 13. dB */ 0x7200, /* 14. dB */ 0x2110, /* 15. dB */ 0x2200, /* 15.9 dB */ 0x000b, /* 16.9 dB */ 0x000f /* 18. dB */ #define NGER (sizeof(ger_coeff) / sizeof(ger_coeff[0])) }; /* * Define our interface to the higher level audio driver. */ int amd7930_open(void *, int); void amd7930_close(void *); int amd7930_query_encoding(void *, struct audio_encoding *); int amd7930_set_params(void *, int, int, struct audio_params *, struct audio_params *); int amd7930_round_blocksize(void *, int); int amd7930_commit_settings(void *); int amd7930_start_output(void *, void *, int, void (*)(void *), void *); int amd7930_start_input(void *, void *, int, void (*)(void *), void *); int amd7930_halt_output(void *); int amd7930_halt_input(void *); int amd7930_getdev(void *, struct audio_device *); int amd7930_set_port(void *, mixer_ctrl_t *); int amd7930_get_port(void *, mixer_ctrl_t *); int amd7930_query_devinfo(void *, mixer_devinfo_t *); int amd7930_get_props(void *); struct audio_hw_if sa_hw_if = { amd7930_open, amd7930_close, NULL, amd7930_query_encoding, amd7930_set_params, amd7930_round_blocksize, amd7930_commit_settings, NULL, NULL, amd7930_start_output, amd7930_start_input, amd7930_halt_output, amd7930_halt_input, NULL, amd7930_getdev, NULL, amd7930_set_port, amd7930_get_port, amd7930_query_devinfo, NULL, NULL, NULL, NULL, amd7930_get_props, NULL, NULL }; /* autoconfig routines */ int amd7930match(parent, vcf, aux) struct device *parent; void *vcf, *aux; { register struct confargs *ca = aux; register struct romaux *ra = &ca->ca_ra; if (CPU_ISSUN4) return (0); return (strcmp(AUDIO_ROM_NAME, ra->ra_name) == 0); } /* * Audio chip found. */ void amd7930attach(parent, self, args) struct device *parent, *self; void *args; { register struct amd7930_softc *sc = (struct amd7930_softc *)self; register struct confargs *ca = args; register struct romaux *ra = &ca->ca_ra; register volatile struct amd7930 *amd; register int pri; if (ra->ra_nintr != 1) { printf(": expected 1 interrupt, got %d\n", ra->ra_nintr); return; } pri = ra->ra_intr[0].int_pri; printf(" pri %d, softpri %d\n", pri, IPL_AUSOFT); amd = (volatile struct amd7930 *)(ra->ra_vaddr ? ra->ra_vaddr : mapiodev(ra->ra_reg, 0, sizeof (*amd))); sc->sc_map.mr_mmr1 = AMD_MMR1_GX | AMD_MMR1_GER | AMD_MMR1_GR | AMD_MMR1_STG; sc->sc_au.au_amd = amd; /* set boot defaults */ sc->sc_rlevel = 128; sc->sc_plevel = 128; sc->sc_mlevel = 0; sc->sc_out_port = SUNAUDIO_SPEAKER; init_amd(amd); /* * Register interrupt handlers. We'll prefer a fast trap (unless * AUDIO_C_HANDLER is defined), with a sharing callback so that we * can revert into a regular trap vector if necessary. */ #ifndef AUDIO_C_HANDLER sc->sc_hwih.ih_vec = pri; if (intr_fasttrap(pri, amd7930_trap, amd7930_shareintr, sc) == 0) { auiop = &sc->sc_au; evcount_attach(&sc->sc_hwih.ih_count, sc->sc_dev.dv_xname, &sc->sc_hwih.ih_vec, &evcount_intr); } else { #ifdef AUDIO_DEBUG printf("%s: unable to register fast trap handler\n", self->dv_xname); #endif #else { #endif sc->sc_hwih.ih_fun = amd7930hwintr; sc->sc_hwih.ih_arg = &sc->sc_au; intr_establish(pri, &sc->sc_hwih, IPL_AUHARD, sc->sc_dev.dv_xname); } sc->sc_swih.ih_fun = amd7930swintr; sc->sc_swih.ih_arg = sc; intr_establish(IPL_AUSOFT, &sc->sc_swih, IPL_AUSOFT, sc->sc_dev.dv_xname); audio_attach_mi(&sa_hw_if, sc, &sc->sc_dev); amd7930_commit_settings(sc); } static void init_amd(amd) register volatile struct amd7930 *amd; { /* disable interrupts */ amd->cr = AMDR_INIT; amd->dr = AMD_INIT_PMS_ACTIVE | AMD_INIT_INT_DISABLE; /* * Initialize the mux unit. We use MCR3 to route audio (MAP) * through channel Bb. MCR1 and MCR2 are unused. * Setting the INT enable bit in MCR4 will generate an interrupt * on each converted audio sample. */ amd->cr = AMDR_MUX_1_4; amd->dr = 0; amd->dr = 0; amd->dr = (AMD_MCRCHAN_BB << 4) | AMD_MCRCHAN_BA; amd->dr = AMD_MCR4_INT_ENABLE; } int amd7930_open(addr, flags) void *addr; int flags; { struct amd7930_softc *sc = addr; DPRINTF(("sa_open: unit %p\n", sc)); if (sc->sc_open) return (EBUSY); sc->sc_open = 1; sc->sc_locked = 0; sc->sc_rintr = 0; sc->sc_rarg = 0; sc->sc_pintr = 0; sc->sc_parg = 0; sc->sc_au.au_rdata = 0; sc->sc_au.au_pdata = 0; DPRINTF(("saopen: ok -> sc=0x%x\n",sc)); return (0); } void amd7930_close(addr) void *addr; { register struct amd7930_softc *sc = addr; DPRINTF(("sa_close: sc=0x%x\n", sc)); /* * halt i/o, clear open flag, and done. */ amd7930_halt_input(sc); amd7930_halt_output(sc); sc->sc_open = 0; DPRINTF(("sa_close: closed.\n")); } int amd7930_set_params(addr, setmode, usemode, p, r) void *addr; int setmode, usemode; struct audio_params *p, *r; { if (p->sample_rate < 7500 || p->sample_rate > 8500 || p->encoding != AUDIO_ENCODING_ULAW || p->precision != 8 || p->channels != 1) return (EINVAL); p->sample_rate = 8000; /* no other rates supported by amd chip */ return (0); } int amd7930_query_encoding(addr, fp) void *addr; struct audio_encoding *fp; { switch (fp->index) { case 0: strlcpy(fp->name, AudioEmulaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = 0; break; default: return (EINVAL); /*NOTREACHED*/ } return (0); } int amd7930_round_blocksize(addr, blk) void *addr; int blk; { return (blk); } int amd7930_commit_settings(addr) void *addr; { register struct amd7930_softc *sc = addr; register struct mapreg *map; register volatile struct amd7930 *amd; register int s, level; DPRINTF(("sa_commit.\n")); map = &sc->sc_map; amd = sc->sc_au.au_amd; map->mr_gx = gx_coeff[sc->sc_rlevel]; map->mr_stgr = gx_coeff[sc->sc_mlevel]; level = (sc->sc_plevel * (256 + NGER)) >> 8; if (level >= 256) { map->mr_ger = ger_coeff[level - 256]; map->mr_gr = gx_coeff[255]; } else { map->mr_ger = ger_coeff[0]; map->mr_gr = gx_coeff[level]; } if (sc->sc_out_port == SUNAUDIO_SPEAKER) map->mr_mmr2 |= AMD_MMR2_LS; else map->mr_mmr2 &= ~AMD_MMR2_LS; s = splaudio(); amd->cr = AMDR_MAP_MMR1; amd->dr = map->mr_mmr1; amd->cr = AMDR_MAP_GX; WAMD16(amd, map->mr_gx); amd->cr = AMDR_MAP_STG; WAMD16(amd, map->mr_stgr); amd->cr = AMDR_MAP_GR; WAMD16(amd, map->mr_gr); amd->cr = AMDR_MAP_GER; WAMD16(amd, map->mr_ger); amd->cr = AMDR_MAP_MMR2; amd->dr = map->mr_mmr2; splx(s); return (0); } int amd7930_start_output(addr, p, cc, intr, arg) void *addr; void *p; int cc; void (*intr)(void *); void *arg; { register struct amd7930_softc *sc = addr; #ifdef AUDIO_DEBUG if (amd7930debug > 1) printf("sa_start_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg); #endif if (!sc->sc_locked) { register volatile struct amd7930 *amd; amd = sc->sc_au.au_amd; amd->cr = AMDR_INIT; amd->dr = AMD_INIT_PMS_ACTIVE; sc->sc_locked = 1; DPRINTF(("sa_start_output: started intrs.\n")); } sc->sc_pintr = intr; sc->sc_parg = arg; sc->sc_au.au_pdata = p; sc->sc_au.au_pend = p + cc - 1; return (0); } /* ARGSUSED */ int amd7930_start_input(addr, p, cc, intr, arg) void *addr; void *p; int cc; void (*intr)(void *); void *arg; { register struct amd7930_softc *sc = addr; #ifdef AUDIO_DEBUG if (amd7930debug > 1) printf("sa_start_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg); #endif if (!sc->sc_locked) { register volatile struct amd7930 *amd; amd = sc->sc_au.au_amd; amd->cr = AMDR_INIT; amd->dr = AMD_INIT_PMS_ACTIVE; sc->sc_locked = 1; DPRINTF(("sa_start_input: started intrs.\n")); } sc->sc_rintr = intr; sc->sc_rarg = arg; sc->sc_au.au_rdata = p; sc->sc_au.au_rend = p + cc -1; return (0); } int amd7930_halt_output(addr) void *addr; { register struct amd7930_softc *sc = addr; register volatile struct amd7930 *amd; /* XXX only halt, if input is also halted ?? */ amd = sc->sc_au.au_amd; amd->cr = AMDR_INIT; amd->dr = AMD_INIT_PMS_ACTIVE | AMD_INIT_INT_DISABLE; sc->sc_locked = 0; return (0); } int amd7930_halt_input(addr) void *addr; { register struct amd7930_softc *sc = addr; register volatile struct amd7930 *amd; /* XXX only halt, if output is also halted ?? */ amd = sc->sc_au.au_amd; amd->cr = AMDR_INIT; amd->dr = AMD_INIT_PMS_ACTIVE | AMD_INIT_INT_DISABLE; sc->sc_locked = 0; return (0); } int amd7930_getdev(addr, retp) void *addr; struct audio_device *retp; { *retp = amd7930_device; return (0); } int amd7930_set_port(addr, cp) void *addr; mixer_ctrl_t *cp; { register struct amd7930_softc *sc = addr; DPRINTF(("amd7930_set_port: port=%d type=%d\n", cp->dev, cp->type)); if (cp->dev == SUNAUDIO_SOURCE || cp->dev == SUNAUDIO_OUTPUT) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); } else if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1) return (EINVAL); switch(cp->dev) { case SUNAUDIO_MIC_PORT: sc->sc_rlevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; break; case SUNAUDIO_SPEAKER: case SUNAUDIO_HEADPHONES: sc->sc_plevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; break; case SUNAUDIO_MONITOR: sc->sc_mlevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; break; case SUNAUDIO_SOURCE: if (cp->un.ord != SUNAUDIO_MIC_PORT) return (EINVAL); break; case SUNAUDIO_OUTPUT: if (cp->un.ord != SUNAUDIO_SPEAKER && cp->un.ord != SUNAUDIO_HEADPHONES) return (EINVAL); sc->sc_out_port = cp->un.ord; break; default: return (EINVAL); /* NOTREACHED */ } return (0); } int amd7930_get_port(addr, cp) void *addr; mixer_ctrl_t *cp; { register struct amd7930_softc *sc = addr; DPRINTF(("amd7930_get_port: port=%d type=%d\n", cp->dev, cp->type)); if (cp->dev == SUNAUDIO_SOURCE || cp->dev == SUNAUDIO_OUTPUT) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); } else if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1) return (EINVAL); switch(cp->dev) { case SUNAUDIO_MIC_PORT: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_rlevel; break; case SUNAUDIO_SPEAKER: case SUNAUDIO_HEADPHONES: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_plevel; break; case SUNAUDIO_MONITOR: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_mlevel; break; case SUNAUDIO_SOURCE: cp->un.ord = SUNAUDIO_MIC_PORT; break; case SUNAUDIO_OUTPUT: cp->un.ord = sc->sc_out_port; break; default: return (EINVAL); /* NOTREACHED */ } return (0); } int amd7930_get_props(addr) void *addr; { return (AUDIO_PROP_FULLDUPLEX); } int amd7930_query_devinfo(addr, dip) void *addr; register mixer_devinfo_t *dip; { switch(dip->index) { case SUNAUDIO_MIC_PORT: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = SUNAUDIO_INPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmicrophone, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case SUNAUDIO_SPEAKER: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = SUNAUDIO_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNspeaker, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case SUNAUDIO_HEADPHONES: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = SUNAUDIO_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNheadphone, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->label.name); break; case SUNAUDIO_MONITOR: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = SUNAUDIO_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->label.name); break; case SUNAUDIO_SOURCE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = SUNAUDIO_RECORD_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); dip->un.e.num_mem = 1; strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = SUNAUDIO_MIC_PORT; break; case SUNAUDIO_OUTPUT: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = SUNAUDIO_MONITOR_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNspeaker, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = SUNAUDIO_SPEAKER; strlcpy(dip->un.e.member[1].label.name, AudioNheadphone, sizeof dip->un.e.member[0].label.name); dip->un.e.member[1].ord = SUNAUDIO_HEADPHONES; break; case SUNAUDIO_INPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = SUNAUDIO_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); break; case SUNAUDIO_OUTPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = SUNAUDIO_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); break; case SUNAUDIO_RECORD_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = SUNAUDIO_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); break; case SUNAUDIO_MONITOR_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = SUNAUDIO_MONITOR_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name); break; default: return (ENXIO); /*NOTREACHED*/ } DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name)); return (0); } int amd7930hwintr(au0) void *au0; { register struct auio *au = au0; register volatile struct amd7930 *amd = au->au_amd; register u_char *d, *e; register int k; k = amd->ir; /* clear interrupt */ /* receive incoming data */ d = au->au_rdata; e = au->au_rend; if (d && d <= e) { *d = amd->bbrb; au->au_rdata++; if (d == e) { #ifdef AUDIO_DEBUG if (amd7930debug > 1) printf("amd7930hwintr: swintr(r) requested"); #endif AUDIO_SET_SWINTR; } } /* send outgoing data */ d = au->au_pdata; e = au->au_pend; if (d && d <= e) { amd->bbtb = *d; au->au_pdata++; if (d == e) { #ifdef AUDIO_DEBUG if (amd7930debug > 1) printf("amd7930hwintr: swintr(p) requested"); #endif AUDIO_SET_SWINTR; } } return (-1); } int amd7930swintr(sc0) void *sc0; { register struct amd7930_softc *sc = sc0; register struct auio *au; register int s, ret = 0; #ifdef AUDIO_DEBUG if (amd7930debug > 1) printf("audiointr: sc=0x%x\n",sc); #endif au = &sc->sc_au; s = splaudio(); if (au->au_rdata > au->au_rend && sc->sc_rintr != NULL) { splx(s); ret = 1; (*sc->sc_rintr)(sc->sc_rarg); s = splaudio(); } if (au->au_pdata > au->au_pend && sc->sc_pintr != NULL) { splx(s); ret = 1; (*sc->sc_pintr)(sc->sc_parg); } else splx(s); return (ret); } #ifndef AUDIO_C_HANDLER int amd7930_shareintr(void *arg) { struct amd7930_softc *sc = arg; /* * We are invoked at splhigh(), so there is no need to prevent the chip * from interrupting while we are messing with the handlers. We * however need to properly untie the event counter from the chain, * since it will be reused immediately by intr_establish()... */ intr_fastuntrap(sc->sc_hwih.ih_vec); evcount_detach(&sc->sc_hwih.ih_count); sc->sc_hwih.ih_fun = amd7930hwintr; sc->sc_hwih.ih_arg = &sc->sc_au; intr_establish(sc->sc_hwih.ih_vec, &sc->sc_hwih, IPL_AUHARD, sc->sc_dev.dv_xname); return (0); } #endif