/* $OpenBSD: vm_machdep.c,v 1.39 2007/05/27 20:59:25 miod Exp $ */ /* $NetBSD: vm_machdep.c,v 1.29 1998/07/28 18:34:55 thorpej Exp $ */ /* * Copyright (c) 1988 University of Utah. * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$ * * @(#)vm_machdep.c 8.6 (Berkeley) 1/12/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void savectx(struct pcb *); /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the kernel stack and pcb, making the child * ready to run, and marking it so that it can return differently * than the parent. Returns 1 in the child process, 0 in the parent. * We currently double-map the user area so that the stack is at the same * address in each process; in the future we will probably relocate * the frame pointers on the stack after copying. */ void cpu_fork(p1, p2, stack, stacksize, func, arg) struct proc *p1, *p2; void *stack; size_t stacksize; void (*func)(void *); void *arg; { struct pcb *pcb = &p2->p_addr->u_pcb; struct trapframe *tf; struct switchframe *sf; extern struct pcb *curpcb; p2->p_md.md_flags = p1->p_md.md_flags; /* Copy pcb from proc p1 to p2. */ if (p1 == curproc) { /* Sync the PCB before we copy it. */ savectx(curpcb); } #ifdef DIAGNOSTIC else if (p1 != &proc0) panic("cpu_fork: curproc"); #endif *pcb = p1->p_addr->u_pcb; /* * Copy the trap frame. */ tf = (struct trapframe *)((u_int)p2->p_addr + USPACE) -1; p2->p_md.md_regs = (int *)tf; *tf = *(struct trapframe *)p1->p_md.md_regs; /* * If specified, give the child a different stack. */ if (stack != NULL) tf->tf_regs[15] = (u_int)stack + stacksize; sf = (struct switchframe *)tf - 1; sf->sf_pc = (u_int)proc_trampoline; pcb->pcb_regs[6] = (int)func; /* A2 */ pcb->pcb_regs[7] = (int)arg; /* A3 */ pcb->pcb_regs[11] = (int)sf; /* SSP */ pcb->pcb_ps = PSL_LOWIPL; /* start kthreads at IPL 0 */ } /* * cpu_exit is called as the last action during exit. * We release the address space and machine-dependent resources, * block context switches and then call switch_exit() which will * free our stack and user area and switch to another process. * Thus, we never return. */ void cpu_exit(p) struct proc *p; { (void)splhigh(); switch_exit(p); /* NOTREACHED */ } /* * Dump the machine specific segment at the start of a core dump. * This means the CPU and FPU registers. The format used here is * the same one ptrace uses, so gdb can be machine independent. * * XXX - Generate Sun format core dumps for Sun executables? */ struct md_core { struct reg intreg; struct fpreg freg; }; int cpu_coredump(p, vp, cred, chdr) struct proc *p; struct vnode *vp; struct ucred *cred; struct core *chdr; { struct md_core md_core; struct coreseg cseg; int error; CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0); chdr->c_hdrsize = ALIGN(sizeof(*chdr)); chdr->c_seghdrsize = ALIGN(sizeof(cseg)); chdr->c_cpusize = sizeof(md_core); /* Save integer registers. */ error = process_read_regs(p, &md_core.intreg); if (error) return error; if (fputype) { /* Save floating point registers. */ error = process_read_fpregs(p, &md_core.freg); if (error) return error; } else { /* Make sure these are clear. */ bzero((caddr_t)&md_core.freg, sizeof(md_core.freg)); } CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU); cseg.c_addr = 0; cseg.c_size = chdr->c_cpusize; error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize, (off_t)chdr->c_hdrsize, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, NULL, p); if (error) return error; error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof(md_core), (off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, NULL, p); if (error) return error; chdr->c_nseg++; return 0; } /* * Map an IO request into kernel virtual address space. * * XXX we allocate KVA space by using kmem_alloc_wait which we know * allocates space without backing physical memory. This implementation * is a total crock, the multiple mappings of these physical pages should * be reflected in the higher-level VM structures to avoid problems. */ void vmapbuf(bp, len) struct buf *bp; vsize_t len; { struct pmap *upmap, *kpmap; vaddr_t uva; /* User VA (map from) */ vaddr_t kva; /* Kernel VA (new to) */ vaddr_t pa; /* physical address */ vsize_t off; #ifdef DIAGNOSTIC if ((bp->b_flags & B_PHYS) == 0) panic("vmapbuf"); #endif uva = trunc_page((vaddr_t)(bp->b_saveaddr = bp->b_data)); off = (vaddr_t)bp->b_data - uva; len = round_page(off + len); kva = uvm_km_valloc_wait(phys_map, len); bp->b_data = (caddr_t)(kva + off); upmap = vm_map_pmap(&bp->b_proc->p_vmspace->vm_map); kpmap = vm_map_pmap(phys_map); do { if (pmap_extract(upmap, uva, &pa) == FALSE) panic("vmapbuf: null page frame"); pmap_enter(kpmap, kva, pa, VM_PROT_READ | VM_PROT_WRITE, VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED); uva += PAGE_SIZE; kva += PAGE_SIZE; len -= PAGE_SIZE; } while (len); pmap_update(pmap_kernel()); } /* * Free the io map PTEs associated with this IO operation. */ void vunmapbuf(bp, len) struct buf *bp; vsize_t len; { vaddr_t kva; vsize_t off; #ifdef DIAGNOSTIC if ((bp->b_flags & B_PHYS) == 0) panic("vunmapbuf"); #endif kva = trunc_page((vaddr_t)bp->b_data); off = (vaddr_t)bp->b_data - kva; len = round_page(off + len); pmap_remove(vm_map_pmap(phys_map), kva, kva + len); pmap_update(pmap_kernel()); uvm_km_free_wakeup(phys_map, kva, len); bp->b_data = bp->b_saveaddr; bp->b_saveaddr = 0; }