/* $OpenBSD: pmap_bootstrap.c,v 1.17 2006/07/09 19:39:53 miod Exp $ */ /* * Copyright (c) 1995 Theo de Raadt * Copyright (c) 1999 Steve Murphree, Jr. (68060 support) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93 */ /* * NOTICE: This is not a standalone file. To use it, #include it in * your port's pmap_bootstrap.c, like so: * * #include * * after having defined the following macros: * RELOC relocate a variable * PA2VA simple crude mapping for bootstraping * PMAP_MD_LOCALS local variable declaration * PMAP_MD_RELOC1() early variable relocation * PMAP_MD_RELOC2() internal IO space variable relocation * PMAP_MD_RELOC3() general purpose kernel virtual addresses relocation * PMAP_MD_MAPIOSPACE() setup machine-specific internal iospace components * PMAP_MD_MEMSIZE() compute avail_end */ extern char *etext; extern int Sysptsize; extern char *proc0paddr; extern st_entry_t *Sysseg; extern pt_entry_t *Sysptmap, *Sysmap; extern int physmem; extern paddr_t avail_start, avail_end; extern vaddr_t virtual_avail, virtual_end; extern vsize_t mem_size; void pmap_bootstrap(paddr_t, paddr_t); /* * Special purpose kernel virtual addresses, used for mapping * physical pages for a variety of temporary or permanent purposes: * * CADDR1, CADDR2: pmap zero/copy operations * vmmap: /dev/mem, crash dumps, parity error checking */ caddr_t CADDR1, CADDR2, vmmap; /* * Bootstrap the VM system. * * Ideally called with MMU off, but not necessarily. All global references * are relocated by `firstpa' to ensure this works. Of course, it is not * possible to call any other functions from there. `nextpa' is the first * available physical memory address. Returns an updated first PA reflecting * the memory we have allocated. MMU is still in the same state when we * return. * * XXX assumes sizeof(u_int) == sizeof(pt_entry_t) * XXX a PIC compiler would make this much easier. */ void pmap_bootstrap(nextpa, firstpa) paddr_t nextpa; paddr_t firstpa; { paddr_t kstpa, kptpa, iiopa, eiopa, kptmpa, lkptpa, p0upa; vaddr_t iiobase, eiobase; u_int nptpages, kstsize; st_entry_t protoste, *ste; pt_entry_t protopte, *pte, *epte; int num; PMAP_MD_LOCALS /* * Calculate important physical addresses: * * kstpa kernel segment table 1 page (020/030) * N pages (040/060) * * kptpa statically allocated * kernel PT pages Sysptsize+ pages * * iiopa internal IO space * PT pages MACHINE_IIOMAPSIZE pages * * eiopa external IO space * PT pages MACHINE_EIOMAPSIZE pages * * [ Sysptsize is the number of pages of PT, MACHINE_IIOMAPSIZE and * MACHINE_EIOMAPSIZE are the number of PTEs, hence we need to round * the total to a page boundary with IO maps at the end. ] * * kptmpa kernel PT map 1 page * * lkptpa last kernel PT page 1 page * * p0upa proc 0 u-area UPAGES pages * * The KVA corresponding to any of these PAs is: * (PA - firstpa + KERNBASE). */ if (RELOC(mmutype, int) <= MMU_68040) kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); else kstsize = 1; kstpa = nextpa; nextpa += kstsize * NBPG; kptpa = nextpa; iiopa = nextpa + RELOC(Sysptsize, int) * NBPG; iiobase = ptoa(RELOC(Sysptsize, int) * NPTEPG); eiopa = iiopa + MACHINE_IIOMAPSIZE * sizeof(pt_entry_t); eiobase = iiobase + ptoa(MACHINE_IIOMAPSIZE); /* * Compute how many PT pages we will need to have initialized. * We need to have enough of them for the vm system to initialize * up to the point we can use it to allocate more PT pages - i.e. * when we can afford using pmap_enter_ptpage(). * * Aside from the IO maps, we need to be able to successfully * allocate: * - nkmempages_max pages in kmeminit(). * - PAGER_MAP_SIZE bytes in uvm_pager_init(). * - 93.75 % of physmem anons in amap_init(). * - 4 * uvm_km_pages_lowat pages in uvm_km_page_init(). * * We'll compute this size in bytes, then round it to pages, * then to a multiple of NPTEPG. */ nptpages = ptoa(MACHINE_IIOMAPSIZE + MACHINE_EIOMAPSIZE); num = RELOC(physmem, int) / 4; if (num > NKMEMPAGES_MAX_DEFAULT) num = NKMEMPAGES_MAX_DEFAULT; nptpages += ptoa(num); nptpages += PAGER_MAP_SIZE; nptpages += (RELOC(physmem, int) * 15 * sizeof(struct vm_anon)) / 16; #if !defined(__HAVE_PMAP_DIRECT) { extern int uvm_km_pages_lowat; if ((num = RELOC(uvm_km_pages_lowat, int)) == 0) { num = RELOC(physmem, int) / 256; if (num < 128) num = 128; } } nptpages += ptoa(num); #endif nptpages = (atop(round_page(nptpages)) + NPTEPG - 1) / NPTEPG; nextpa += nptpages * NBPG; kptmpa = nextpa; nextpa += NBPG; lkptpa = nextpa; nextpa += NBPG; p0upa = nextpa; nextpa += USPACE; PMAP_MD_RELOC1(); /* * Initialize segment table and kernel page table map. * * On 68030s and earlier MMUs the two are identical except for * the valid bits so both are initialized with essentially the * same values. On the 680[46]0, which have a mandatory 3-level * structure, the segment table holds the level 1 table and part * (or all) of the level 2 table and hence is considerably * different. Here the first level consists of 128 descriptors * (512 bytes) each mapping 32mb of address space. Each of these * points to blocks of 128 second level descriptors (512 bytes) * each mapping 256kb. Note that there may be additional "segment * table" pages depending on how large MAXKL2SIZE is. * * Portions of the last segment of KVA space (0xFFF00000 - * 0xFFFFFFFF) are mapped for a couple of purposes. 0xFFF00000 * for UPAGES is used for mapping the current process u-area * (u + kernel stack). The very last page (0xFFFFF000) is mapped * to the last physical page of RAM to give us a region in which * PA == VA. We use the first part of this page for enabling * and disabling mapping. The last part of this page also contains * info left by the boot ROM. * * XXX cramming two levels of mapping into the single "segment" * table on the 68040 is intended as a temporary hack to get things * working. The 224mb of address space that this allows will most * likely be insufficient in the future (at least for the kernel). */ if (RELOC(mmutype, int) <= MMU_68040) { /* * First invalidate the entire "segment table" pages * (levels 1 and 2 have the same "invalid" value). */ pte = PA2VA(kstpa, u_int *); epte = &pte[kstsize * NPTEPG]; while (pte < epte) *pte++ = SG_NV; /* * Initialize level 2 descriptors (which immediately * follow the level 1 table). We need: * NPTEPG / SG4_LEV3SIZE * level 2 descriptors to map each of the nptpages+1 * pages of PTEs. Note that we set the "used" bit * now to save the HW the expense of doing it. */ num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE); pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE]; epte = &pte[num]; protoste = kptpa | SG_U | SG_RW | SG_V; while (pte < epte) { *pte++ = protoste; protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); } /* * Initialize level 1 descriptors. We need: * roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE * level 1 descriptors to map the `num' level 2's. */ pte = PA2VA(kstpa, u_int *); epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE]; protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V; while (pte < epte) { *pte++ = protoste; protoste += (SG4_LEV2SIZE * sizeof(st_entry_t)); } /* * Initialize the final level 1 descriptor to map the last * block of level 2 descriptors. */ ste = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE-1]; pte = &(PA2VA(kstpa, u_int *))[kstsize*NPTEPG - SG4_LEV2SIZE]; *ste = (u_int)pte | SG_U | SG_RW | SG_V; /* * Now initialize the final portion of that block of * descriptors to map the "last PT page". */ pte = &(PA2VA(kstpa, u_int *)) [kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE]; epte = &pte[NPTEPG/SG4_LEV3SIZE]; protoste = lkptpa | SG_U | SG_RW | SG_V; while (pte < epte) { *pte++ = protoste; protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); } /* * Initialize Sysptmap */ pte = PA2VA(kptmpa, u_int *); epte = &pte[nptpages+1]; protopte = kptpa | PG_RW | PG_CI | PG_V | PG_U; while (pte < epte) { *pte++ = protopte; protopte += NBPG; } /* * Invalidate all but the last remaining entry. */ epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; while (pte < epte) { *pte++ = PG_NV; } /* * Initialize the last to point to the page * table page allocated earlier. */ *pte = lkptpa | PG_RW | PG_CI | PG_V | PG_U; } else { /* * Map the page table pages in both the HW segment table * and the software Sysptmap. Note that Sysptmap is also * considered a PT page hence the +1. */ ste = PA2VA(kstpa, u_int *); pte = PA2VA(kptmpa, u_int *); epte = &pte[nptpages+1]; protoste = kptpa | SG_RW | SG_V; protopte = kptpa | PG_RW | PG_CI | PG_V; while (pte < epte) { *ste++ = protoste; *pte++ = protopte; protoste += NBPG; protopte += NBPG; } /* * Invalidate all but the last remaining entries in both. */ epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; while (pte < epte) { *ste++ = SG_NV; *pte++ = PG_NV; } /* * Initialize the last to point to point to the page * table page allocated earlier. */ *ste = lkptpa | SG_RW | SG_V; *pte = lkptpa | PG_RW | PG_CI | PG_V; } /* * Invalidate all but the final entry in the last kernel PT page * (u-area PTEs will be validated later). The final entry maps * the last page of physical memory. */ pte = PA2VA(lkptpa, u_int *); epte = &pte[NPTEPG-1]; while (pte < epte) *pte++ = PG_NV; #ifdef MAXADDR /* * Temporary double-map for machines with physmem at the end of * memory */ *pte = MAXADDR | PG_RW | PG_CI | PG_V | PG_U; #else *pte = PG_NV; #endif /* * Initialize kernel page table. * Start by invalidating the `nptpages' that we have allocated. */ pte = PA2VA(kptpa, u_int *); epte = &pte[nptpages * NPTEPG]; while (pte < epte) *pte++ = PG_NV; /* * Validate PTEs for kernel text (RO). The first page * of kernel text will remain invalid to force *NULL in the * kernel to fault. */ pte = &(PA2VA(kptpa, u_int *))[atop(KERNBASE)]; epte = &pte[atop(trunc_page((vaddr_t)&etext))]; #if defined(KGDB) || defined(DDB) protopte = firstpa | PG_RW | PG_V | PG_U; /* XXX RW for now */ #else protopte = firstpa | PG_RO | PG_V | PG_U; #endif *pte++ = PG_NV; /* make *NULL fail in the kernel */ protopte += PAGE_SIZE; while (pte < epte) { *pte++ = protopte; protopte += PAGE_SIZE; } /* * Validate PTEs for kernel data/bss, dynamic data allocated * by us so far (nextpa - firstpa bytes), and pages for proc0 * u-area and page table allocated below (RW). */ epte = &(PA2VA(kptpa, u_int *))[atop(nextpa - firstpa)]; protopte = (protopte & ~PG_PROT) | PG_RW | PG_U; /* * Enable copy-back caching of data pages on 040, and write-through * caching on 060 */ if (RELOC(mmutype, int) == MMU_68040) protopte |= PG_CCB; #ifdef M68060 else if (RELOC(mmutype, int) == MMU_68060) protopte |= PG_CWT; #endif while (pte < epte) { *pte++ = protopte; protopte += NBPG; } /* * Finally, validate the internal IO space PTEs (RW+CI). * We do this here since on hp300 machines with the HP MMU, the * the MMU registers (also used, but to a lesser extent, on other * models) are mapped in this range and it would be nice to be able * to access them after the MMU is turned on. */ pte = PA2VA(iiopa, u_int *); epte = PA2VA(eiopa, u_int *); protopte = MACHINE_INTIOBASE | PG_RW | PG_CI | PG_V | PG_U; while (pte < epte) { *pte++ = protopte; protopte += NBPG; } PMAP_MD_MAPIOSPACE(); /* * Calculate important exported kernel virtual addresses */ /* * Sysseg: base of kernel segment table */ RELOC(Sysseg, st_entry_t *) = (st_entry_t *)(kstpa - firstpa); /* * Sysptmap: base of kernel page table map */ RELOC(Sysptmap, pt_entry_t *) = (pt_entry_t *)(kptmpa - firstpa); /* * Sysmap: kernel page table (as mapped through Sysptmap) * Immediately follows `nptpages' of static kernel page table. */ RELOC(Sysmap, pt_entry_t *) = (pt_entry_t *)ptoa(nptpages * NPTEPG); PMAP_MD_RELOC2(); /* * Setup u-area for process 0. */ /* Zero the u-area (`pte' is not really a PTE here) */ pte = PA2VA(p0upa, u_int *); for (num = USPACE / sizeof(u_int); num != 0; num--) *pte++ = 0; /* * Remember the u-area address so it can be loaded in the * proc struct p_addr field later. */ RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa); /* * VM data structures are now initialized, set up data for * the pmap module. * * Note about avail_end: msgbuf is initialized just after * avail_end in machdep.c. Since the last page is used * for rebooting the system (code is copied there and * excution continues from copied code before the MMU * is disabled), the msgbuf will get trounced between * reboots if it's placed in the last physical page. * To work around this, we move avail_end back one more * page so the msgbuf can be preserved. */ RELOC(avail_start, paddr_t) = nextpa; PMAP_MD_MEMSIZE(); RELOC(mem_size, vsize_t) = ptoa(RELOC(physmem, int)); RELOC(virtual_avail, vaddr_t) = VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa); RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS; /* * Kernel page/segment table allocated in locore, * just initialize pointers. */ { struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap); kpm->pm_stab = RELOC(Sysseg, st_entry_t *); kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *); simple_lock_init(&kpm->pm_lock); kpm->pm_count = 1; kpm->pm_stpa = (st_entry_t *)kstpa; /* * For the 040 and 060 we also initialize the free level 2 * descriptor mask noting that we have used: * 0: level 1 table * 1 to `num': map page tables * MAXKL2SIZE-1: maps last-page page table */ if (RELOC(mmutype, int) <= MMU_68040) { int num; kpm->pm_stfree = ~l2tobm(0); num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE), SG4_LEV2SIZE) / SG4_LEV2SIZE; while (num) kpm->pm_stfree &= ~l2tobm(num--); kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1); for (num = MAXKL2SIZE; num < sizeof(kpm->pm_stfree)*NBBY; num++) kpm->pm_stfree &= ~l2tobm(num); } } /* * Allocate some fixed, special purpose kernel virtual addresses */ { vaddr_t va = RELOC(virtual_avail, vaddr_t); RELOC(CADDR1, caddr_t) = (caddr_t)va; va += NBPG; RELOC(CADDR2, caddr_t) = (caddr_t)va; va += NBPG; RELOC(vmmap, caddr_t) = (caddr_t)va; va += NBPG; PMAP_MD_RELOC3(); RELOC(msgbufp, struct msgbuf *) = (struct msgbuf *)va; va += MSGBUFSIZE; RELOC(virtual_avail, vaddr_t) = va; } }