/* $OpenBSD: trap.c,v 1.54 2007/04/12 14:38:36 martin Exp $ */ /* $NetBSD: trap.c,v 1.52 2000/05/24 16:48:33 thorpej Exp $ */ /*- * Copyright (c) 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1999 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University. * All rights reserved. * * Author: Chris G. Demetriou * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ #include #include #include #include #include #include #include #ifndef NO_IEEE #include #endif #ifdef KTRACE #include #endif #include #include "systrace.h" #include #include #include #include #ifdef DDB #include #endif #include #ifdef COMPAT_OSF1 #include #endif void userret(struct proc *); #ifndef SMALL_KERNEL unsigned long Sfloat_to_reg(unsigned int); unsigned int reg_to_Sfloat(unsigned long); unsigned long Tfloat_reg_cvt(unsigned long); #ifdef FIX_UNALIGNED_VAX_FP unsigned long Ffloat_to_reg(unsigned int); unsigned int reg_to_Ffloat(unsigned long); unsigned long Gfloat_reg_cvt(unsigned long); #endif int unaligned_fixup(unsigned long, unsigned long, unsigned long, struct proc *); #endif /* SMALL_KERNEL */ int handle_opdec(struct proc *p, u_int64_t *ucodep); #ifndef NO_IEEE struct device fpevent_use; struct device fpevent_reuse; #endif #ifdef DEBUG static void printtrap(const unsigned long, const unsigned long, const unsigned long, const unsigned long, struct trapframe *, int, int); #endif /* DEBUG */ /* * Initialize the trap vectors for the current processor. */ void trap_init() { /* * Point interrupt/exception vectors to our own. */ alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT); alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH); alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM); alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF); alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA); alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS); /* * Clear pending machine checks and error reports, and enable * system- and processor-correctable error reporting. */ alpha_pal_wrmces(alpha_pal_rdmces() & ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC)); } /* * Define the code needed before returning to user mode, for * trap and syscall. */ void userret(struct proc *p) { int sig; /* Do any deferred user pmap operations. */ PMAP_USERRET(vm_map_pmap(&p->p_vmspace->vm_map)); /* take pending signals */ while ((sig = CURSIG(p)) != 0) postsig(sig); curcpu()->ci_schedstate.spc_curpriority = p->p_priority = p->p_usrpri; } #ifdef DEBUG static void printtrap(a0, a1, a2, entry, framep, isfatal, user) const unsigned long a0, a1, a2, entry; struct trapframe *framep; int isfatal, user; { char ubuf[64]; const char *entryname; switch (entry) { case ALPHA_KENTRY_INT: entryname = "interrupt"; break; case ALPHA_KENTRY_ARITH: entryname = "arithmetic trap"; break; case ALPHA_KENTRY_MM: entryname = "memory management fault"; break; case ALPHA_KENTRY_IF: entryname = "instruction fault"; break; case ALPHA_KENTRY_UNA: entryname = "unaligned access fault"; break; case ALPHA_KENTRY_SYS: entryname = "system call"; break; default: snprintf(ubuf, sizeof ubuf, "type %lx", entry); entryname = (const char *) ubuf; break; } printf("\n"); printf("%s %s trap:\n", isfatal? "fatal" : "handled", user ? "user" : "kernel"); printf("\n"); printf(" trap entry = 0x%lx (%s)\n", entry, entryname); printf(" a0 = 0x%lx\n", a0); printf(" a1 = 0x%lx\n", a1); printf(" a2 = 0x%lx\n", a2); printf(" pc = 0x%lx\n", framep->tf_regs[FRAME_PC]); printf(" ra = 0x%lx\n", framep->tf_regs[FRAME_RA]); printf(" curproc = %p\n", curproc); if (curproc != NULL) printf(" pid = %d, comm = %s\n", curproc->p_pid, curproc->p_comm); printf("\n"); } #endif /* DEBUG */ /* * Trap is called from locore to handle most types of processor traps. * System calls are broken out for efficiency and ASTs are broken out * to make the code a bit cleaner and more representative of the * Alpha architecture. */ /*ARGSUSED*/ void trap(a0, a1, a2, entry, framep) const unsigned long a0, a1, a2, entry; struct trapframe *framep; { struct proc *p; int i; u_int64_t ucode; int user; #if defined(DDB) int call_debugger = 1; #endif caddr_t v; int typ; union sigval sv; vm_prot_t ftype; unsigned long onfault; uvmexp.traps++; p = curproc; ucode = 0; user = (framep->tf_regs[FRAME_PS] & ALPHA_PSL_USERMODE) != 0; if (user) { p->p_md.md_tf = framep; #if 0 /* This is to catch some weird stuff on the UDB (mj) */ if (framep->tf_regs[FRAME_PC] > 0 && framep->tf_regs[FRAME_PC] < 0x120000000) { printf("PC Out of Whack\n"); printtrap(a0, a1, a2, entry, framep, 1, user); } #endif } switch (entry) { case ALPHA_KENTRY_UNA: /* * If user-land, do whatever fixups, printing, and * signalling is appropriate (based on system-wide * and per-process unaligned-access-handling flags). */ if (user) { #ifndef SMALL_KERNEL if ((i = unaligned_fixup(a0, a1, a2, p)) == 0) goto out; #endif ucode = a0; /* VA */ break; } /* * Unaligned access from kernel mode is always an error, * EVEN IF A COPY FAULT HANDLER IS SET! * * It's an error if a copy fault handler is set because * the various routines which do user-initiated copies * do so in a bcopy-like manner. In other words, the * kernel never assumes that pointers provided by the * user are properly aligned, and so if the kernel * does cause an unaligned access it's a kernel bug. */ goto dopanic; case ALPHA_KENTRY_ARITH: /* * Resolve trap shadows, interpret FP ops requiring infinities, * NaNs, or denorms, and maintain FPCR corrections. */ if (user) { #ifndef NO_IEEE i = alpha_fp_complete(a0, a1, p, &ucode); if (i == 0) goto out; #else i = SIGFPE; ucode = a0; #endif break; } /* Always fatal in kernel. Should never happen. */ goto dopanic; case ALPHA_KENTRY_IF: /* * These are always fatal in kernel, and should never * happen. (Debugger entry is handled in XentIF.) */ if (!user) { #if defined(DDB) /* * ...unless a debugger is configured. It will * inform us if the trap was handled. */ if (alpha_debug(a0, a1, a2, entry, framep)) goto out; /* * Debugger did NOT handle the trap, don't * call the debugger again! */ call_debugger = 0; #endif goto dopanic; } i = 0; switch (a0) { case ALPHA_IF_CODE_GENTRAP: if (framep->tf_regs[FRAME_A0] == -2) { /* weird! */ i = SIGFPE; ucode = a0; /* exception summary */ break; } /* FALLTHROUGH */ case ALPHA_IF_CODE_BPT: case ALPHA_IF_CODE_BUGCHK: #ifdef PTRACE if (p->p_md.md_flags & (MDP_STEP1|MDP_STEP2)) { process_sstep(p, 0); p->p_md.md_tf->tf_regs[FRAME_PC] -= 4; } #endif ucode = a0; /* trap type */ i = SIGTRAP; break; case ALPHA_IF_CODE_OPDEC: if ((i = handle_opdec(p, &ucode)) == 0) goto out; break; case ALPHA_IF_CODE_FEN: alpha_enable_fp(p, 0); alpha_pal_wrfen(0); goto out; default: printf("trap: unknown IF type 0x%lx\n", a0); goto dopanic; } break; case ALPHA_KENTRY_MM: switch (a1) { case ALPHA_MMCSR_FOR: case ALPHA_MMCSR_FOE: case ALPHA_MMCSR_FOW: if (pmap_emulate_reference(p, a0, user, a1)) { /* XXX - stupid API right now. */ ftype = VM_PROT_EXECUTE|VM_PROT_READ; goto do_fault; } goto out; case ALPHA_MMCSR_INVALTRANS: case ALPHA_MMCSR_ACCESS: { vaddr_t va; struct vmspace *vm = NULL; struct vm_map *map; int rv; extern struct vm_map *kernel_map; switch (a2) { case -1: /* instruction fetch fault */ ftype = VM_PROT_EXECUTE|VM_PROT_READ; break; case 0: /* load instruction */ ftype = VM_PROT_READ; break; case 1: /* store instruction */ ftype = VM_PROT_READ|VM_PROT_WRITE; break; } do_fault: /* * It is only a kernel address space fault iff: * 1. !user and * 2. pcb_onfault not set or * 3. pcb_onfault set but kernel space data fault * The last can occur during an exec() copyin where the * argument space is lazy-allocated. */ if (!user && (a0 >= VM_MIN_KERNEL_ADDRESS || p == NULL || p->p_addr->u_pcb.pcb_onfault == 0)) { vm = NULL; map = kernel_map; } else { vm = p->p_vmspace; map = &vm->vm_map; } va = trunc_page((vaddr_t)a0); if (p != NULL) { onfault = p->p_addr->u_pcb.pcb_onfault; p->p_addr->u_pcb.pcb_onfault = 0; } rv = uvm_fault(map, va, 0, ftype); if (p != NULL) p->p_addr->u_pcb.pcb_onfault = onfault; /* * If this was a stack access we keep track of the * maximum accessed stack size. Also, if vm_fault * gets a protection failure it is due to accessing * the stack region outside the current limit and * we need to reflect that as an access error. */ if (map != kernel_map && (caddr_t)va >= vm->vm_maxsaddr) { if (rv == 0) { if (p != NULL) uvm_grow(p, va); } else if (rv == EACCES) rv = EFAULT; } if (rv == 0) { goto out; } if (!user) { /* Check for copyin/copyout fault */ if (p != NULL && p->p_addr->u_pcb.pcb_onfault != 0) { framep->tf_regs[FRAME_PC] = p->p_addr->u_pcb.pcb_onfault; p->p_addr->u_pcb.pcb_onfault = 0; goto out; } goto dopanic; } ucode = ftype; v = (caddr_t)a0; typ = SEGV_MAPERR; if (rv == ENOMEM) { printf("UVM: pid %u (%s), uid %u killed: " "out of swap\n", p->p_pid, p->p_comm, p->p_cred && p->p_ucred ? p->p_ucred->cr_uid : -1); i = SIGKILL; } else { i = SIGSEGV; } break; } default: printf("trap: unknown MMCSR value 0x%lx\n", a1); goto dopanic; } break; default: goto dopanic; } #ifdef DEBUG printtrap(a0, a1, a2, entry, framep, 1, user); #endif sv.sival_ptr = v; trapsignal(p, i, ucode, typ, sv); out: if (user) userret(p); return; dopanic: #ifdef DEBUG printtrap(a0, a1, a2, entry, framep, 1, user); #endif /* XXX dump registers */ #if defined(DDB) if (call_debugger && alpha_debug(a0, a1, a2, entry, framep)) { /* * The debugger has handled the trap; just return. */ goto out; } #endif panic("trap"); } /* * Process a system call. * * System calls are strange beasts. They are passed the syscall number * in v0, and the arguments in the registers (as normal). They return * an error flag in a3 (if a3 != 0 on return, the syscall had an error), * and the return value (if any) in v0. * * The assembly stub takes care of moving the call number into a register * we can get to, and moves all of the argument registers into their places * in the trap frame. On return, it restores the callee-saved registers, * a3, and v0 from the frame before returning to the user process. */ void syscall(code, framep) u_int64_t code; struct trapframe *framep; { struct sysent *callp; struct proc *p; int error, numsys; u_int64_t opc; u_long rval[2]; u_long args[10]; /* XXX */ u_int hidden, nargs; #ifdef COMPAT_OSF1 extern struct emul emul_osf1; #endif uvmexp.syscalls++; p = curproc; p->p_md.md_tf = framep; opc = framep->tf_regs[FRAME_PC] - 4; callp = p->p_emul->e_sysent; numsys = p->p_emul->e_nsysent; #ifdef COMPAT_OSF1 if (p->p_emul == &emul_osf1) switch (code) { case OSF1_SYS_syscall: /* OSF/1 syscall() */ code = framep->tf_regs[FRAME_A0]; hidden = 1; break; default: hidden = 0; } else #endif switch(code) { case SYS_syscall: case SYS___syscall: /* * syscall() and __syscall() are handled the same on * the alpha, as everything is 64-bit aligned, anyway. */ code = framep->tf_regs[FRAME_A0]; hidden = 1; break; default: hidden = 0; } error = 0; if (code < numsys) callp += code; else callp += p->p_emul->e_nosys; nargs = callp->sy_narg + hidden; switch (nargs) { default: if (nargs > 10) /* XXX */ panic("syscall: too many args (%d)", nargs); error = copyin((caddr_t)(alpha_pal_rdusp()), &args[6], (nargs - 6) * sizeof(u_long)); case 6: args[5] = framep->tf_regs[FRAME_A5]; case 5: args[4] = framep->tf_regs[FRAME_A4]; case 4: args[3] = framep->tf_regs[FRAME_A3]; case 3: args[2] = framep->tf_regs[FRAME_A2]; case 2: args[1] = framep->tf_regs[FRAME_A1]; case 1: args[0] = framep->tf_regs[FRAME_A0]; case 0: break; } #ifdef KTRACE if (KTRPOINT(p, KTR_SYSCALL)) ktrsyscall(p, code, callp->sy_argsize, args + hidden); #endif #ifdef SYSCALL_DEBUG scdebug_call(p, code, args + hidden); #endif if (error == 0) { rval[0] = 0; rval[1] = 0; #if NSYSTRACE > 0 if (ISSET(p->p_flag, P_SYSTRACE)) error = systrace_redirect(code, p, args + hidden, rval); else #endif error = (*callp->sy_call)(p, args + hidden, rval); } switch (error) { case 0: framep->tf_regs[FRAME_V0] = rval[0]; framep->tf_regs[FRAME_A4] = rval[1]; framep->tf_regs[FRAME_A3] = 0; break; case ERESTART: framep->tf_regs[FRAME_PC] = opc; break; case EJUSTRETURN: break; default: if (p->p_emul->e_errno) error = p->p_emul->e_errno[error]; framep->tf_regs[FRAME_V0] = error; framep->tf_regs[FRAME_A3] = 1; break; } #ifdef SYSCALL_DEBUG scdebug_ret(p, code, error, rval); #endif userret(p); #ifdef KTRACE if (KTRPOINT(p, KTR_SYSRET)) ktrsysret(p, code, error, rval[0]); #endif } /* * Process the tail end of a fork() for the child. */ void child_return(arg) void *arg; { struct proc *p = arg; struct trapframe *framep = p->p_md.md_tf; /* * Return values in the frame set by cpu_fork(). */ framep->tf_regs[FRAME_V0] = 0; framep->tf_regs[FRAME_A4] = 0; framep->tf_regs[FRAME_A3] = 0; userret(p); #ifdef KTRACE if (KTRPOINT(p, KTR_SYSRET)) ktrsysret(p, (p->p_flag & P_PPWAIT) ? SYS_vfork : SYS_fork, 0, 0); #endif } /* * Set the float-point enable for the current process, and return * the FPU context to the named process. If check == 0, it is an * error for the named process to already be fpcurproc. */ void alpha_enable_fp(struct proc *p, int check) { struct cpu_info *ci = curcpu(); if (check && ci->ci_fpcurproc == p) { alpha_pal_wrfen(1); return; } if (ci->ci_fpcurproc == p) panic("trap: fp disabled for fpcurproc == %p", p); if (ci->ci_fpcurproc != NULL) fpusave_cpu(ci, 1); KDASSERT(ci->ci_fpcurproc == NULL); #if defined(MULTIPROCESSOR) if (p->p_addr->u_pcb.pcb_fpcpu != NULL) fpusave_proc(p, 1); #else KDASSERT(p->p_addr->u_pcb.pcb_fpcpu == NULL); #endif p->p_addr->u_pcb.pcb_fpcpu = ci; ci->ci_fpcurproc = p; uvmexp.fpswtch++; p->p_md.md_flags |= MDP_FPUSED; alpha_pal_wrfen(1); restorefpstate(&p->p_addr->u_pcb.pcb_fp); } /* * Process an asynchronous software trap. * This is relatively easy. */ void ast(framep) struct trapframe *framep; { struct proc *p; curcpu()->ci_astpending = 0; p = curproc; p->p_md.md_tf = framep; #ifdef DIAGNOSTIC if ((framep->tf_regs[FRAME_PS] & ALPHA_PSL_USERMODE) == 0) panic("ast and not user"); #endif uvmexp.softs++; if (p->p_flag & P_OWEUPC) { ADDUPROF(p); } if (curcpu()->ci_want_resched) preempt(NULL); userret(p); } /* * Unaligned access handler. It's not clear that this can get much slower... * */ const static int reg_to_framereg[32] = { FRAME_V0, FRAME_T0, FRAME_T1, FRAME_T2, FRAME_T3, FRAME_T4, FRAME_T5, FRAME_T6, FRAME_T7, FRAME_S0, FRAME_S1, FRAME_S2, FRAME_S3, FRAME_S4, FRAME_S5, FRAME_S6, FRAME_A0, FRAME_A1, FRAME_A2, FRAME_A3, FRAME_A4, FRAME_A5, FRAME_T8, FRAME_T9, FRAME_T10, FRAME_T11, FRAME_RA, FRAME_T12, FRAME_AT, FRAME_GP, FRAME_SP, -1, }; #define irp(p, reg) \ ((reg_to_framereg[(reg)] == -1) ? NULL : \ &(p)->p_md.md_tf->tf_regs[reg_to_framereg[(reg)]]) #ifndef SMALL_KERNEL #define frp(p, reg) \ (&(p)->p_addr->u_pcb.pcb_fp.fpr_regs[(reg)]) #define dump_fp_regs() \ if (p->p_addr->u_pcb.pcb_fpcpu != NULL) \ fpusave_proc(p, 1); #define unaligned_load(storage, ptrf, mod) \ if (copyin((caddr_t)va, &(storage), sizeof (storage)) != 0) { \ p->p_md.md_tf->tf_regs[FRAME_PC] -= 4; \ signal = SIGSEGV; \ goto out; \ } \ signal = 0; \ if ((regptr = ptrf(p, reg)) != NULL) \ *regptr = mod (storage); #define unaligned_store(storage, ptrf, mod) \ if ((regptr = ptrf(p, reg)) != NULL) \ (storage) = mod (*regptr); \ else \ (storage) = 0; \ if (copyout(&(storage), (caddr_t)va, sizeof (storage)) != 0) { \ p->p_md.md_tf->tf_regs[FRAME_PC] -= 4; \ signal = SIGSEGV; \ goto out; \ } \ signal = 0; #define unaligned_load_integer(storage) \ unaligned_load(storage, irp, ) #define unaligned_store_integer(storage) \ unaligned_store(storage, irp, ) #define unaligned_load_floating(storage, mod) \ dump_fp_regs(); \ unaligned_load(storage, frp, mod) #define unaligned_store_floating(storage, mod) \ dump_fp_regs(); \ unaligned_store(storage, frp, mod) unsigned long Sfloat_to_reg(s) unsigned int s; { unsigned long sign, expn, frac; unsigned long result; sign = (s & 0x80000000) >> 31; expn = (s & 0x7f800000) >> 23; frac = (s & 0x007fffff) >> 0; /* map exponent part, as appropriate. */ if (expn == 0xff) expn = 0x7ff; else if ((expn & 0x80) != 0) expn = (0x400 | (expn & ~0x80)); else if ((expn & 0x80) == 0 && expn != 0) expn = (0x380 | (expn & ~0x80)); result = (sign << 63) | (expn << 52) | (frac << 29); return (result); } unsigned int reg_to_Sfloat(r) unsigned long r; { unsigned long sign, expn, frac; unsigned int result; sign = (r & 0x8000000000000000) >> 63; expn = (r & 0x7ff0000000000000) >> 52; frac = (r & 0x000fffffe0000000) >> 29; /* map exponent part, as appropriate. */ expn = (expn & 0x7f) | ((expn & 0x400) != 0 ? 0x80 : 0x00); result = (sign << 31) | (expn << 23) | (frac << 0); return (result); } /* * Conversion of T floating datums to and from register format * requires no bit reordering whatsoever. */ unsigned long Tfloat_reg_cvt(input) unsigned long input; { return (input); } #ifdef FIX_UNALIGNED_VAX_FP unsigned long Ffloat_to_reg(f) unsigned int f; { unsigned long sign, expn, frlo, frhi; unsigned long result; sign = (f & 0x00008000) >> 15; expn = (f & 0x00007f80) >> 7; frhi = (f & 0x0000007f) >> 0; frlo = (f & 0xffff0000) >> 16; /* map exponent part, as appropriate. */ if ((expn & 0x80) != 0) expn = (0x400 | (expn & ~0x80)); else if ((expn & 0x80) == 0 && expn != 0) expn = (0x380 | (expn & ~0x80)); result = (sign << 63) | (expn << 52) | (frhi << 45) | (frlo << 29); return (result); } unsigned int reg_to_Ffloat(r) unsigned long r; { unsigned long sign, expn, frhi, frlo; unsigned int result; sign = (r & 0x8000000000000000) >> 63; expn = (r & 0x7ff0000000000000) >> 52; frhi = (r & 0x000fe00000000000) >> 45; frlo = (r & 0x00001fffe0000000) >> 29; /* map exponent part, as appropriate. */ expn = (expn & 0x7f) | ((expn & 0x400) != 0 ? 0x80 : 0x00); result = (sign << 15) | (expn << 7) | (frhi << 0) | (frlo << 16); return (result); } /* * Conversion of G floating datums to and from register format is * symmetrical. Just swap shorts in the quad... */ unsigned long Gfloat_reg_cvt(input) unsigned long input; { unsigned long a, b, c, d; unsigned long result; a = (input & 0x000000000000ffff) >> 0; b = (input & 0x00000000ffff0000) >> 16; c = (input & 0x0000ffff00000000) >> 32; d = (input & 0xffff000000000000) >> 48; result = (a << 48) | (b << 32) | (c << 16) | (d << 0); return (result); } #endif /* FIX_UNALIGNED_VAX_FP */ struct unaligned_fixup_data { const char *type; /* opcode name */ int fixable; /* fixable, 0 if fixup not supported */ int size; /* size, 0 if unknown */ }; #define UNKNOWN() { "0x%lx", 0, 0 } #define FIX_LD(n,s) { n, 1, s } #define FIX_ST(n,s) { n, 1, s } #define NOFIX_LD(n,s) { n, 0, s } #define NOFIX_ST(n,s) { n, 0, s } int unaligned_fixup(va, opcode, reg, p) unsigned long va, opcode, reg; struct proc *p; { const struct unaligned_fixup_data tab_unknown[1] = { UNKNOWN(), }; const struct unaligned_fixup_data tab_0c[0x02] = { FIX_LD("ldwu", 2), FIX_ST("stw", 2), }; const struct unaligned_fixup_data tab_20[0x10] = { #ifdef FIX_UNALIGNED_VAX_FP FIX_LD("ldf", 4), FIX_LD("ldg", 8), #else NOFIX_LD("ldf", 4), NOFIX_LD("ldg", 8), #endif FIX_LD("lds", 4), FIX_LD("ldt", 8), #ifdef FIX_UNALIGNED_VAX_FP FIX_ST("stf", 4), FIX_ST("stg", 8), #else NOFIX_ST("stf", 4), NOFIX_ST("stg", 8), #endif FIX_ST("sts", 4), FIX_ST("stt", 8), FIX_LD("ldl", 4), FIX_LD("ldq", 8), NOFIX_LD("ldl_c", 4), NOFIX_LD("ldq_c", 8), FIX_ST("stl", 4), FIX_ST("stq", 8), NOFIX_ST("stl_c", 4), NOFIX_ST("stq_c", 8), }; const struct unaligned_fixup_data *selected_tab; int doprint, dofix, dosigbus, signal; unsigned long *regptr, longdata; int intdata; /* signed to get extension when storing */ u_int16_t worddata; /* unsigned to _avoid_ extension */ /* * Read USP into frame in case it's the register to be modified. * This keeps us from having to check for it in lots of places * later. */ p->p_md.md_tf->tf_regs[FRAME_SP] = alpha_pal_rdusp(); /* * Figure out what actions to take. * * XXX In the future, this should have a per-process component * as well. */ doprint = alpha_unaligned_print; dofix = alpha_unaligned_fix; dosigbus = alpha_unaligned_sigbus; /* * Find out which opcode it is. Arrange to have the opcode * printed if it's an unknown opcode. */ if (opcode >= 0x0c && opcode <= 0x0d) selected_tab = &tab_0c[opcode - 0x0c]; else if (opcode >= 0x20 && opcode <= 0x2f) selected_tab = &tab_20[opcode - 0x20]; else selected_tab = tab_unknown; /* * If we're supposed to be noisy, squawk now. */ if (doprint) { uprintf( "pid %u (%s): unaligned access: va=0x%lx pc=0x%lx ra=0x%lx op=", p->p_pid, p->p_comm, va, p->p_md.md_tf->tf_regs[FRAME_PC] - 4, p->p_md.md_tf->tf_regs[FRAME_RA]); uprintf(selected_tab->type,opcode); uprintf("\n"); } /* * If we should try to fix it and know how, give it a shot. * * We never allow bad data to be unknowingly used by the * user process. That is, if we decide not to fix up an * access we cause a SIGBUS rather than letting the user * process go on without warning. * * If we're trying to do a fixup, we assume that things * will be botched. If everything works out OK, * unaligned_{load,store}_* clears the signal flag. */ signal = SIGBUS; if (dofix && selected_tab->fixable) { switch (opcode) { case 0x0c: /* ldwu */ /* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */ unaligned_load_integer(worddata); break; case 0x0d: /* stw */ /* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */ unaligned_store_integer(worddata); break; #ifdef FIX_UNALIGNED_VAX_FP case 0x20: /* ldf */ unaligned_load_floating(intdata, Ffloat_to_reg); break; case 0x21: /* ldg */ unaligned_load_floating(longdata, Gfloat_reg_cvt); break; #endif case 0x22: /* lds */ unaligned_load_floating(intdata, Sfloat_to_reg); break; case 0x23: /* ldt */ unaligned_load_floating(longdata, Tfloat_reg_cvt); break; #ifdef FIX_UNALIGNED_VAX_FP case 0x24: /* stf */ unaligned_store_floating(intdata, reg_to_Ffloat); break; case 0x25: /* stg */ unaligned_store_floating(longdata, Gfloat_reg_cvt); break; #endif case 0x26: /* sts */ unaligned_store_floating(intdata, reg_to_Sfloat); break; case 0x27: /* stt */ unaligned_store_floating(longdata, Tfloat_reg_cvt); break; case 0x28: /* ldl */ unaligned_load_integer(intdata); break; case 0x29: /* ldq */ unaligned_load_integer(longdata); break; case 0x2c: /* stl */ unaligned_store_integer(intdata); break; case 0x2d: /* stq */ unaligned_store_integer(longdata); break; #ifdef DIAGNOSTIC default: panic("unaligned_fixup: can't get here"); #endif } } /* * Force SIGBUS if requested. */ if (dosigbus) signal = SIGBUS; out: /* * Write back USP. */ alpha_pal_wrusp(p->p_md.md_tf->tf_regs[FRAME_SP]); return (signal); } #endif /* SMALL_KERNEL */ /* * Reserved/unimplemented instruction (opDec fault) handler * * Argument is the process that caused it. No useful information * is passed to the trap handler other than the fault type. The * address of the instruction that caused the fault is 4 less than * the PC stored in the trap frame. * * If the instruction is emulated successfully, this function returns 0. * Otherwise, this function returns the signal to deliver to the process, * and fills in *ucodep with the code to be delivered. */ int handle_opdec(p, ucodep) struct proc *p; u_int64_t *ucodep; { alpha_instruction inst; register_t *regptr, memaddr; u_int64_t inst_pc; int sig; /* * Read USP into frame in case it's going to be used or modified. * This keeps us from having to check for it in lots of places * later. */ p->p_md.md_tf->tf_regs[FRAME_SP] = alpha_pal_rdusp(); inst_pc = memaddr = p->p_md.md_tf->tf_regs[FRAME_PC] - 4; if (copyin((caddr_t)inst_pc, &inst, sizeof (inst)) != 0) { /* * really, this should never happen, but in case it * does we handle it. */ printf("WARNING: handle_opdec() couldn't fetch instruction\n"); goto sigsegv; } switch (inst.generic_format.opcode) { case op_ldbu: case op_ldwu: case op_stw: case op_stb: regptr = irp(p, inst.mem_format.rb); if (regptr != NULL) memaddr = *regptr; else memaddr = 0; memaddr += inst.mem_format.displacement; regptr = irp(p, inst.mem_format.ra); if (inst.mem_format.opcode == op_ldwu || inst.mem_format.opcode == op_stw) { if (memaddr & 0x01) { #ifndef SMALL_KERNEL sig = unaligned_fixup(memaddr, inst.mem_format.opcode, inst.mem_format.ra, p); if (sig) goto unaligned_fixup_sig; #else goto sigill; #endif break; } } if (inst.mem_format.opcode == op_ldbu) { u_int8_t b; /* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */ if (copyin((caddr_t)memaddr, &b, sizeof (b)) != 0) goto sigsegv; if (regptr != NULL) *regptr = b; } else if (inst.mem_format.opcode == op_ldwu) { u_int16_t w; /* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */ if (copyin((caddr_t)memaddr, &w, sizeof (w)) != 0) goto sigsegv; if (regptr != NULL) *regptr = w; } else if (inst.mem_format.opcode == op_stw) { u_int16_t w; /* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */ w = (regptr != NULL) ? *regptr : 0; if (copyout(&w, (caddr_t)memaddr, sizeof (w)) != 0) goto sigsegv; } else if (inst.mem_format.opcode == op_stb) { u_int8_t b; /* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */ b = (regptr != NULL) ? *regptr : 0; if (copyout(&b, (caddr_t)memaddr, sizeof (b)) != 0) goto sigsegv; } break; case op_intmisc: if (inst.operate_generic_format.function == op_sextb && inst.operate_generic_format.ra == 31) { int8_t b; if (inst.operate_generic_format.is_lit) { b = inst.operate_lit_format.literal; } else { if (inst.operate_reg_format.sbz != 0) goto sigill; regptr = irp(p, inst.operate_reg_format.rb); b = (regptr != NULL) ? *regptr : 0; } regptr = irp(p, inst.operate_generic_format.rc); if (regptr != NULL) *regptr = b; break; } if (inst.operate_generic_format.function == op_sextw && inst.operate_generic_format.ra == 31) { int16_t w; if (inst.operate_generic_format.is_lit) { w = inst.operate_lit_format.literal; } else { if (inst.operate_reg_format.sbz != 0) goto sigill; regptr = irp(p, inst.operate_reg_format.rb); w = (regptr != NULL) ? *regptr : 0; } regptr = irp(p, inst.operate_generic_format.rc); if (regptr != NULL) *regptr = w; break; } goto sigill; default: goto sigill; } /* * Write back USP. Note that in the error cases below, * nothing will have been successfully modified so we don't * have to write it out. */ alpha_pal_wrusp(p->p_md.md_tf->tf_regs[FRAME_SP]); return (0); sigill: *ucodep = ALPHA_IF_CODE_OPDEC; /* trap type */ return (SIGILL); sigsegv: sig = SIGSEGV; p->p_md.md_tf->tf_regs[FRAME_PC] = inst_pc; /* re-run instr. */ #ifndef SMALL_KERNEL unaligned_fixup_sig: #endif *ucodep = memaddr; /* faulting address */ return (sig); }