[BACK]Return to zlib.c CVS log [TXT][DIR] Up to [local] / sys / net

Annotation of sys/net/zlib.c, Revision 1.1.1.1

1.1       nbrk        1: /*     $OpenBSD: zlib.c,v 1.12 2003/12/10 07:22:42 itojun Exp $        */
                      2: /*     $NetBSD: zlib.c,v 1.2 1996/03/16 23:55:40 christos Exp $        */
                      3:
                      4: /*
                      5:  * This file is derived from various .h and .c files from the zlib-0.95
                      6:  * distribution by Jean-loup Gailly and Mark Adler, with some additions
                      7:  * by Paul Mackerras to aid in implementing Deflate compression and
                      8:  * decompression for PPP packets.  See zlib.h for conditions of
                      9:  * distribution and use.
                     10:  *
                     11:  * Changes that have been made include:
                     12:  * - changed functions not used outside this file to "local"
                     13:  * - added minCompression parameter to deflateInit2
                     14:  * - added Z_PACKET_FLUSH (see zlib.h for details)
                     15:  * - added inflateIncomp
                     16:  */
                     17:
                     18:
                     19: /*+++++*/
                     20: /* zutil.h -- internal interface and configuration of the compression library
                     21:  * Copyright (C) 1995 Jean-loup Gailly.
                     22:  * For conditions of distribution and use, see copyright notice in zlib.h
                     23:  */
                     24:
                     25: /* WARNING: this file should *not* be used by applications. It is
                     26:    part of the implementation of the compression library and is
                     27:    subject to change. Applications should only use zlib.h.
                     28:  */
                     29:
                     30: /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
                     31:
                     32: #define _Z_UTIL_H
                     33:
                     34: #include "zlib.h"
                     35:
                     36: #include <sys/param.h>
                     37: #include <sys/types.h>
                     38: #ifdef _STANDALONE
                     39: #include <stand.h>
                     40: #else
                     41: #include <sys/systm.h>
                     42: #endif
                     43:
                     44: #ifndef local
                     45: #  define local static
                     46: #endif
                     47: /* compile with -Dlocal if your debugger can't find static symbols */
                     48:
                     49: #define FAR
                     50:
                     51: typedef unsigned char  uch;
                     52: typedef uch FAR uchf;
                     53: typedef unsigned short ush;
                     54: typedef ush FAR ushf;
                     55: typedef unsigned long  ulg;
                     56:
                     57: extern char *z_errmsg[]; /* indexed by 1-zlib_error */
                     58:
                     59: #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
                     60: /* To be used only when the state is known to be valid */
                     61:
                     62: #ifndef NULL
                     63: #define NULL   ((void *) 0)
                     64: #endif
                     65:
                     66:         /* common constants */
                     67:
                     68: #define DEFLATED   8
                     69:
                     70: #ifndef DEF_WBITS
                     71: #  define DEF_WBITS MAX_WBITS
                     72: #endif
                     73: /* default windowBits for decompression. MAX_WBITS is for compression only */
                     74:
                     75: #if MAX_MEM_LEVEL >= 8
                     76: #  define DEF_MEM_LEVEL 8
                     77: #else
                     78: #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
                     79: #endif
                     80: /* default memLevel */
                     81:
                     82: #define STORED_BLOCK 0
                     83: #define STATIC_TREES 1
                     84: #define DYN_TREES    2
                     85: /* The three kinds of block type */
                     86:
                     87: #define MIN_MATCH  3
                     88: #define MAX_MATCH  258
                     89: /* The minimum and maximum match lengths */
                     90:
                     91:          /* functions */
                     92:
                     93: #if defined(KERNEL) || defined(_KERNEL)
                     94: #  define zmemcpy(d, s, n)     bcopy((s), (d), (n))
                     95: #  define zmemzero             bzero
                     96: #else
                     97: #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
                     98: #  define HAVE_MEMCPY
                     99: #endif
                    100: #ifdef HAVE_MEMCPY
                    101: #    define zmemcpy memcpy
                    102: #    define zmemzero(dest, len) memset(dest, 0, len)
                    103: #else
                    104:    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
                    105:    extern void zmemzero OF((Bytef* dest, uInt len));
                    106: #endif
                    107: #endif
                    108:
                    109: /* Diagnostic functions */
                    110: #ifdef DEBUG_ZLIB
                    111: #  include <stdio.h>
                    112: #  ifndef verbose
                    113: #    define verbose 0
                    114: #  endif
                    115: #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
                    116: #  define Trace(x) fprintf x
                    117: #  define Tracev(x) {if (verbose) fprintf x ;}
                    118: #  define Tracevv(x) {if (verbose>1) fprintf x ;}
                    119: #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
                    120: #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
                    121: #else
                    122: #  define Assert(cond,msg)
                    123: #  define Trace(x)
                    124: #  define Tracev(x)
                    125: #  define Tracevv(x)
                    126: #  define Tracec(c,x)
                    127: #  define Tracecv(c,x)
                    128: #endif
                    129:
                    130:
                    131: typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
                    132:
                    133: /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
                    134: /* void   zcfree  OF((voidpf opaque, voidpf ptr)); */
                    135:
                    136: #define ZALLOC(strm, items, size) \
                    137:            (*((strm)->zalloc))((strm)->opaque, (items), (size))
                    138: #define ZFREE(strm, addr, size)        \
                    139:           (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
                    140: #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
                    141:
                    142: #ifndef NO_DEFLATE
                    143:
                    144: /* deflate.h -- internal compression state
                    145:  * Copyright (C) 1995 Jean-loup Gailly
                    146:  * For conditions of distribution and use, see copyright notice in zlib.h
                    147:  */
                    148:
                    149: /* WARNING: this file should *not* be used by applications. It is
                    150:    part of the implementation of the compression library and is
                    151:    subject to change. Applications should only use zlib.h.
                    152:  */
                    153:
                    154:
                    155: /*+++++*/
                    156: /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
                    157:
                    158: /* ===========================================================================
                    159:  * Internal compression state.
                    160:  */
                    161:
                    162: /* Data type */
                    163: #define BINARY  0
                    164: #define ASCII   1
                    165: #define UNKNOWN 2
                    166:
                    167: #define LENGTH_CODES 29
                    168: /* number of length codes, not counting the special END_BLOCK code */
                    169:
                    170: #define LITERALS  256
                    171: /* number of literal bytes 0..255 */
                    172:
                    173: #define L_CODES (LITERALS+1+LENGTH_CODES)
                    174: /* number of Literal or Length codes, including the END_BLOCK code */
                    175:
                    176: #define D_CODES   30
                    177: /* number of distance codes */
                    178:
                    179: #define BL_CODES  19
                    180: /* number of codes used to transfer the bit lengths */
                    181:
                    182: #define HEAP_SIZE (2*L_CODES+1)
                    183: /* maximum heap size */
                    184:
                    185: #define MAX_BITS 15
                    186: /* All codes must not exceed MAX_BITS bits */
                    187:
                    188: #define INIT_STATE    42
                    189: #define BUSY_STATE   113
                    190: #define FLUSH_STATE  124
                    191: #define FINISH_STATE 666
                    192: /* Stream status */
                    193:
                    194:
                    195: /* Data structure describing a single value and its code string. */
                    196: typedef struct ct_data_s {
                    197:     union {
                    198:         ush  freq;       /* frequency count */
                    199:         ush  code;       /* bit string */
                    200:     } fc;
                    201:     union {
                    202:         ush  dad;        /* father node in Huffman tree */
                    203:         ush  len;        /* length of bit string */
                    204:     } dl;
                    205: } FAR ct_data;
                    206:
                    207: #define Freq fc.freq
                    208: #define Code fc.code
                    209: #define Dad  dl.dad
                    210: #define Len  dl.len
                    211:
                    212: typedef struct static_tree_desc_s  static_tree_desc;
                    213:
                    214: typedef struct tree_desc_s {
                    215:     ct_data *dyn_tree;           /* the dynamic tree */
                    216:     int     max_code;            /* largest code with non zero frequency */
                    217:     const static_tree_desc *stat_desc; /* the corresponding static tree */
                    218: } FAR tree_desc;
                    219:
                    220: typedef ush Pos;
                    221: typedef Pos FAR Posf;
                    222: typedef unsigned IPos;
                    223:
                    224: /* A Pos is an index in the character window. We use short instead of int to
                    225:  * save space in the various tables. IPos is used only for parameter passing.
                    226:  */
                    227:
                    228: typedef struct deflate_state {
                    229:     z_stream *strm;      /* pointer back to this zlib stream */
                    230:     int   status;        /* as the name implies */
                    231:     Bytef *pending_buf;  /* output still pending */
                    232:     Bytef *pending_out;  /* next pending byte to output to the stream */
                    233:     int   pending;       /* nb of bytes in the pending buffer */
                    234:     uLong adler;         /* adler32 of uncompressed data */
                    235:     int   noheader;      /* suppress zlib header and adler32 */
                    236:     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
                    237:     Byte  method;        /* STORED (for zip only) or DEFLATED */
                    238:     int          minCompr;      /* min size decrease for Z_FLUSH_NOSTORE */
                    239:
                    240:                 /* used by deflate.c: */
                    241:
                    242:     uInt  w_size;        /* LZ77 window size (32K by default) */
                    243:     uInt  w_bits;        /* log2(w_size)  (8..16) */
                    244:     uInt  w_mask;        /* w_size - 1 */
                    245:
                    246:     Bytef *window;
                    247:     /* Sliding window. Input bytes are read into the second half of the window,
                    248:      * and move to the first half later to keep a dictionary of at least wSize
                    249:      * bytes. With this organization, matches are limited to a distance of
                    250:      * wSize-MAX_MATCH bytes, but this ensures that IO is always
                    251:      * performed with a length multiple of the block size. Also, it limits
                    252:      * the window size to 64K, which is quite useful on MSDOS.
                    253:      * To do: use the user input buffer as sliding window.
                    254:      */
                    255:
                    256:     ulg window_size;
                    257:     /* Actual size of window: 2*wSize, except when the user input buffer
                    258:      * is directly used as sliding window.
                    259:      */
                    260:
                    261:     Posf *prev;
                    262:     /* Link to older string with same hash index. To limit the size of this
                    263:      * array to 64K, this link is maintained only for the last 32K strings.
                    264:      * An index in this array is thus a window index modulo 32K.
                    265:      */
                    266:
                    267:     Posf *head; /* Heads of the hash chains or NIL. */
                    268:
                    269:     uInt  ins_h;          /* hash index of string to be inserted */
                    270:     uInt  hash_size;      /* number of elements in hash table */
                    271:     uInt  hash_bits;      /* log2(hash_size) */
                    272:     uInt  hash_mask;      /* hash_size-1 */
                    273:
                    274:     uInt  hash_shift;
                    275:     /* Number of bits by which ins_h must be shifted at each input
                    276:      * step. It must be such that after MIN_MATCH steps, the oldest
                    277:      * byte no longer takes part in the hash key, that is:
                    278:      *   hash_shift * MIN_MATCH >= hash_bits
                    279:      */
                    280:
                    281:     long block_start;
                    282:     /* Window position at the beginning of the current output block. Gets
                    283:      * negative when the window is moved backwards.
                    284:      */
                    285:
                    286:     uInt match_length;           /* length of best match */
                    287:     IPos prev_match;             /* previous match */
                    288:     int match_available;         /* set if previous match exists */
                    289:     uInt strstart;               /* start of string to insert */
                    290:     uInt match_start;            /* start of matching string */
                    291:     uInt lookahead;              /* number of valid bytes ahead in window */
                    292:
                    293:     uInt prev_length;
                    294:     /* Length of the best match at previous step. Matches not greater than this
                    295:      * are discarded. This is used in the lazy match evaluation.
                    296:      */
                    297:
                    298:     uInt max_chain_length;
                    299:     /* To speed up deflation, hash chains are never searched beyond this
                    300:      * length.  A higher limit improves compression ratio but degrades the
                    301:      * speed.
                    302:      */
                    303:
                    304:     uInt max_lazy_match;
                    305:     /* Attempt to find a better match only when the current match is strictly
                    306:      * smaller than this value. This mechanism is used only for compression
                    307:      * levels >= 4.
                    308:      */
                    309: #   define max_insert_length  max_lazy_match
                    310:     /* Insert new strings in the hash table only if the match length is not
                    311:      * greater than this length. This saves time but degrades compression.
                    312:      * max_insert_length is used only for compression levels <= 3.
                    313:      */
                    314:
                    315:     int level;    /* compression level (1..9) */
                    316:     int strategy; /* favor or force Huffman coding*/
                    317:
                    318:     uInt good_match;
                    319:     /* Use a faster search when the previous match is longer than this */
                    320:
                    321:      int nice_match; /* Stop searching when current match exceeds this */
                    322:
                    323:                 /* used by trees.c: */
                    324:     /* Didn't use ct_data typedef below to supress compiler warning */
                    325:     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
                    326:     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
                    327:     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
                    328:
                    329:     struct tree_desc_s l_desc;               /* desc. for literal tree */
                    330:     struct tree_desc_s d_desc;               /* desc. for distance tree */
                    331:     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
                    332:
                    333:     ush bl_count[MAX_BITS+1];
                    334:     /* number of codes at each bit length for an optimal tree */
                    335:
                    336:     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
                    337:     int heap_len;               /* number of elements in the heap */
                    338:     int heap_max;               /* element of largest frequency */
                    339:     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
                    340:      * The same heap array is used to build all trees.
                    341:      */
                    342:
                    343:     uch depth[2*L_CODES+1];
                    344:     /* Depth of each subtree used as tie breaker for trees of equal frequency
                    345:      */
                    346:
                    347:     uchf *l_buf;          /* buffer for literals or lengths */
                    348:
                    349:     uInt  lit_bufsize;
                    350:     /* Size of match buffer for literals/lengths.  There are 4 reasons for
                    351:      * limiting lit_bufsize to 64K:
                    352:      *   - frequencies can be kept in 16 bit counters
                    353:      *   - if compression is not successful for the first block, all input
                    354:      *     data is still in the window so we can still emit a stored block even
                    355:      *     when input comes from standard input.  (This can also be done for
                    356:      *     all blocks if lit_bufsize is not greater than 32K.)
                    357:      *   - if compression is not successful for a file smaller than 64K, we can
                    358:      *     even emit a stored file instead of a stored block (saving 5 bytes).
                    359:      *     This is applicable only for zip (not gzip or zlib).
                    360:      *   - creating new Huffman trees less frequently may not provide fast
                    361:      *     adaptation to changes in the input data statistics. (Take for
                    362:      *     example a binary file with poorly compressible code followed by
                    363:      *     a highly compressible string table.) Smaller buffer sizes give
                    364:      *     fast adaptation but have of course the overhead of transmitting
                    365:      *     trees more frequently.
                    366:      *   - I can't count above 4
                    367:      */
                    368:
                    369:     uInt last_lit;      /* running index in l_buf */
                    370:
                    371:     ushf *d_buf;
                    372:     /* Buffer for distances. To simplify the code, d_buf and l_buf have
                    373:      * the same number of elements. To use different lengths, an extra flag
                    374:      * array would be necessary.
                    375:      */
                    376:
                    377:     ulg opt_len;        /* bit length of current block with optimal trees */
                    378:     ulg static_len;     /* bit length of current block with static trees */
                    379:     ulg compressed_len; /* total bit length of compressed file */
                    380:     uInt matches;       /* number of string matches in current block */
                    381:     int last_eob_len;   /* bit length of EOB code for last block */
                    382:
                    383: #ifdef DEBUG_ZLIB
                    384:     ulg bits_sent;      /* bit length of the compressed data */
                    385: #endif
                    386:
                    387:     ush bi_buf;
                    388:     /* Output buffer. bits are inserted starting at the bottom (least
                    389:      * significant bits).
                    390:      */
                    391:     int bi_valid;
                    392:     /* Number of valid bits in bi_buf.  All bits above the last valid bit
                    393:      * are always zero.
                    394:      */
                    395:
                    396:     uInt blocks_in_packet;
                    397:     /* Number of blocks produced since the last time Z_PACKET_FLUSH
                    398:      * was used.
                    399:      */
                    400:
                    401: } FAR deflate_state;
                    402:
                    403: /* Output a byte on the stream.
                    404:  * IN assertion: there is enough room in pending_buf.
                    405:  */
                    406: #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
                    407:
                    408:
                    409: #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
                    410: /* Minimum amount of lookahead, except at the end of the input file.
                    411:  * See deflate.c for comments about the MIN_MATCH+1.
                    412:  */
                    413:
                    414: #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
                    415: /* In order to simplify the code, particularly on 16 bit machines, match
                    416:  * distances are limited to MAX_DIST instead of WSIZE.
                    417:  */
                    418:
                    419:         /* in trees.c */
                    420: local void ct_init       OF((deflate_state *s));
                    421: local int  ct_tally      OF((deflate_state *s, int dist, int lc));
                    422: local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
                    423:                             int flush));
                    424: local void ct_align      OF((deflate_state *s));
                    425: local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
                    426:                           int eof));
                    427: local void ct_stored_type_only OF((deflate_state *s));
                    428:
                    429: /*+++++*/
                    430: /* deflate.c -- compress data using the deflation algorithm
                    431:  * Copyright (C) 1995 Jean-loup Gailly.
                    432:  * For conditions of distribution and use, see copyright notice in zlib.h
                    433:  */
                    434:
                    435: /*
                    436:  *  ALGORITHM
                    437:  *
                    438:  *      The "deflation" process depends on being able to identify portions
                    439:  *      of the input text which are identical to earlier input (within a
                    440:  *      sliding window trailing behind the input currently being processed).
                    441:  *
                    442:  *      The most straightforward technique turns out to be the fastest for
                    443:  *      most input files: try all possible matches and select the longest.
                    444:  *      The key feature of this algorithm is that insertions into the string
                    445:  *      dictionary are very simple and thus fast, and deletions are avoided
                    446:  *      completely. Insertions are performed at each input character, whereas
                    447:  *      string matches are performed only when the previous match ends. So it
                    448:  *      is preferable to spend more time in matches to allow very fast string
                    449:  *      insertions and avoid deletions. The matching algorithm for small
                    450:  *      strings is inspired from that of Rabin & Karp. A brute force approach
                    451:  *      is used to find longer strings when a small match has been found.
                    452:  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
                    453:  *      (by Leonid Broukhis).
                    454:  *         A previous version of this file used a more sophisticated algorithm
                    455:  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
                    456:  *      time, but has a larger average cost, uses more memory and is patented.
                    457:  *      However the F&G algorithm may be faster for some highly redundant
                    458:  *      files if the parameter max_chain_length (described below) is too large.
                    459:  *
                    460:  *  ACKNOWLEDGEMENTS
                    461:  *
                    462:  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
                    463:  *      I found it in 'freeze' written by Leonid Broukhis.
                    464:  *      Thanks to many people for bug reports and testing.
                    465:  *
                    466:  *  REFERENCES
                    467:  *
                    468:  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
                    469:  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
                    470:  *
                    471:  *      A description of the Rabin and Karp algorithm is given in the book
                    472:  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
                    473:  *
                    474:  *      Fiala,E.R., and Greene,D.H.
                    475:  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
                    476:  *
                    477:  */
                    478:
                    479: /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
                    480:
                    481: #if 0
                    482: local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
                    483: #endif
                    484: /*
                    485:   If you use the zlib library in a product, an acknowledgment is welcome
                    486:   in the documentation of your product. If for some reason you cannot
                    487:   include such an acknowledgment, I would appreciate that you keep this
                    488:   copyright string in the executable of your product.
                    489:  */
                    490:
                    491: #define NIL 0
                    492: /* Tail of hash chains */
                    493:
                    494: #ifndef TOO_FAR
                    495: #  define TOO_FAR 4096
                    496: #endif
                    497: /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
                    498:
                    499: #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
                    500: /* Minimum amount of lookahead, except at the end of the input file.
                    501:  * See deflate.c for comments about the MIN_MATCH+1.
                    502:  */
                    503:
                    504: /* Values for max_lazy_match, good_match and max_chain_length, depending on
                    505:  * the desired pack level (0..9). The values given below have been tuned to
                    506:  * exclude worst case performance for pathological files. Better values may be
                    507:  * found for specific files.
                    508:  */
                    509:
                    510: typedef struct config_s {
                    511:    ush good_length; /* reduce lazy search above this match length */
                    512:    ush max_lazy;    /* do not perform lazy search above this match length */
                    513:    ush nice_length; /* quit search above this match length */
                    514:    ush max_chain;
                    515: } config;
                    516:
                    517: local config configuration_table[10] = {
                    518: /*      good lazy nice chain */
                    519: /* 0 */ {0,    0,  0,    0},  /* store only */
                    520: /* 1 */ {4,    4,  8,    4},  /* maximum speed, no lazy matches */
                    521: /* 2 */ {4,    5, 16,    8},
                    522: /* 3 */ {4,    6, 32,   32},
                    523:
                    524: /* 4 */ {4,    4, 16,   16},  /* lazy matches */
                    525: /* 5 */ {8,   16, 32,   32},
                    526: /* 6 */ {8,   16, 128, 128},
                    527: /* 7 */ {8,   32, 128, 256},
                    528: /* 8 */ {32, 128, 258, 1024},
                    529: /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
                    530:
                    531: /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
                    532:  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
                    533:  * meaning.
                    534:  */
                    535:
                    536: #define EQUAL 0
                    537: /* result of memcmp for equal strings */
                    538:
                    539: /* ===========================================================================
                    540:  *  Prototypes for local functions.
                    541:  */
                    542:
                    543: local void fill_window   OF((deflate_state *s));
                    544: local int  deflate_fast  OF((deflate_state *s, int flush));
                    545: local int  deflate_slow  OF((deflate_state *s, int flush));
                    546: local void lm_init       OF((deflate_state *s));
                    547: local int longest_match  OF((deflate_state *s, IPos cur_match));
                    548: local void putShortMSB   OF((deflate_state *s, uInt b));
                    549: local void flush_pending OF((z_stream *strm));
                    550: local int read_buf       OF((z_stream *strm, charf *buf, unsigned size));
                    551: #ifdef ASMV
                    552:       void match_init OF((void)); /* asm code initialization */
                    553: #endif
                    554:
                    555: #ifdef DEBUG_ZLIB
                    556: local  void check_match OF((deflate_state *s, IPos start, IPos match,
                    557:                             int length));
                    558: #endif
                    559:
                    560:
                    561: /* ===========================================================================
                    562:  * Update a hash value with the given input byte
                    563:  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
                    564:  *    input characters, so that a running hash key can be computed from the
                    565:  *    previous key instead of complete recalculation each time.
                    566:  */
                    567: #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
                    568:
                    569:
                    570: /* ===========================================================================
                    571:  * Insert string str in the dictionary and set match_head to the previous head
                    572:  * of the hash chain (the most recent string with same hash key). Return
                    573:  * the previous length of the hash chain.
                    574:  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
                    575:  *    input characters and the first MIN_MATCH bytes of str are valid
                    576:  *    (except for the last MIN_MATCH-1 bytes of the input file).
                    577:  */
                    578: #define INSERT_STRING(s, str, match_head) \
                    579:    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
                    580:     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
                    581:     s->head[s->ins_h] = (str))
                    582:
                    583: /* ===========================================================================
                    584:  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
                    585:  * prev[] will be initialized on the fly.
                    586:  */
                    587: #define CLEAR_HASH(s) \
                    588:     s->head[s->hash_size-1] = NIL; \
                    589:     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
                    590:
                    591: /* ========================================================================= */
                    592: int deflateInit (strm, level)
                    593:     z_stream *strm;
                    594:     int level;
                    595: {
                    596:     return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
                    597:                         0, 0);
                    598:     /* To do: ignore strm->next_in if we use it as window */
                    599: }
                    600:
                    601: /* ========================================================================= */
                    602: int deflateInit2 (strm, level, method, windowBits, memLevel,
                    603:                  strategy, minCompression)
                    604:     z_stream *strm;
                    605:     int  level;
                    606:     int  method;
                    607:     int  windowBits;
                    608:     int  memLevel;
                    609:     int  strategy;
                    610:     int  minCompression;
                    611: {
                    612:     deflate_state *s;
                    613:     int noheader = 0;
                    614:
                    615:     if (strm == Z_NULL) return Z_STREAM_ERROR;
                    616:
                    617:     strm->msg = Z_NULL;
                    618: /*    if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
                    619: /*    if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
                    620:
                    621:     if (level == Z_DEFAULT_COMPRESSION) level = 6;
                    622:
                    623:     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
                    624:         noheader = 1;
                    625:         windowBits = -windowBits;
                    626:     }
                    627:     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
                    628:         windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
                    629:         return Z_STREAM_ERROR;
                    630:     }
                    631:     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
                    632:     if (s == Z_NULL) return Z_MEM_ERROR;
                    633:     strm->state = (struct internal_state FAR *)s;
                    634:     s->strm = strm;
                    635:
                    636:     s->noheader = noheader;
                    637:     s->w_bits = windowBits;
                    638:     s->w_size = 1 << s->w_bits;
                    639:     s->w_mask = s->w_size - 1;
                    640:
                    641:     s->hash_bits = memLevel + 7;
                    642:     s->hash_size = 1 << s->hash_bits;
                    643:     s->hash_mask = s->hash_size - 1;
                    644:     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
                    645:
                    646:     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
                    647:     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
                    648:     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
                    649:
                    650:     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
                    651:
                    652:     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
                    653:
                    654:     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
                    655:         s->pending_buf == Z_NULL) {
                    656:         strm->msg = z_errmsg[1-Z_MEM_ERROR];
                    657:         deflateEnd (strm);
                    658:         return Z_MEM_ERROR;
                    659:     }
                    660:     s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
                    661:     s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
                    662:     /* We overlay pending_buf and d_buf+l_buf. This works since the average
                    663:      * output size for (length,distance) codes is <= 32 bits (worst case
                    664:      * is 15+15+13=33).
                    665:      */
                    666:
                    667:     s->level = level;
                    668:     s->strategy = strategy;
                    669:     s->method = (Byte)method;
                    670:     s->minCompr = minCompression;
                    671:     s->blocks_in_packet = 0;
                    672:
                    673:     return deflateReset(strm);
                    674: }
                    675:
                    676: /* ========================================================================= */
                    677: int deflateReset (strm)
                    678:     z_stream *strm;
                    679: {
                    680:     deflate_state *s;
                    681:
                    682:     if (strm == Z_NULL || strm->state == Z_NULL ||
                    683:         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
                    684:
                    685:     strm->total_in = strm->total_out = 0;
                    686:     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
                    687:     strm->data_type = Z_UNKNOWN;
                    688:
                    689:     s = (deflate_state *)strm->state;
                    690:     s->pending = 0;
                    691:     s->pending_out = s->pending_buf;
                    692:
                    693:     if (s->noheader < 0) {
                    694:         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
                    695:     }
                    696:     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
                    697:     s->adler = 1;
                    698:
                    699:     ct_init(s);
                    700:     lm_init(s);
                    701:
                    702:     return Z_OK;
                    703: }
                    704:
                    705: /* =========================================================================
                    706:  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
                    707:  * IN assertion: the stream state is correct and there is enough room in
                    708:  * pending_buf.
                    709:  */
                    710: local void putShortMSB (s, b)
                    711:     deflate_state *s;
                    712:     uInt b;
                    713: {
                    714:     put_byte(s, (Byte)(b >> 8));
                    715:     put_byte(s, (Byte)(b & 0xff));
                    716: }
                    717:
                    718: /* =========================================================================
                    719:  * Flush as much pending output as possible.
                    720:  */
                    721: local void flush_pending(strm)
                    722:     z_stream *strm;
                    723: {
                    724:     deflate_state *state = (deflate_state *) strm->state;
                    725:     unsigned len = state->pending;
                    726:
                    727:     if (len > strm->avail_out) len = strm->avail_out;
                    728:     if (len == 0) return;
                    729:
                    730:     if (strm->next_out != NULL) {
                    731:        zmemcpy(strm->next_out, state->pending_out, len);
                    732:        strm->next_out += len;
                    733:     }
                    734:     state->pending_out += len;
                    735:     strm->total_out += len;
                    736:     strm->avail_out -= len;
                    737:     state->pending -= len;
                    738:     if (state->pending == 0) {
                    739:         state->pending_out = state->pending_buf;
                    740:     }
                    741: }
                    742:
                    743: /* ========================================================================= */
                    744: int deflate (strm, flush)
                    745:     z_stream *strm;
                    746:     int flush;
                    747: {
                    748:     deflate_state *state = (deflate_state *) strm->state;
                    749:
                    750:     if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
                    751:
                    752:     if (strm->next_in == Z_NULL && strm->avail_in != 0) {
                    753:         ERR_RETURN(strm, Z_STREAM_ERROR);
                    754:     }
                    755:     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
                    756:
                    757:     state->strm = strm; /* just in case */
                    758:
                    759:     /* Write the zlib header */
                    760:     if (state->status == INIT_STATE) {
                    761:
                    762:         uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
                    763:         uInt level_flags = (state->level-1) >> 1;
                    764:
                    765:         if (level_flags > 3) level_flags = 3;
                    766:         header |= (level_flags << 6);
                    767:         header += 31 - (header % 31);
                    768:
                    769:         state->status = BUSY_STATE;
                    770:         putShortMSB(state, header);
                    771:     }
                    772:
                    773:     /* Flush as much pending output as possible */
                    774:     if (state->pending != 0) {
                    775:         flush_pending(strm);
                    776:         if (strm->avail_out == 0) return Z_OK;
                    777:     }
                    778:
                    779:     /* If we came back in here to get the last output from
                    780:      * a previous flush, we're done for now.
                    781:      */
                    782:     if (state->status == FLUSH_STATE) {
                    783:        state->status = BUSY_STATE;
                    784:        if (flush != Z_NO_FLUSH && flush != Z_FINISH)
                    785:            return Z_OK;
                    786:     }
                    787:
                    788:     /* User must not provide more input after the first FINISH: */
                    789:     if (state->status == FINISH_STATE && strm->avail_in != 0) {
                    790:         ERR_RETURN(strm, Z_BUF_ERROR);
                    791:     }
                    792:
                    793:     /* Start a new block or continue the current one.
                    794:      */
                    795:     if (strm->avail_in != 0 || state->lookahead != 0 ||
                    796:         (flush == Z_FINISH && state->status != FINISH_STATE)) {
                    797:         int quit;
                    798:
                    799:         if (flush == Z_FINISH) {
                    800:             state->status = FINISH_STATE;
                    801:         }
                    802:         if (state->level <= 3) {
                    803:             quit = deflate_fast(state, flush);
                    804:         } else {
                    805:             quit = deflate_slow(state, flush);
                    806:         }
                    807:         if (quit || strm->avail_out == 0)
                    808:            return Z_OK;
                    809:         /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
                    810:          * of deflate should use the same flush parameter to make sure
                    811:          * that the flush is complete. So we don't have to output an
                    812:          * empty block here, this will be done at next call. This also
                    813:          * ensures that for a very small output buffer, we emit at most
                    814:          * one empty block.
                    815:          */
                    816:     }
                    817:
                    818:     /* If a flush was requested, we have a little more to output now. */
                    819:     if (flush != Z_NO_FLUSH && flush != Z_FINISH
                    820:        && state->status != FINISH_STATE) {
                    821:        switch (flush) {
                    822:        case Z_PARTIAL_FLUSH:
                    823:            ct_align(state);
                    824:            break;
                    825:        case Z_PACKET_FLUSH:
                    826:            /* Output just the 3-bit `stored' block type value,
                    827:               but not a zero length. */
                    828:            ct_stored_type_only(state);
                    829:            break;
                    830:        default:
                    831:            ct_stored_block(state, (char*)0, 0L, 0);
                    832:            /* For a full flush, this empty block will be recognized
                    833:             * as a special marker by inflate_sync().
                    834:             */
                    835:            if (flush == Z_FULL_FLUSH) {
                    836:                CLEAR_HASH(state);             /* forget history */
                    837:            }
                    838:        }
                    839:        flush_pending(strm);
                    840:        if (strm->avail_out == 0) {
                    841:            /* We'll have to come back to get the rest of the output;
                    842:             * this ensures we don't output a second zero-length stored
                    843:             * block (or whatever).
                    844:             */
                    845:            state->status = FLUSH_STATE;
                    846:            return Z_OK;
                    847:        }
                    848:     }
                    849:
                    850:     Assert(strm->avail_out > 0, "bug2");
                    851:
                    852:     if (flush != Z_FINISH) return Z_OK;
                    853:     if (state->noheader) return Z_STREAM_END;
                    854:
                    855:     /* Write the zlib trailer (adler32) */
                    856:     putShortMSB(state, (uInt)(state->adler >> 16));
                    857:     putShortMSB(state, (uInt)(state->adler & 0xffff));
                    858:     flush_pending(strm);
                    859:     /* If avail_out is zero, the application will call deflate again
                    860:      * to flush the rest.
                    861:      */
                    862:     state->noheader = -1; /* write the trailer only once! */
                    863:     return state->pending != 0 ? Z_OK : Z_STREAM_END;
                    864: }
                    865:
                    866: /* ========================================================================= */
                    867: int deflateEnd (strm)
                    868:     z_stream *strm;
                    869: {
                    870:     deflate_state *state = (deflate_state *) strm->state;
                    871:
                    872:     if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
                    873:
                    874:     TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
                    875:     TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
                    876:     TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
                    877:     TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
                    878:
                    879:     ZFREE(strm, state, sizeof(deflate_state));
                    880:     strm->state = Z_NULL;
                    881:
                    882:     return Z_OK;
                    883: }
                    884:
                    885: /* ===========================================================================
                    886:  * Read a new buffer from the current input stream, update the adler32
                    887:  * and total number of bytes read.
                    888:  */
                    889: local int read_buf(strm, buf, size)
                    890:     z_stream *strm;
                    891:     charf *buf;
                    892:     unsigned size;
                    893: {
                    894:     unsigned len = strm->avail_in;
                    895:     deflate_state *state = (deflate_state *) strm->state;
                    896:
                    897:     if (len > size) len = size;
                    898:     if (len == 0) return 0;
                    899:
                    900:     strm->avail_in  -= len;
                    901:
                    902:     if (!state->noheader) {
                    903:         state->adler = adler32(state->adler, strm->next_in, len);
                    904:     }
                    905:     zmemcpy(buf, strm->next_in, len);
                    906:     strm->next_in  += len;
                    907:     strm->total_in += len;
                    908:
                    909:     return (int)len;
                    910: }
                    911:
                    912: /* ===========================================================================
                    913:  * Initialize the "longest match" routines for a new zlib stream
                    914:  */
                    915: local void lm_init (s)
                    916:     deflate_state *s;
                    917: {
                    918:     s->window_size = (ulg)2L*s->w_size;
                    919:
                    920:     CLEAR_HASH(s);
                    921:
                    922:     /* Set the default configuration parameters:
                    923:      */
                    924:     s->max_lazy_match   = configuration_table[s->level].max_lazy;
                    925:     s->good_match       = configuration_table[s->level].good_length;
                    926:     s->nice_match       = configuration_table[s->level].nice_length;
                    927:     s->max_chain_length = configuration_table[s->level].max_chain;
                    928:
                    929:     s->strstart = 0;
                    930:     s->block_start = 0L;
                    931:     s->lookahead = 0;
                    932:     s->match_length = MIN_MATCH-1;
                    933:     s->match_available = 0;
                    934:     s->ins_h = 0;
                    935: #ifdef ASMV
                    936:     match_init(); /* initialize the asm code */
                    937: #endif
                    938: }
                    939:
                    940: /* ===========================================================================
                    941:  * Set match_start to the longest match starting at the given string and
                    942:  * return its length. Matches shorter or equal to prev_length are discarded,
                    943:  * in which case the result is equal to prev_length and match_start is
                    944:  * garbage.
                    945:  * IN assertions: cur_match is the head of the hash chain for the current
                    946:  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
                    947:  */
                    948: #ifndef ASMV
                    949: /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
                    950:  * match.S. The code will be functionally equivalent.
                    951:  */
                    952: local int longest_match(s, cur_match)
                    953:     deflate_state *s;
                    954:     IPos cur_match;                             /* current match */
                    955: {
                    956:     unsigned chain_length = s->max_chain_length;/* max hash chain length */
                    957:     Bytef *scan = s->window + s->strstart; /* current string */
                    958:     Bytef *match;                       /* matched string */
                    959:     int len;                           /* length of current match */
                    960:     int best_len = s->prev_length;              /* best match length so far */
                    961:     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
                    962:         s->strstart - (IPos)MAX_DIST(s) : NIL;
                    963:     /* Stop when cur_match becomes <= limit. To simplify the code,
                    964:      * we prevent matches with the string of window index 0.
                    965:      */
                    966:     Posf *prev = s->prev;
                    967:     uInt wmask = s->w_mask;
                    968:
                    969: #ifdef UNALIGNED_OK
                    970:     /* Compare two bytes at a time. Note: this is not always beneficial.
                    971:      * Try with and without -DUNALIGNED_OK to check.
                    972:      */
                    973:     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
                    974:     ush scan_start = *(ushf*)scan;
                    975:     ush scan_end   = *(ushf*)(scan+best_len-1);
                    976: #else
                    977:     Bytef *strend = s->window + s->strstart + MAX_MATCH;
                    978:     Byte scan_end1  = scan[best_len-1];
                    979:     Byte scan_end   = scan[best_len];
                    980: #endif
                    981:
                    982:     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
                    983:      * It is easy to get rid of this optimization if necessary.
                    984:      */
                    985:     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
                    986:
                    987:     /* Do not waste too much time if we already have a good match: */
                    988:     if (s->prev_length >= s->good_match) {
                    989:         chain_length >>= 2;
                    990:     }
                    991:     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
                    992:
                    993:     do {
                    994:         Assert(cur_match < s->strstart, "no future");
                    995:         match = s->window + cur_match;
                    996:
                    997:         /* Skip to next match if the match length cannot increase
                    998:          * or if the match length is less than 2:
                    999:          */
                   1000: #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
                   1001:         /* This code assumes sizeof(unsigned short) == 2. Do not use
                   1002:          * UNALIGNED_OK if your compiler uses a different size.
                   1003:          */
                   1004:         if (*(ushf*)(match+best_len-1) != scan_end ||
                   1005:             *(ushf*)match != scan_start) continue;
                   1006:
                   1007:         /* It is not necessary to compare scan[2] and match[2] since they are
                   1008:          * always equal when the other bytes match, given that the hash keys
                   1009:          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
                   1010:          * strstart+3, +5, ... up to strstart+257. We check for insufficient
                   1011:          * lookahead only every 4th comparison; the 128th check will be made
                   1012:          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
                   1013:          * necessary to put more guard bytes at the end of the window, or
                   1014:          * to check more often for insufficient lookahead.
                   1015:          */
                   1016:         Assert(scan[2] == match[2], "scan[2]?");
                   1017:         scan++, match++;
                   1018:         do {
                   1019:         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                   1020:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                   1021:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                   1022:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                   1023:                  scan < strend);
                   1024:         /* The funny "do {}" generates better code on most compilers */
                   1025:
                   1026:         /* Here, scan <= window+strstart+257 */
                   1027:         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
                   1028:         if (*scan == *match) scan++;
                   1029:
                   1030:         len = (MAX_MATCH - 1) - (int)(strend-scan);
                   1031:         scan = strend - (MAX_MATCH-1);
                   1032:
                   1033: #else /* UNALIGNED_OK */
                   1034:
                   1035:         if (match[best_len]   != scan_end  ||
                   1036:             match[best_len-1] != scan_end1 ||
                   1037:             *match            != *scan     ||
                   1038:             *++match          != scan[1])      continue;
                   1039:
                   1040:         /* The check at best_len-1 can be removed because it will be made
                   1041:          * again later. (This heuristic is not always a win.)
                   1042:          * It is not necessary to compare scan[2] and match[2] since they
                   1043:          * are always equal when the other bytes match, given that
                   1044:          * the hash keys are equal and that HASH_BITS >= 8.
                   1045:          */
                   1046:         scan += 2, match++;
                   1047:         Assert(*scan == *match, "match[2]?");
                   1048:
                   1049:         /* We check for insufficient lookahead only every 8th comparison;
                   1050:          * the 256th check will be made at strstart+258.
                   1051:          */
                   1052:         do {
                   1053:         } while (*++scan == *++match && *++scan == *++match &&
                   1054:                  *++scan == *++match && *++scan == *++match &&
                   1055:                  *++scan == *++match && *++scan == *++match &&
                   1056:                  *++scan == *++match && *++scan == *++match &&
                   1057:                  scan < strend);
                   1058:
                   1059:         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
                   1060:
                   1061:         len = MAX_MATCH - (int)(strend - scan);
                   1062:         scan = strend - MAX_MATCH;
                   1063:
                   1064: #endif /* UNALIGNED_OK */
                   1065:
                   1066:         if (len > best_len) {
                   1067:             s->match_start = cur_match;
                   1068:             best_len = len;
                   1069:             if (len >= s->nice_match) break;
                   1070: #ifdef UNALIGNED_OK
                   1071:             scan_end = *(ushf*)(scan+best_len-1);
                   1072: #else
                   1073:             scan_end1  = scan[best_len-1];
                   1074:             scan_end   = scan[best_len];
                   1075: #endif
                   1076:         }
                   1077:     } while ((cur_match = prev[cur_match & wmask]) > limit
                   1078:              && --chain_length != 0);
                   1079:
                   1080:     return best_len;
                   1081: }
                   1082: #endif /* ASMV */
                   1083:
                   1084: #ifdef DEBUG_ZLIB
                   1085: /* ===========================================================================
                   1086:  * Check that the match at match_start is indeed a match.
                   1087:  */
                   1088: local void check_match(s, start, match, length)
                   1089:     deflate_state *s;
                   1090:     IPos start, match;
                   1091:     int length;
                   1092: {
                   1093:     /* check that the match is indeed a match */
                   1094:     if (memcmp((charf *)s->window + match,
                   1095:                 (charf *)s->window + start, length) != EQUAL) {
                   1096:         fprintf(stderr,
                   1097:             " start %u, match %u, length %d\n",
                   1098:             start, match, length);
                   1099:         do { fprintf(stderr, "%c%c", s->window[match++],
                   1100:                      s->window[start++]); } while (--length != 0);
                   1101:         z_error("invalid match");
                   1102:     }
                   1103:     if (verbose > 1) {
                   1104:         fprintf(stderr,"\\[%d,%d]", start-match, length);
                   1105:         do { putc(s->window[start++], stderr); } while (--length != 0);
                   1106:     }
                   1107: }
                   1108: #else
                   1109: #  define check_match(s, start, match, length)
                   1110: #endif
                   1111:
                   1112: /* ===========================================================================
                   1113:  * Fill the window when the lookahead becomes insufficient.
                   1114:  * Updates strstart and lookahead.
                   1115:  *
                   1116:  * IN assertion: lookahead < MIN_LOOKAHEAD
                   1117:  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
                   1118:  *    At least one byte has been read, or avail_in == 0; reads are
                   1119:  *    performed for at least two bytes (required for the zip translate_eol
                   1120:  *    option -- not supported here).
                   1121:  */
                   1122: local void fill_window(s)
                   1123:     deflate_state *s;
                   1124: {
                   1125:     unsigned n, m;
                   1126:     Posf *p;
                   1127:     unsigned more;    /* Amount of free space at the end of the window. */
                   1128:     uInt wsize = s->w_size;
                   1129:
                   1130:     do {
                   1131:         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
                   1132:
                   1133:         /* Deal with !@#$% 64K limit: */
                   1134:         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
                   1135:             more = wsize;
                   1136:         } else if (more == (unsigned)(-1)) {
                   1137:             /* Very unlikely, but possible on 16 bit machine if strstart == 0
                   1138:              * and lookahead == 1 (input done one byte at time)
                   1139:              */
                   1140:             more--;
                   1141:
                   1142:         /* If the window is almost full and there is insufficient lookahead,
                   1143:          * move the upper half to the lower one to make room in the upper half.
                   1144:          */
                   1145:         } else if (s->strstart >= wsize+MAX_DIST(s)) {
                   1146:
                   1147:             /* By the IN assertion, the window is not empty so we can't confuse
                   1148:              * more == 0 with more == 64K on a 16 bit machine.
                   1149:              */
                   1150:             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
                   1151:                    (unsigned)wsize);
                   1152:             s->match_start -= wsize;
                   1153:             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
                   1154:
                   1155:             s->block_start -= (long) wsize;
                   1156:
                   1157:             /* Slide the hash table (could be avoided with 32 bit values
                   1158:                at the expense of memory usage):
                   1159:              */
                   1160:             n = s->hash_size;
                   1161:             p = &s->head[n];
                   1162:             do {
                   1163:                 m = *--p;
                   1164:                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
                   1165:             } while (--n);
                   1166:
                   1167:             n = wsize;
                   1168:             p = &s->prev[n];
                   1169:             do {
                   1170:                 m = *--p;
                   1171:                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
                   1172:                 /* If n is not on any hash chain, prev[n] is garbage but
                   1173:                  * its value will never be used.
                   1174:                  */
                   1175:             } while (--n);
                   1176:
                   1177:             more += wsize;
                   1178:         }
                   1179:         if (s->strm->avail_in == 0) return;
                   1180:
                   1181:         /* If there was no sliding:
                   1182:          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
                   1183:          *    more == window_size - lookahead - strstart
                   1184:          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
                   1185:          * => more >= window_size - 2*WSIZE + 2
                   1186:          * In the BIG_MEM or MMAP case (not yet supported),
                   1187:          *   window_size == input_size + MIN_LOOKAHEAD  &&
                   1188:          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
                   1189:          * Otherwise, window_size == 2*WSIZE so more >= 2.
                   1190:          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
                   1191:          */
                   1192:         Assert(more >= 2, "more < 2");
                   1193:
                   1194:         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
                   1195:                      more);
                   1196:         s->lookahead += n;
                   1197:
                   1198:         /* Initialize the hash value now that we have some input: */
                   1199:         if (s->lookahead >= MIN_MATCH) {
                   1200:             s->ins_h = s->window[s->strstart];
                   1201:             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
                   1202: #if MIN_MATCH != 3
                   1203:             Call UPDATE_HASH() MIN_MATCH-3 more times
                   1204: #endif
                   1205:         }
                   1206:         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
                   1207:          * but this is not important since only literal bytes will be emitted.
                   1208:          */
                   1209:
                   1210:     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
                   1211: }
                   1212:
                   1213: /* ===========================================================================
                   1214:  * Flush the current block, with given end-of-file flag.
                   1215:  * IN assertion: strstart is set to the end of the current match.
                   1216:  */
                   1217: #define FLUSH_BLOCK_ONLY(s, flush) { \
                   1218:    ct_flush_block(s, (s->block_start >= 0L ? \
                   1219:            (charf *)&s->window[(unsigned)s->block_start] : \
                   1220:            (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
                   1221:    s->block_start = s->strstart; \
                   1222:    flush_pending(s->strm); \
                   1223:    Tracev((stderr,"[FLUSH]")); \
                   1224: }
                   1225:
                   1226: /* Same but force premature exit if necessary. */
                   1227: #define FLUSH_BLOCK(s, flush) { \
                   1228:    FLUSH_BLOCK_ONLY(s, flush); \
                   1229:    if (s->strm->avail_out == 0) return 1; \
                   1230: }
                   1231:
                   1232: /* ===========================================================================
                   1233:  * Compress as much as possible from the input stream, return true if
                   1234:  * processing was terminated prematurely (no more input or output space).
                   1235:  * This function does not perform lazy evaluationof matches and inserts
                   1236:  * new strings in the dictionary only for unmatched strings or for short
                   1237:  * matches. It is used only for the fast compression options.
                   1238:  */
                   1239: local int deflate_fast(s, flush)
                   1240:     deflate_state *s;
                   1241:     int flush;
                   1242: {
                   1243:     IPos hash_head = NIL; /* head of the hash chain */
                   1244:     int bflush;     /* set if current block must be flushed */
                   1245:
                   1246:     s->prev_length = MIN_MATCH-1;
                   1247:
                   1248:     for (;;) {
                   1249:         /* Make sure that we always have enough lookahead, except
                   1250:          * at the end of the input file. We need MAX_MATCH bytes
                   1251:          * for the next match, plus MIN_MATCH bytes to insert the
                   1252:          * string following the next match.
                   1253:          */
                   1254:         if (s->lookahead < MIN_LOOKAHEAD) {
                   1255:             fill_window(s);
                   1256:             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
                   1257:
                   1258:             if (s->lookahead == 0) break; /* flush the current block */
                   1259:         }
                   1260:
                   1261:         /* Insert the string window[strstart .. strstart+2] in the
                   1262:          * dictionary, and set hash_head to the head of the hash chain:
                   1263:          */
                   1264:         if (s->lookahead >= MIN_MATCH) {
                   1265:             INSERT_STRING(s, s->strstart, hash_head);
                   1266:         }
                   1267:
                   1268:         /* Find the longest match, discarding those <= prev_length.
                   1269:          * At this point we have always match_length < MIN_MATCH
                   1270:          */
                   1271:         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
                   1272:             /* To simplify the code, we prevent matches with the string
                   1273:              * of window index 0 (in particular we have to avoid a match
                   1274:              * of the string with itself at the start of the input file).
                   1275:              */
                   1276:             if (s->strategy != Z_HUFFMAN_ONLY) {
                   1277:                 s->match_length = longest_match (s, hash_head);
                   1278:             }
                   1279:             /* longest_match() sets match_start */
                   1280:
                   1281:             if (s->match_length > s->lookahead) s->match_length = s->lookahead;
                   1282:         }
                   1283:         if (s->match_length >= MIN_MATCH) {
                   1284:             check_match(s, s->strstart, s->match_start, s->match_length);
                   1285:
                   1286:             bflush = ct_tally(s, s->strstart - s->match_start,
                   1287:                               s->match_length - MIN_MATCH);
                   1288:
                   1289:             s->lookahead -= s->match_length;
                   1290:
                   1291:             /* Insert new strings in the hash table only if the match length
                   1292:              * is not too large. This saves time but degrades compression.
                   1293:              */
                   1294:             if (s->match_length <= s->max_insert_length &&
                   1295:                 s->lookahead >= MIN_MATCH) {
                   1296:                 s->match_length--; /* string at strstart already in hash table */
                   1297:                 do {
                   1298:                     s->strstart++;
                   1299:                     INSERT_STRING(s, s->strstart, hash_head);
                   1300:                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
                   1301:                      * always MIN_MATCH bytes ahead.
                   1302:                      */
                   1303:                 } while (--s->match_length != 0);
                   1304:                 s->strstart++;
                   1305:             } else {
                   1306:                 s->strstart += s->match_length;
                   1307:                 s->match_length = 0;
                   1308:                 s->ins_h = s->window[s->strstart];
                   1309:                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
                   1310: #if MIN_MATCH != 3
                   1311:                 Call UPDATE_HASH() MIN_MATCH-3 more times
                   1312: #endif
                   1313:                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
                   1314:                  * matter since it will be recomputed at next deflate call.
                   1315:                  */
                   1316:             }
                   1317:         } else {
                   1318:             /* No match, output a literal byte */
                   1319:             Tracevv((stderr,"%c", s->window[s->strstart]));
                   1320:             bflush = ct_tally (s, 0, s->window[s->strstart]);
                   1321:             s->lookahead--;
                   1322:             s->strstart++;
                   1323:         }
                   1324:         if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
                   1325:     }
                   1326:     FLUSH_BLOCK(s, flush);
                   1327:     return 0; /* normal exit */
                   1328: }
                   1329:
                   1330: /* ===========================================================================
                   1331:  * Same as above, but achieves better compression. We use a lazy
                   1332:  * evaluation for matches: a match is finally adopted only if there is
                   1333:  * no better match at the next window position.
                   1334:  */
                   1335: local int deflate_slow(s, flush)
                   1336:     deflate_state *s;
                   1337:     int flush;
                   1338: {
                   1339:     IPos hash_head = NIL;    /* head of hash chain */
                   1340:     int bflush;              /* set if current block must be flushed */
                   1341:
                   1342:     /* Process the input block. */
                   1343:     for (;;) {
                   1344:         /* Make sure that we always have enough lookahead, except
                   1345:          * at the end of the input file. We need MAX_MATCH bytes
                   1346:          * for the next match, plus MIN_MATCH bytes to insert the
                   1347:          * string following the next match.
                   1348:          */
                   1349:         if (s->lookahead < MIN_LOOKAHEAD) {
                   1350:             fill_window(s);
                   1351:             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
                   1352:
                   1353:             if (s->lookahead == 0) break; /* flush the current block */
                   1354:         }
                   1355:
                   1356:         /* Insert the string window[strstart .. strstart+2] in the
                   1357:          * dictionary, and set hash_head to the head of the hash chain:
                   1358:          */
                   1359:         if (s->lookahead >= MIN_MATCH) {
                   1360:             INSERT_STRING(s, s->strstart, hash_head);
                   1361:         }
                   1362:
                   1363:         /* Find the longest match, discarding those <= prev_length.
                   1364:          */
                   1365:         s->prev_length = s->match_length, s->prev_match = s->match_start;
                   1366:         s->match_length = MIN_MATCH-1;
                   1367:
                   1368:         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
                   1369:             s->strstart - hash_head <= MAX_DIST(s)) {
                   1370:             /* To simplify the code, we prevent matches with the string
                   1371:              * of window index 0 (in particular we have to avoid a match
                   1372:              * of the string with itself at the start of the input file).
                   1373:              */
                   1374:             if (s->strategy != Z_HUFFMAN_ONLY) {
                   1375:                 s->match_length = longest_match (s, hash_head);
                   1376:             }
                   1377:             /* longest_match() sets match_start */
                   1378:             if (s->match_length > s->lookahead) s->match_length = s->lookahead;
                   1379:
                   1380:             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
                   1381:                  (s->match_length == MIN_MATCH &&
                   1382:                   s->strstart - s->match_start > TOO_FAR))) {
                   1383:
                   1384:                 /* If prev_match is also MIN_MATCH, match_start is garbage
                   1385:                  * but we will ignore the current match anyway.
                   1386:                  */
                   1387:                 s->match_length = MIN_MATCH-1;
                   1388:             }
                   1389:         }
                   1390:         /* If there was a match at the previous step and the current
                   1391:          * match is not better, output the previous match:
                   1392:          */
                   1393:         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
                   1394:             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
                   1395:             /* Do not insert strings in hash table beyond this. */
                   1396:
                   1397:             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
                   1398:
                   1399:             bflush = ct_tally(s, s->strstart -1 - s->prev_match,
                   1400:                               s->prev_length - MIN_MATCH);
                   1401:
                   1402:             /* Insert in hash table all strings up to the end of the match.
                   1403:              * strstart-1 and strstart are already inserted. If there is not
                   1404:              * enough lookahead, the last two strings are not inserted in
                   1405:              * the hash table.
                   1406:              */
                   1407:             s->lookahead -= s->prev_length-1;
                   1408:             s->prev_length -= 2;
                   1409:             do {
                   1410:                 if (++s->strstart <= max_insert) {
                   1411:                     INSERT_STRING(s, s->strstart, hash_head);
                   1412:                 }
                   1413:             } while (--s->prev_length != 0);
                   1414:             s->match_available = 0;
                   1415:             s->match_length = MIN_MATCH-1;
                   1416:             s->strstart++;
                   1417:
                   1418:             if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
                   1419:
                   1420:         } else if (s->match_available) {
                   1421:             /* If there was no match at the previous position, output a
                   1422:              * single literal. If there was a match but the current match
                   1423:              * is longer, truncate the previous match to a single literal.
                   1424:              */
                   1425:             Tracevv((stderr,"%c", s->window[s->strstart-1]));
                   1426:             if (ct_tally (s, 0, s->window[s->strstart-1])) {
                   1427:                 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
                   1428:             }
                   1429:             s->strstart++;
                   1430:             s->lookahead--;
                   1431:             if (s->strm->avail_out == 0) return 1;
                   1432:         } else {
                   1433:             /* There is no previous match to compare with, wait for
                   1434:              * the next step to decide.
                   1435:              */
                   1436:             s->match_available = 1;
                   1437:             s->strstart++;
                   1438:             s->lookahead--;
                   1439:         }
                   1440:     }
                   1441:     Assert (flush != Z_NO_FLUSH, "no flush?");
                   1442:     if (s->match_available) {
                   1443:         Tracevv((stderr,"%c", s->window[s->strstart-1]));
                   1444:         ct_tally (s, 0, s->window[s->strstart-1]);
                   1445:         s->match_available = 0;
                   1446:     }
                   1447:     FLUSH_BLOCK(s, flush);
                   1448:     return 0;
                   1449: }
                   1450:
                   1451:
                   1452: /*+++++*/
                   1453: /* trees.c -- output deflated data using Huffman coding
                   1454:  * Copyright (C) 1995 Jean-loup Gailly
                   1455:  * For conditions of distribution and use, see copyright notice in zlib.h
                   1456:  */
                   1457:
                   1458: /*
                   1459:  *  ALGORITHM
                   1460:  *
                   1461:  *      The "deflation" process uses several Huffman trees. The more
                   1462:  *      common source values are represented by shorter bit sequences.
                   1463:  *
                   1464:  *      Each code tree is stored in a compressed form which is itself
                   1465:  * a Huffman encoding of the lengths of all the code strings (in
                   1466:  * ascending order by source values).  The actual code strings are
                   1467:  * reconstructed from the lengths in the inflate process, as described
                   1468:  * in the deflate specification.
                   1469:  *
                   1470:  *  REFERENCES
                   1471:  *
                   1472:  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
                   1473:  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
                   1474:  *
                   1475:  *      Storer, James A.
                   1476:  *          Data Compression:  Methods and Theory, pp. 49-50.
                   1477:  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
                   1478:  *
                   1479:  *      Sedgewick, R.
                   1480:  *          Algorithms, p290.
                   1481:  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
                   1482:  */
                   1483:
                   1484: /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
                   1485:
                   1486: #ifdef DEBUG_ZLIB
                   1487: #  include <ctype.h>
                   1488: #endif
                   1489:
                   1490: /* ===========================================================================
                   1491:  * Constants
                   1492:  */
                   1493:
                   1494: #define MAX_BL_BITS 7
                   1495: /* Bit length codes must not exceed MAX_BL_BITS bits */
                   1496:
                   1497: #define END_BLOCK 256
                   1498: /* end of block literal code */
                   1499:
                   1500: #define REP_3_6      16
                   1501: /* repeat previous bit length 3-6 times (2 bits of repeat count) */
                   1502:
                   1503: #define REPZ_3_10    17
                   1504: /* repeat a zero length 3-10 times  (3 bits of repeat count) */
                   1505:
                   1506: #define REPZ_11_138  18
                   1507: /* repeat a zero length 11-138 times  (7 bits of repeat count) */
                   1508:
                   1509: local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
                   1510:    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
                   1511:
                   1512: local const int extra_dbits[D_CODES] /* extra bits for each distance code */
                   1513:    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
                   1514:
                   1515: local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
                   1516:    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
                   1517:
                   1518: local const uch bl_order[BL_CODES]
                   1519:    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
                   1520: /* The lengths of the bit length codes are sent in order of decreasing
                   1521:  * probability, to avoid transmitting the lengths for unused bit length codes.
                   1522:  */
                   1523:
                   1524: #define Buf_size (8 * 2*sizeof(char))
                   1525: /* Number of bits used within bi_buf. (bi_buf might be implemented on
                   1526:  * more than 16 bits on some systems.)
                   1527:  */
                   1528:
                   1529: /* ===========================================================================
                   1530:  * Local data. These are initialized only once.
                   1531:  * To do: initialize at compile time to be completely reentrant. ???
                   1532:  */
                   1533:
                   1534: local ct_data static_ltree[L_CODES+2];
                   1535: /* The static literal tree. Since the bit lengths are imposed, there is no
                   1536:  * need for the L_CODES extra codes used during heap construction. However
                   1537:  * The codes 286 and 287 are needed to build a canonical tree (see ct_init
                   1538:  * below).
                   1539:  */
                   1540:
                   1541: local ct_data static_dtree[D_CODES];
                   1542: /* The static distance tree. (Actually a trivial tree since all codes use
                   1543:  * 5 bits.)
                   1544:  */
                   1545:
                   1546: local uch dist_code[512];
                   1547: /* distance codes. The first 256 values correspond to the distances
                   1548:  * 3 .. 258, the last 256 values correspond to the top 8 bits of
                   1549:  * the 15 bit distances.
                   1550:  */
                   1551:
                   1552: local uch length_code[MAX_MATCH-MIN_MATCH+1];
                   1553: /* length code for each normalized match length (0 == MIN_MATCH) */
                   1554:
                   1555: local int base_length[LENGTH_CODES];
                   1556: /* First normalized length for each code (0 = MIN_MATCH) */
                   1557:
                   1558: local int base_dist[D_CODES];
                   1559: /* First normalized distance for each code (0 = distance of 1) */
                   1560:
                   1561: struct static_tree_desc_s {
                   1562:     ct_data *static_tree;        /* static tree or NULL */
                   1563:     const intf *extra_bits;      /* extra bits for each code or NULL */
                   1564:     int     extra_base;          /* base index for extra_bits */
                   1565:     int     elems;               /* max number of elements in the tree */
                   1566:     int     max_length;          /* max bit length for the codes */
                   1567: };
                   1568:
                   1569: local const static_tree_desc  static_l_desc =
                   1570: {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
                   1571:
                   1572: local const static_tree_desc  static_d_desc =
                   1573: {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
                   1574:
                   1575: local const static_tree_desc  static_bl_desc =
                   1576: {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
                   1577:
                   1578: /* ===========================================================================
                   1579:  * Local (static) routines in this file.
                   1580:  */
                   1581:
                   1582: local void ct_static_init OF((void));
                   1583: local void init_block     OF((deflate_state *s));
                   1584: local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
                   1585: local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
                   1586: local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
                   1587: local void build_tree     OF((deflate_state *s, tree_desc *desc));
                   1588: local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
                   1589: local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
                   1590: local int  build_bl_tree  OF((deflate_state *s));
                   1591: local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
                   1592:                               int blcodes));
                   1593: local void compress_block OF((deflate_state *s, ct_data *ltree,
                   1594:                               ct_data *dtree));
                   1595: local void set_data_type  OF((deflate_state *s));
                   1596: local unsigned bi_reverse OF((unsigned value, int length));
                   1597: local void bi_windup      OF((deflate_state *s));
                   1598: local void bi_flush       OF((deflate_state *s));
                   1599: local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
                   1600:                               int header));
                   1601:
                   1602: #ifndef DEBUG_ZLIB
                   1603: #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
                   1604:    /* Send a code of the given tree. c and tree must not have side effects */
                   1605:
                   1606: #else /* DEBUG_ZLIB */
                   1607: #  define send_code(s, c, tree) \
                   1608:      { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
                   1609:        send_bits(s, tree[c].Code, tree[c].Len); }
                   1610: #endif
                   1611:
                   1612: #define d_code(dist) \
                   1613:    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
                   1614: /* Mapping from a distance to a distance code. dist is the distance - 1 and
                   1615:  * must not have side effects. dist_code[256] and dist_code[257] are never
                   1616:  * used.
                   1617:  */
                   1618:
                   1619: /* ===========================================================================
                   1620:  * Output a short LSB first on the stream.
                   1621:  * IN assertion: there is enough room in pendingBuf.
                   1622:  */
                   1623: #define put_short(s, w) { \
                   1624:     put_byte(s, (uch)((w) & 0xff)); \
                   1625:     put_byte(s, (uch)((ush)(w) >> 8)); \
                   1626: }
                   1627:
                   1628: /* ===========================================================================
                   1629:  * Send a value on a given number of bits.
                   1630:  * IN assertion: length <= 16 and value fits in length bits.
                   1631:  */
                   1632: #ifdef DEBUG_ZLIB
                   1633: local void send_bits      OF((deflate_state *s, int value, int length));
                   1634:
                   1635: local void send_bits(s, value, length)
                   1636:     deflate_state *s;
                   1637:     int value;  /* value to send */
                   1638:     int length; /* number of bits */
                   1639: {
                   1640:     Tracev((stderr," l %2d v %4x ", length, value));
                   1641:     Assert(length > 0 && length <= 15, "invalid length");
                   1642:     s->bits_sent += (ulg)length;
                   1643:
                   1644:     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
                   1645:      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
                   1646:      * unused bits in value.
                   1647:      */
                   1648:     if (s->bi_valid > (int)Buf_size - length) {
                   1649:         s->bi_buf |= (value << s->bi_valid);
                   1650:         put_short(s, s->bi_buf);
                   1651:         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
                   1652:         s->bi_valid += length - Buf_size;
                   1653:     } else {
                   1654:         s->bi_buf |= value << s->bi_valid;
                   1655:         s->bi_valid += length;
                   1656:     }
                   1657: }
                   1658: #else /* !DEBUG_ZLIB */
                   1659:
                   1660: #define send_bits(s, value, length) \
                   1661: { int len = length;\
                   1662:   if (s->bi_valid > (int)Buf_size - len) {\
                   1663:     int val = value;\
                   1664:     s->bi_buf |= (val << s->bi_valid);\
                   1665:     put_short(s, s->bi_buf);\
                   1666:     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
                   1667:     s->bi_valid += len - Buf_size;\
                   1668:   } else {\
                   1669:     s->bi_buf |= (value) << s->bi_valid;\
                   1670:     s->bi_valid += len;\
                   1671:   }\
                   1672: }
                   1673: #endif /* DEBUG_ZLIB */
                   1674:
                   1675:
                   1676: /* the arguments must not have side effects */
                   1677:
                   1678: /* ===========================================================================
                   1679:  * Initialize the various 'constant' tables.
                   1680:  * To do: do this at compile time.
                   1681:  */
                   1682: local void ct_static_init()
                   1683: {
                   1684:     int n;        /* iterates over tree elements */
                   1685:     int bits;     /* bit counter */
                   1686:     int length;   /* length value */
                   1687:     int code;     /* code value */
                   1688:     int dist;     /* distance index */
                   1689:     ush bl_count[MAX_BITS+1];
                   1690:     /* number of codes at each bit length for an optimal tree */
                   1691:
                   1692:     /* Initialize the mapping length (0..255) -> length code (0..28) */
                   1693:     length = 0;
                   1694:     for (code = 0; code < LENGTH_CODES-1; code++) {
                   1695:         base_length[code] = length;
                   1696:         for (n = 0; n < (1<<extra_lbits[code]); n++) {
                   1697:             length_code[length++] = (uch)code;
                   1698:         }
                   1699:     }
                   1700:     Assert (length == 256, "ct_static_init: length != 256");
                   1701:     /* Note that the length 255 (match length 258) can be represented
                   1702:      * in two different ways: code 284 + 5 bits or code 285, so we
                   1703:      * overwrite length_code[255] to use the best encoding:
                   1704:      */
                   1705:     length_code[length-1] = (uch)code;
                   1706:
                   1707:     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
                   1708:     dist = 0;
                   1709:     for (code = 0 ; code < 16; code++) {
                   1710:         base_dist[code] = dist;
                   1711:         for (n = 0; n < (1<<extra_dbits[code]); n++) {
                   1712:             dist_code[dist++] = (uch)code;
                   1713:         }
                   1714:     }
                   1715:     Assert (dist == 256, "ct_static_init: dist != 256");
                   1716:     dist >>= 7; /* from now on, all distances are divided by 128 */
                   1717:     for ( ; code < D_CODES; code++) {
                   1718:         base_dist[code] = dist << 7;
                   1719:         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
                   1720:             dist_code[256 + dist++] = (uch)code;
                   1721:         }
                   1722:     }
                   1723:     Assert (dist == 256, "ct_static_init: 256+dist != 512");
                   1724:
                   1725:     /* Construct the codes of the static literal tree */
                   1726:     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
                   1727:     n = 0;
                   1728:     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
                   1729:     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
                   1730:     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
                   1731:     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
                   1732:     /* Codes 286 and 287 do not exist, but we must include them in the
                   1733:      * tree construction to get a canonical Huffman tree (longest code
                   1734:      * all ones)
                   1735:      */
                   1736:     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
                   1737:
                   1738:     /* The static distance tree is trivial: */
                   1739:     for (n = 0; n < D_CODES; n++) {
                   1740:         static_dtree[n].Len = 5;
                   1741:         static_dtree[n].Code = bi_reverse(n, 5);
                   1742:     }
                   1743: }
                   1744:
                   1745: /* ===========================================================================
                   1746:  * Initialize the tree data structures for a new zlib stream.
                   1747:  */
                   1748: local void ct_init(s)
                   1749:     deflate_state *s;
                   1750: {
                   1751:     if (static_dtree[0].Len == 0) {
                   1752:         ct_static_init();              /* To do: at compile time */
                   1753:     }
                   1754:
                   1755:     s->compressed_len = 0L;
                   1756:
                   1757:     s->l_desc.dyn_tree = s->dyn_ltree;
                   1758:     s->l_desc.stat_desc = &static_l_desc;
                   1759:
                   1760:     s->d_desc.dyn_tree = s->dyn_dtree;
                   1761:     s->d_desc.stat_desc = &static_d_desc;
                   1762:
                   1763:     s->bl_desc.dyn_tree = s->bl_tree;
                   1764:     s->bl_desc.stat_desc = &static_bl_desc;
                   1765:
                   1766:     s->bi_buf = 0;
                   1767:     s->bi_valid = 0;
                   1768:     s->last_eob_len = 8; /* enough lookahead for inflate */
                   1769: #ifdef DEBUG_ZLIB
                   1770:     s->bits_sent = 0L;
                   1771: #endif
                   1772:     s->blocks_in_packet = 0;
                   1773:
                   1774:     /* Initialize the first block of the first file: */
                   1775:     init_block(s);
                   1776: }
                   1777:
                   1778: /* ===========================================================================
                   1779:  * Initialize a new block.
                   1780:  */
                   1781: local void init_block(s)
                   1782:     deflate_state *s;
                   1783: {
                   1784:     int n; /* iterates over tree elements */
                   1785:
                   1786:     /* Initialize the trees. */
                   1787:     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
                   1788:     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
                   1789:     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
                   1790:
                   1791:     s->dyn_ltree[END_BLOCK].Freq = 1;
                   1792:     s->opt_len = s->static_len = 0L;
                   1793:     s->last_lit = s->matches = 0;
                   1794: }
                   1795:
                   1796: #define SMALLEST 1
                   1797: /* Index within the heap array of least frequent node in the Huffman tree */
                   1798:
                   1799:
                   1800: /* ===========================================================================
                   1801:  * Remove the smallest element from the heap and recreate the heap with
                   1802:  * one less element. Updates heap and heap_len.
                   1803:  */
                   1804: #define pqremove(s, tree, top) \
                   1805: {\
                   1806:     top = s->heap[SMALLEST]; \
                   1807:     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
                   1808:     pqdownheap(s, tree, SMALLEST); \
                   1809: }
                   1810:
                   1811: /* ===========================================================================
                   1812:  * Compares to subtrees, using the tree depth as tie breaker when
                   1813:  * the subtrees have equal frequency. This minimizes the worst case length.
                   1814:  */
                   1815: #define smaller(tree, n, m, depth) \
                   1816:    (tree[n].Freq < tree[m].Freq || \
                   1817:    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
                   1818:
                   1819: /* ===========================================================================
                   1820:  * Restore the heap property by moving down the tree starting at node k,
                   1821:  * exchanging a node with the smallest of its two sons if necessary, stopping
                   1822:  * when the heap property is re-established (each father smaller than its
                   1823:  * two sons).
                   1824:  */
                   1825: local void pqdownheap(s, tree, k)
                   1826:     deflate_state *s;
                   1827:     ct_data *tree;  /* the tree to restore */
                   1828:     int k;               /* node to move down */
                   1829: {
                   1830:     int v = s->heap[k];
                   1831:     int j = k << 1;  /* left son of k */
                   1832:     while (j <= s->heap_len) {
                   1833:         /* Set j to the smallest of the two sons: */
                   1834:         if (j < s->heap_len &&
                   1835:             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
                   1836:             j++;
                   1837:         }
                   1838:         /* Exit if v is smaller than both sons */
                   1839:         if (smaller(tree, v, s->heap[j], s->depth)) break;
                   1840:
                   1841:         /* Exchange v with the smallest son */
                   1842:         s->heap[k] = s->heap[j];  k = j;
                   1843:
                   1844:         /* And continue down the tree, setting j to the left son of k */
                   1845:         j <<= 1;
                   1846:     }
                   1847:     s->heap[k] = v;
                   1848: }
                   1849:
                   1850: /* ===========================================================================
                   1851:  * Compute the optimal bit lengths for a tree and update the total bit length
                   1852:  * for the current block.
                   1853:  * IN assertion: the fields freq and dad are set, heap[heap_max] and
                   1854:  *    above are the tree nodes sorted by increasing frequency.
                   1855:  * OUT assertions: the field len is set to the optimal bit length, the
                   1856:  *     array bl_count contains the frequencies for each bit length.
                   1857:  *     The length opt_len is updated; static_len is also updated if stree is
                   1858:  *     not null.
                   1859:  */
                   1860: local void gen_bitlen(s, desc)
                   1861:     deflate_state *s;
                   1862:     tree_desc *desc;    /* the tree descriptor */
                   1863: {
                   1864:     ct_data *tree  = desc->dyn_tree;
                   1865:     int max_code   = desc->max_code;
                   1866:     ct_data *stree = desc->stat_desc->static_tree;
                   1867:     const intf *extra    = desc->stat_desc->extra_bits;
                   1868:     int base       = desc->stat_desc->extra_base;
                   1869:     int max_length = desc->stat_desc->max_length;
                   1870:     int h;              /* heap index */
                   1871:     int n, m;           /* iterate over the tree elements */
                   1872:     int bits;           /* bit length */
                   1873:     int xbits;          /* extra bits */
                   1874:     ush f;              /* frequency */
                   1875:     int overflow = 0;   /* number of elements with bit length too large */
                   1876:
                   1877:     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
                   1878:
                   1879:     /* In a first pass, compute the optimal bit lengths (which may
                   1880:      * overflow in the case of the bit length tree).
                   1881:      */
                   1882:     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
                   1883:
                   1884:     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
                   1885:         n = s->heap[h];
                   1886:         bits = tree[tree[n].Dad].Len + 1;
                   1887:         if (bits > max_length) bits = max_length, overflow++;
                   1888:         tree[n].Len = (ush)bits;
                   1889:         /* We overwrite tree[n].Dad which is no longer needed */
                   1890:
                   1891:         if (n > max_code) continue; /* not a leaf node */
                   1892:
                   1893:         s->bl_count[bits]++;
                   1894:         xbits = 0;
                   1895:         if (n >= base) xbits = extra[n-base];
                   1896:         f = tree[n].Freq;
                   1897:         s->opt_len += (ulg)f * (bits + xbits);
                   1898:         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
                   1899:     }
                   1900:     if (overflow == 0) return;
                   1901:
                   1902:     Trace((stderr,"\nbit length overflow\n"));
                   1903:     /* This happens for example on obj2 and pic of the Calgary corpus */
                   1904:
                   1905:     /* Find the first bit length which could increase: */
                   1906:     do {
                   1907:         bits = max_length-1;
                   1908:         while (s->bl_count[bits] == 0) bits--;
                   1909:         s->bl_count[bits]--;      /* move one leaf down the tree */
                   1910:         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
                   1911:         s->bl_count[max_length]--;
                   1912:         /* The brother of the overflow item also moves one step up,
                   1913:          * but this does not affect bl_count[max_length]
                   1914:          */
                   1915:         overflow -= 2;
                   1916:     } while (overflow > 0);
                   1917:
                   1918:     /* Now recompute all bit lengths, scanning in increasing frequency.
                   1919:      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
                   1920:      * lengths instead of fixing only the wrong ones. This idea is taken
                   1921:      * from 'ar' written by Haruhiko Okumura.)
                   1922:      */
                   1923:     for (bits = max_length; bits != 0; bits--) {
                   1924:         n = s->bl_count[bits];
                   1925:         while (n != 0) {
                   1926:             m = s->heap[--h];
                   1927:             if (m > max_code) continue;
                   1928:             if (tree[m].Len != (unsigned) bits) {
                   1929:                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
                   1930:                 s->opt_len += ((long)bits - (long)tree[m].Len)
                   1931:                               *(long)tree[m].Freq;
                   1932:                 tree[m].Len = (ush)bits;
                   1933:             }
                   1934:             n--;
                   1935:         }
                   1936:     }
                   1937: }
                   1938:
                   1939: /* ===========================================================================
                   1940:  * Generate the codes for a given tree and bit counts (which need not be
                   1941:  * optimal).
                   1942:  * IN assertion: the array bl_count contains the bit length statistics for
                   1943:  * the given tree and the field len is set for all tree elements.
                   1944:  * OUT assertion: the field code is set for all tree elements of non
                   1945:  *     zero code length.
                   1946:  */
                   1947: local void gen_codes (tree, max_code, bl_count)
                   1948:     ct_data *tree;             /* the tree to decorate */
                   1949:     int max_code;              /* largest code with non zero frequency */
                   1950:     ushf *bl_count;            /* number of codes at each bit length */
                   1951: {
                   1952:     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
                   1953:     ush code = 0;              /* running code value */
                   1954:     int bits;                  /* bit index */
                   1955:     int n;                     /* code index */
                   1956:
                   1957:     /* The distribution counts are first used to generate the code values
                   1958:      * without bit reversal.
                   1959:      */
                   1960:     for (bits = 1; bits <= MAX_BITS; bits++) {
                   1961:         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
                   1962:     }
                   1963:     /* Check that the bit counts in bl_count are consistent. The last code
                   1964:      * must be all ones.
                   1965:      */
                   1966:     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
                   1967:             "inconsistent bit counts");
                   1968:     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
                   1969:
                   1970:     for (n = 0;  n <= max_code; n++) {
                   1971:         int len = tree[n].Len;
                   1972:         if (len == 0) continue;
                   1973:         /* Now reverse the bits */
                   1974:         tree[n].Code = bi_reverse(next_code[len]++, len);
                   1975:
                   1976:         Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
                   1977:              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
                   1978:     }
                   1979: }
                   1980:
                   1981: /* ===========================================================================
                   1982:  * Construct one Huffman tree and assigns the code bit strings and lengths.
                   1983:  * Update the total bit length for the current block.
                   1984:  * IN assertion: the field freq is set for all tree elements.
                   1985:  * OUT assertions: the fields len and code are set to the optimal bit length
                   1986:  *     and corresponding code. The length opt_len is updated; static_len is
                   1987:  *     also updated if stree is not null. The field max_code is set.
                   1988:  */
                   1989: local void build_tree(s, desc)
                   1990:     deflate_state *s;
                   1991:     tree_desc *desc; /* the tree descriptor */
                   1992: {
                   1993:     ct_data *tree   = desc->dyn_tree;
                   1994:     ct_data *stree  = desc->stat_desc->static_tree;
                   1995:     int elems       = desc->stat_desc->elems;
                   1996:     int n, m;          /* iterate over heap elements */
                   1997:     int max_code = -1; /* largest code with non zero frequency */
                   1998:     int node;          /* new node being created */
                   1999:
                   2000:     /* Construct the initial heap, with least frequent element in
                   2001:      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
                   2002:      * heap[0] is not used.
                   2003:      */
                   2004:     s->heap_len = 0, s->heap_max = HEAP_SIZE;
                   2005:
                   2006:     for (n = 0; n < elems; n++) {
                   2007:         if (tree[n].Freq != 0) {
                   2008:             s->heap[++(s->heap_len)] = max_code = n;
                   2009:             s->depth[n] = 0;
                   2010:         } else {
                   2011:             tree[n].Len = 0;
                   2012:         }
                   2013:     }
                   2014:
                   2015:     /* The pkzip format requires that at least one distance code exists,
                   2016:      * and that at least one bit should be sent even if there is only one
                   2017:      * possible code. So to avoid special checks later on we force at least
                   2018:      * two codes of non zero frequency.
                   2019:      */
                   2020:     while (s->heap_len < 2) {
                   2021:         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
                   2022:         tree[node].Freq = 1;
                   2023:         s->depth[node] = 0;
                   2024:         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
                   2025:         /* node is 0 or 1 so it does not have extra bits */
                   2026:     }
                   2027:     desc->max_code = max_code;
                   2028:
                   2029:     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
                   2030:      * establish sub-heaps of increasing lengths:
                   2031:      */
                   2032:     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
                   2033:
                   2034:     /* Construct the Huffman tree by repeatedly combining the least two
                   2035:      * frequent nodes.
                   2036:      */
                   2037:     node = elems;              /* next internal node of the tree */
                   2038:     do {
                   2039:         pqremove(s, tree, n);  /* n = node of least frequency */
                   2040:         m = s->heap[SMALLEST]; /* m = node of next least frequency */
                   2041:
                   2042:         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
                   2043:         s->heap[--(s->heap_max)] = m;
                   2044:
                   2045:         /* Create a new node father of n and m */
                   2046:         tree[node].Freq = tree[n].Freq + tree[m].Freq;
                   2047:         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
                   2048:         tree[n].Dad = tree[m].Dad = (ush)node;
                   2049: #ifdef DUMP_BL_TREE
                   2050:         if (tree == s->bl_tree) {
                   2051:             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
                   2052:                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
                   2053:         }
                   2054: #endif
                   2055:         /* and insert the new node in the heap */
                   2056:         s->heap[SMALLEST] = node++;
                   2057:         pqdownheap(s, tree, SMALLEST);
                   2058:
                   2059:     } while (s->heap_len >= 2);
                   2060:
                   2061:     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
                   2062:
                   2063:     /* At this point, the fields freq and dad are set. We can now
                   2064:      * generate the bit lengths.
                   2065:      */
                   2066:     gen_bitlen(s, (tree_desc *)desc);
                   2067:
                   2068:     /* The field len is now set, we can generate the bit codes */
                   2069:     gen_codes ((ct_data *)tree, max_code, s->bl_count);
                   2070: }
                   2071:
                   2072: /* ===========================================================================
                   2073:  * Scan a literal or distance tree to determine the frequencies of the codes
                   2074:  * in the bit length tree.
                   2075:  */
                   2076: local void scan_tree (s, tree, max_code)
                   2077:     deflate_state *s;
                   2078:     ct_data *tree;   /* the tree to be scanned */
                   2079:     int max_code;    /* and its largest code of non zero frequency */
                   2080: {
                   2081:     int n;                     /* iterates over all tree elements */
                   2082:     int prevlen = -1;          /* last emitted length */
                   2083:     int curlen;                /* length of current code */
                   2084:     int nextlen = tree[0].Len; /* length of next code */
                   2085:     int count = 0;             /* repeat count of the current code */
                   2086:     int max_count = 7;         /* max repeat count */
                   2087:     int min_count = 4;         /* min repeat count */
                   2088:
                   2089:     if (nextlen == 0) max_count = 138, min_count = 3;
                   2090:     tree[max_code+1].Len = (ush)0xffff; /* guard */
                   2091:
                   2092:     for (n = 0; n <= max_code; n++) {
                   2093:         curlen = nextlen; nextlen = tree[n+1].Len;
                   2094:         if (++count < max_count && curlen == nextlen) {
                   2095:             continue;
                   2096:         } else if (count < min_count) {
                   2097:             s->bl_tree[curlen].Freq += count;
                   2098:         } else if (curlen != 0) {
                   2099:             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
                   2100:             s->bl_tree[REP_3_6].Freq++;
                   2101:         } else if (count <= 10) {
                   2102:             s->bl_tree[REPZ_3_10].Freq++;
                   2103:         } else {
                   2104:             s->bl_tree[REPZ_11_138].Freq++;
                   2105:         }
                   2106:         count = 0; prevlen = curlen;
                   2107:         if (nextlen == 0) {
                   2108:             max_count = 138, min_count = 3;
                   2109:         } else if (curlen == nextlen) {
                   2110:             max_count = 6, min_count = 3;
                   2111:         } else {
                   2112:             max_count = 7, min_count = 4;
                   2113:         }
                   2114:     }
                   2115: }
                   2116:
                   2117: /* ===========================================================================
                   2118:  * Send a literal or distance tree in compressed form, using the codes in
                   2119:  * bl_tree.
                   2120:  */
                   2121: local void send_tree (s, tree, max_code)
                   2122:     deflate_state *s;
                   2123:     ct_data *tree; /* the tree to be scanned */
                   2124:     int max_code;       /* and its largest code of non zero frequency */
                   2125: {
                   2126:     int n;                     /* iterates over all tree elements */
                   2127:     int prevlen = -1;          /* last emitted length */
                   2128:     int curlen;                /* length of current code */
                   2129:     int nextlen = tree[0].Len; /* length of next code */
                   2130:     int count = 0;             /* repeat count of the current code */
                   2131:     int max_count = 7;         /* max repeat count */
                   2132:     int min_count = 4;         /* min repeat count */
                   2133:
                   2134:     /* tree[max_code+1].Len = -1; */  /* guard already set */
                   2135:     if (nextlen == 0) max_count = 138, min_count = 3;
                   2136:
                   2137:     for (n = 0; n <= max_code; n++) {
                   2138:         curlen = nextlen; nextlen = tree[n+1].Len;
                   2139:         if (++count < max_count && curlen == nextlen) {
                   2140:             continue;
                   2141:         } else if (count < min_count) {
                   2142:             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
                   2143:
                   2144:         } else if (curlen != 0) {
                   2145:             if (curlen != prevlen) {
                   2146:                 send_code(s, curlen, s->bl_tree); count--;
                   2147:             }
                   2148:             Assert(count >= 3 && count <= 6, " 3_6?");
                   2149:             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
                   2150:
                   2151:         } else if (count <= 10) {
                   2152:             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
                   2153:
                   2154:         } else {
                   2155:             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
                   2156:         }
                   2157:         count = 0; prevlen = curlen;
                   2158:         if (nextlen == 0) {
                   2159:             max_count = 138, min_count = 3;
                   2160:         } else if (curlen == nextlen) {
                   2161:             max_count = 6, min_count = 3;
                   2162:         } else {
                   2163:             max_count = 7, min_count = 4;
                   2164:         }
                   2165:     }
                   2166: }
                   2167:
                   2168: /* ===========================================================================
                   2169:  * Construct the Huffman tree for the bit lengths and return the index in
                   2170:  * bl_order of the last bit length code to send.
                   2171:  */
                   2172: local int build_bl_tree(s)
                   2173:     deflate_state *s;
                   2174: {
                   2175:     int max_blindex;  /* index of last bit length code of non zero freq */
                   2176:
                   2177:     /* Determine the bit length frequencies for literal and distance trees */
                   2178:     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
                   2179:     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
                   2180:
                   2181:     /* Build the bit length tree: */
                   2182:     build_tree(s, (tree_desc *)(&(s->bl_desc)));
                   2183:     /* opt_len now includes the length of the tree representations, except
                   2184:      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
                   2185:      */
                   2186:
                   2187:     /* Determine the number of bit length codes to send. The pkzip format
                   2188:      * requires that at least 4 bit length codes be sent. (appnote.txt says
                   2189:      * 3 but the actual value used is 4.)
                   2190:      */
                   2191:     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
                   2192:         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
                   2193:     }
                   2194:     /* Update opt_len to include the bit length tree and counts */
                   2195:     s->opt_len += 3*(max_blindex+1) + 5+5+4;
                   2196:     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
                   2197:             s->opt_len, s->static_len));
                   2198:
                   2199:     return max_blindex;
                   2200: }
                   2201:
                   2202: /* ===========================================================================
                   2203:  * Send the header for a block using dynamic Huffman trees: the counts, the
                   2204:  * lengths of the bit length codes, the literal tree and the distance tree.
                   2205:  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
                   2206:  */
                   2207: local void send_all_trees(s, lcodes, dcodes, blcodes)
                   2208:     deflate_state *s;
                   2209:     int lcodes, dcodes, blcodes; /* number of codes for each tree */
                   2210: {
                   2211:     int rank;                    /* index in bl_order */
                   2212:
                   2213:     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
                   2214:     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
                   2215:             "too many codes");
                   2216:     Tracev((stderr, "\nbl counts: "));
                   2217:     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
                   2218:     send_bits(s, dcodes-1,   5);
                   2219:     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
                   2220:     for (rank = 0; rank < blcodes; rank++) {
                   2221:         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
                   2222:         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
                   2223:     }
                   2224:     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
                   2225:
                   2226:     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
                   2227:     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
                   2228:
                   2229:     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
                   2230:     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
                   2231: }
                   2232:
                   2233: /* ===========================================================================
                   2234:  * Send a stored block
                   2235:  */
                   2236: local void ct_stored_block(s, buf, stored_len, eof)
                   2237:     deflate_state *s;
                   2238:     charf *buf;       /* input block */
                   2239:     ulg stored_len;   /* length of input block */
                   2240:     int eof;          /* true if this is the last block for a file */
                   2241: {
                   2242:     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
                   2243:     s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
                   2244:     s->compressed_len += (stored_len + 4) << 3;
                   2245:
                   2246:     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
                   2247: }
                   2248:
                   2249: /* Send just the `stored block' type code without any length bytes or data.
                   2250:  */
                   2251: local void ct_stored_type_only(s)
                   2252:     deflate_state *s;
                   2253: {
                   2254:     send_bits(s, (STORED_BLOCK << 1), 3);
                   2255:     bi_windup(s);
                   2256:     s->compressed_len = (s->compressed_len + 3) & ~7L;
                   2257: }
                   2258:
                   2259:
                   2260: /* ===========================================================================
                   2261:  * Send one empty static block to give enough lookahead for inflate.
                   2262:  * This takes 10 bits, of which 7 may remain in the bit buffer.
                   2263:  * The current inflate code requires 9 bits of lookahead. If the EOB
                   2264:  * code for the previous block was coded on 5 bits or less, inflate
                   2265:  * may have only 5+3 bits of lookahead to decode this EOB.
                   2266:  * (There are no problems if the previous block is stored or fixed.)
                   2267:  */
                   2268: local void ct_align(s)
                   2269:     deflate_state *s;
                   2270: {
                   2271:     send_bits(s, STATIC_TREES<<1, 3);
                   2272:     send_code(s, END_BLOCK, static_ltree);
                   2273:     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
                   2274:     bi_flush(s);
                   2275:     /* Of the 10 bits for the empty block, we have already sent
                   2276:      * (10 - bi_valid) bits. The lookahead for the EOB of the previous
                   2277:      * block was thus its length plus what we have just sent.
                   2278:      */
                   2279:     if (s->last_eob_len + 10 - s->bi_valid < 9) {
                   2280:         send_bits(s, STATIC_TREES<<1, 3);
                   2281:         send_code(s, END_BLOCK, static_ltree);
                   2282:         s->compressed_len += 10L;
                   2283:         bi_flush(s);
                   2284:     }
                   2285:     s->last_eob_len = 7;
                   2286: }
                   2287:
                   2288: /* ===========================================================================
                   2289:  * Determine the best encoding for the current block: dynamic trees, static
                   2290:  * trees or store, and output the encoded block to the zip file. This function
                   2291:  * returns the total compressed length for the file so far.
                   2292:  */
                   2293: local ulg ct_flush_block(s, buf, stored_len, flush)
                   2294:     deflate_state *s;
                   2295:     charf *buf;       /* input block, or NULL if too old */
                   2296:     ulg stored_len;   /* length of input block */
                   2297:     int flush;        /* Z_FINISH if this is the last block for a file */
                   2298: {
                   2299:     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
                   2300:     int max_blindex;  /* index of last bit length code of non zero freq */
                   2301:     int eof = flush == Z_FINISH;
                   2302:
                   2303:     ++s->blocks_in_packet;
                   2304:
                   2305:     /* Check if the file is ascii or binary */
                   2306:     if (s->data_type == UNKNOWN) set_data_type(s);
                   2307:
                   2308:     /* Construct the literal and distance trees */
                   2309:     build_tree(s, (tree_desc *)(&(s->l_desc)));
                   2310:     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
                   2311:             s->static_len));
                   2312:
                   2313:     build_tree(s, (tree_desc *)(&(s->d_desc)));
                   2314:     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
                   2315:             s->static_len));
                   2316:     /* At this point, opt_len and static_len are the total bit lengths of
                   2317:      * the compressed block data, excluding the tree representations.
                   2318:      */
                   2319:
                   2320:     /* Build the bit length tree for the above two trees, and get the index
                   2321:      * in bl_order of the last bit length code to send.
                   2322:      */
                   2323:     max_blindex = build_bl_tree(s);
                   2324:
                   2325:     /* Determine the best encoding. Compute first the block length in bytes */
                   2326:     opt_lenb = (s->opt_len+3+7)>>3;
                   2327:     static_lenb = (s->static_len+3+7)>>3;
                   2328:
                   2329:     Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
                   2330:             opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
                   2331:             s->last_lit));
                   2332:
                   2333:     if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
                   2334:
                   2335:     /* If compression failed and this is the first and last block,
                   2336:      * and if the .zip file can be seeked (to rewrite the local header),
                   2337:      * the whole file is transformed into a stored file:
                   2338:      */
                   2339: #ifdef STORED_FILE_OK
                   2340: #  ifdef FORCE_STORED_FILE
                   2341:     if (eof && compressed_len == 0L) /* force stored file */
                   2342: #  else
                   2343:     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
                   2344: #  endif
                   2345:     {
                   2346:         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
                   2347:         if (buf == (charf*)0) error ("block vanished");
                   2348:
                   2349:         copy_block(buf, (unsigned)stored_len, 0); /* without header */
                   2350:         s->compressed_len = stored_len << 3;
                   2351:         s->method = STORED;
                   2352:     } else
                   2353: #endif /* STORED_FILE_OK */
                   2354:
                   2355:     /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
                   2356:      * compression, and this block contains all the data since the last
                   2357:      * time we used Z_PACKET_FLUSH, then just omit this block completely
                   2358:      * from the output.
                   2359:      */
                   2360:     if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
                   2361:        && opt_lenb > stored_len - s->minCompr) {
                   2362:        s->blocks_in_packet = 0;
                   2363:        /* output nothing */
                   2364:     } else
                   2365:
                   2366: #ifdef FORCE_STORED
                   2367:     if (buf != (char*)0) /* force stored block */
                   2368: #else
                   2369:     if (stored_len+4 <= opt_lenb && buf != (char*)0)
                   2370:                        /* 4: two words for the lengths */
                   2371: #endif
                   2372:     {
                   2373:         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
                   2374:          * Otherwise we can't have processed more than WSIZE input bytes since
                   2375:          * the last block flush, because compression would have been
                   2376:          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
                   2377:          * transform a block into a stored block.
                   2378:          */
                   2379:         ct_stored_block(s, buf, stored_len, eof);
                   2380:     } else
                   2381:
                   2382: #ifdef FORCE_STATIC
                   2383:     if (static_lenb >= 0) /* force static trees */
                   2384: #else
                   2385:     if (static_lenb == opt_lenb)
                   2386: #endif
                   2387:     {
                   2388:         send_bits(s, (STATIC_TREES<<1)+eof, 3);
                   2389:         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
                   2390:         s->compressed_len += 3 + s->static_len;
                   2391:     } else {
                   2392:         send_bits(s, (DYN_TREES<<1)+eof, 3);
                   2393:         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
                   2394:                        max_blindex+1);
                   2395:         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
                   2396:         s->compressed_len += 3 + s->opt_len;
                   2397:     }
                   2398:     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
                   2399:     init_block(s);
                   2400:
                   2401:     if (eof) {
                   2402:         bi_windup(s);
                   2403:         s->compressed_len += 7;  /* align on byte boundary */
                   2404:     }
                   2405:     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
                   2406:            s->compressed_len-7*eof));
                   2407:
                   2408:     return s->compressed_len >> 3;
                   2409: }
                   2410:
                   2411: /* ===========================================================================
                   2412:  * Save the match info and tally the frequency counts. Return true if
                   2413:  * the current block must be flushed.
                   2414:  */
                   2415: local int ct_tally (s, dist, lc)
                   2416:     deflate_state *s;
                   2417:     int dist;  /* distance of matched string */
                   2418:     int lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
                   2419: {
                   2420:     s->d_buf[s->last_lit] = (ush)dist;
                   2421:     s->l_buf[s->last_lit++] = (uch)lc;
                   2422:     if (dist == 0) {
                   2423:         /* lc is the unmatched char */
                   2424:         s->dyn_ltree[lc].Freq++;
                   2425:     } else {
                   2426:         s->matches++;
                   2427:         /* Here, lc is the match length - MIN_MATCH */
                   2428:         dist--;             /* dist = match distance - 1 */
                   2429:         Assert((ush)dist < (ush)MAX_DIST(s) &&
                   2430:                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
                   2431:                (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");
                   2432:
                   2433:         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
                   2434:         s->dyn_dtree[d_code(dist)].Freq++;
                   2435:     }
                   2436:
                   2437:     /* Try to guess if it is profitable to stop the current block here */
                   2438:     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
                   2439:         /* Compute an upper bound for the compressed length */
                   2440:         ulg out_length = (ulg)s->last_lit*8L;
                   2441:         ulg in_length = (ulg)s->strstart - s->block_start;
                   2442:         int dcode;
                   2443:         for (dcode = 0; dcode < D_CODES; dcode++) {
                   2444:             out_length += (ulg)s->dyn_dtree[dcode].Freq *
                   2445:                 (5L+extra_dbits[dcode]);
                   2446:         }
                   2447:         out_length >>= 3;
                   2448:         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
                   2449:                s->last_lit, in_length, out_length,
                   2450:                100L - out_length*100L/in_length));
                   2451:         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
                   2452:     }
                   2453:     return (s->last_lit == s->lit_bufsize-1);
                   2454:     /* We avoid equality with lit_bufsize because of wraparound at 64K
                   2455:      * on 16 bit machines and because stored blocks are restricted to
                   2456:      * 64K-1 bytes.
                   2457:      */
                   2458: }
                   2459:
                   2460: /* ===========================================================================
                   2461:  * Send the block data compressed using the given Huffman trees
                   2462:  */
                   2463: local void compress_block(s, ltree, dtree)
                   2464:     deflate_state *s;
                   2465:     ct_data *ltree; /* literal tree */
                   2466:     ct_data *dtree; /* distance tree */
                   2467: {
                   2468:     unsigned dist;      /* distance of matched string */
                   2469:     int lc;             /* match length or unmatched char (if dist == 0) */
                   2470:     unsigned lx = 0;    /* running index in l_buf */
                   2471:     unsigned code;      /* the code to send */
                   2472:     int extra;          /* number of extra bits to send */
                   2473:
                   2474:     if (s->last_lit != 0) do {
                   2475:         dist = s->d_buf[lx];
                   2476:         lc = s->l_buf[lx++];
                   2477:         if (dist == 0) {
                   2478:             send_code(s, lc, ltree); /* send a literal byte */
                   2479:             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
                   2480:         } else {
                   2481:             /* Here, lc is the match length - MIN_MATCH */
                   2482:             code = length_code[lc];
                   2483:             send_code(s, code+LITERALS+1, ltree); /* send the length code */
                   2484:             extra = extra_lbits[code];
                   2485:             if (extra != 0) {
                   2486:                 lc -= base_length[code];
                   2487:                 send_bits(s, lc, extra);       /* send the extra length bits */
                   2488:             }
                   2489:             dist--; /* dist is now the match distance - 1 */
                   2490:             code = d_code(dist);
                   2491:             Assert (code < D_CODES, "bad d_code");
                   2492:
                   2493:             send_code(s, code, dtree);       /* send the distance code */
                   2494:             extra = extra_dbits[code];
                   2495:             if (extra != 0) {
                   2496:                 dist -= base_dist[code];
                   2497:                 send_bits(s, dist, extra);   /* send the extra distance bits */
                   2498:             }
                   2499:         } /* literal or match pair ? */
                   2500:
                   2501:         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
                   2502:         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
                   2503:
                   2504:     } while (lx < s->last_lit);
                   2505:
                   2506:     send_code(s, END_BLOCK, ltree);
                   2507:     s->last_eob_len = ltree[END_BLOCK].Len;
                   2508: }
                   2509:
                   2510: /* ===========================================================================
                   2511:  * Set the data type to ASCII or BINARY, using a crude approximation:
                   2512:  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
                   2513:  * IN assertion: the fields freq of dyn_ltree are set and the total of all
                   2514:  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
                   2515:  */
                   2516: local void set_data_type(s)
                   2517:     deflate_state *s;
                   2518: {
                   2519:     int n = 0;
                   2520:     unsigned ascii_freq = 0;
                   2521:     unsigned bin_freq = 0;
                   2522:     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
                   2523:     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
                   2524:     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
                   2525:     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
                   2526: }
                   2527:
                   2528: /* ===========================================================================
                   2529:  * Reverse the first len bits of a code, using straightforward code (a faster
                   2530:  * method would use a table)
                   2531:  * IN assertion: 1 <= len <= 15
                   2532:  */
                   2533: local unsigned bi_reverse(code, len)
                   2534:     unsigned code; /* the value to invert */
                   2535:     int len;       /* its bit length */
                   2536: {
                   2537:     unsigned res = 0;
                   2538:     do {
                   2539:         res |= code & 1;
                   2540:         code >>= 1, res <<= 1;
                   2541:     } while (--len > 0);
                   2542:     return res >> 1;
                   2543: }
                   2544:
                   2545: /* ===========================================================================
                   2546:  * Flush the bit buffer, keeping at most 7 bits in it.
                   2547:  */
                   2548: local void bi_flush(s)
                   2549:     deflate_state *s;
                   2550: {
                   2551:     if (s->bi_valid == 16) {
                   2552:         put_short(s, s->bi_buf);
                   2553:         s->bi_buf = 0;
                   2554:         s->bi_valid = 0;
                   2555:     } else if (s->bi_valid >= 8) {
                   2556:         put_byte(s, (Byte)s->bi_buf);
                   2557:         s->bi_buf >>= 8;
                   2558:         s->bi_valid -= 8;
                   2559:     }
                   2560: }
                   2561:
                   2562: /* ===========================================================================
                   2563:  * Flush the bit buffer and align the output on a byte boundary
                   2564:  */
                   2565: local void bi_windup(s)
                   2566:     deflate_state *s;
                   2567: {
                   2568:     if (s->bi_valid > 8) {
                   2569:         put_short(s, s->bi_buf);
                   2570:     } else if (s->bi_valid > 0) {
                   2571:         put_byte(s, (Byte)s->bi_buf);
                   2572:     }
                   2573:     s->bi_buf = 0;
                   2574:     s->bi_valid = 0;
                   2575: #ifdef DEBUG_ZLIB
                   2576:     s->bits_sent = (s->bits_sent+7) & ~7;
                   2577: #endif
                   2578: }
                   2579:
                   2580: /* ===========================================================================
                   2581:  * Copy a stored block, storing first the length and its
                   2582:  * one's complement if requested.
                   2583:  */
                   2584: local void copy_block(s, buf, len, header)
                   2585:     deflate_state *s;
                   2586:     charf    *buf;    /* the input data */
                   2587:     unsigned len;     /* its length */
                   2588:     int      header;  /* true if block header must be written */
                   2589: {
                   2590:     bi_windup(s);        /* align on byte boundary */
                   2591:     s->last_eob_len = 8; /* enough lookahead for inflate */
                   2592:
                   2593:     if (header) {
                   2594:         put_short(s, (ush)len);
                   2595:         put_short(s, (ush)~len);
                   2596: #ifdef DEBUG_ZLIB
                   2597:         s->bits_sent += 2*16;
                   2598: #endif
                   2599:     }
                   2600: #ifdef DEBUG_ZLIB
                   2601:     s->bits_sent += (ulg)len<<3;
                   2602: #endif
                   2603:     while (len--) {
                   2604:         put_byte(s, *buf++);
                   2605:     }
                   2606: }
                   2607: #endif /* NO_DEFLATE */
                   2608:
                   2609: /*+++++*/
                   2610: /* infblock.h -- header to use infblock.c
                   2611:  * Copyright (C) 1995 Mark Adler
                   2612:  * For conditions of distribution and use, see copyright notice in zlib.h
                   2613:  */
                   2614:
                   2615: /* WARNING: this file should *not* be used by applications. It is
                   2616:    part of the implementation of the compression library and is
                   2617:    subject to change. Applications should only use zlib.h.
                   2618:  */
                   2619:
                   2620: struct inflate_blocks_state;
                   2621: typedef struct inflate_blocks_state FAR inflate_blocks_statef;
                   2622:
                   2623: local inflate_blocks_statef * inflate_blocks_new OF((
                   2624:     z_stream *z,
                   2625:     check_func c,               /* check function */
                   2626:     uInt w));                   /* window size */
                   2627:
                   2628: local int inflate_blocks OF((
                   2629:     inflate_blocks_statef *,
                   2630:     z_stream *,
                   2631:     int));                      /* initial return code */
                   2632:
                   2633: local void inflate_blocks_reset OF((
                   2634:     inflate_blocks_statef *,
                   2635:     z_stream *,
                   2636:     uLongf *));                  /* check value on output */
                   2637:
                   2638: local int inflate_blocks_free OF((
                   2639:     inflate_blocks_statef *,
                   2640:     z_stream *,
                   2641:     uLongf *));                  /* check value on output */
                   2642:
                   2643: local int inflate_addhistory OF((
                   2644:     inflate_blocks_statef *,
                   2645:     z_stream *));
                   2646:
                   2647: local int inflate_packet_flush OF((
                   2648:     inflate_blocks_statef *));
                   2649:
                   2650: /*+++++*/
                   2651: /* inftrees.h -- header to use inftrees.c
                   2652:  * Copyright (C) 1995 Mark Adler
                   2653:  * For conditions of distribution and use, see copyright notice in zlib.h
                   2654:  */
                   2655:
                   2656: /* WARNING: this file should *not* be used by applications. It is
                   2657:    part of the implementation of the compression library and is
                   2658:    subject to change. Applications should only use zlib.h.
                   2659:  */
                   2660:
                   2661: /* Huffman code lookup table entry--this entry is four bytes for machines
                   2662:    that have 16-bit pointers (e.g. PC's in the small or medium model). */
                   2663:
                   2664: typedef struct inflate_huft_s FAR inflate_huft;
                   2665:
                   2666: struct inflate_huft_s {
                   2667:   union {
                   2668:     struct {
                   2669:       Byte Exop;        /* number of extra bits or operation */
                   2670:       Byte Bits;        /* number of bits in this code or subcode */
                   2671:     } what;
                   2672:     uInt Nalloc;       /* number of these allocated here */
                   2673:     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
                   2674:   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
                   2675:   union {
                   2676:     uInt Base;          /* literal, length base, or distance base */
                   2677:     inflate_huft *Next; /* pointer to next level of table */
                   2678:   } more;
                   2679: };
                   2680:
                   2681: #ifdef DEBUG_ZLIB
                   2682:   local uInt inflate_hufts;
                   2683: #endif
                   2684:
                   2685: local int inflate_trees_bits OF((
                   2686:     uIntf *,                    /* 19 code lengths */
                   2687:     uIntf *,                    /* bits tree desired/actual depth */
                   2688:     inflate_huft * FAR *,       /* bits tree result */
                   2689:     z_stream *));               /* for zalloc, zfree functions */
                   2690:
                   2691: local int inflate_trees_dynamic OF((
                   2692:     uInt,                       /* number of literal/length codes */
                   2693:     uInt,                       /* number of distance codes */
                   2694:     uIntf *,                    /* that many (total) code lengths */
                   2695:     uIntf *,                    /* literal desired/actual bit depth */
                   2696:     uIntf *,                    /* distance desired/actual bit depth */
                   2697:     inflate_huft * FAR *,       /* literal/length tree result */
                   2698:     inflate_huft * FAR *,       /* distance tree result */
                   2699:     z_stream *));               /* for zalloc, zfree functions */
                   2700:
                   2701: local int inflate_trees_fixed OF((
                   2702:     uIntf *,                    /* literal desired/actual bit depth */
                   2703:     uIntf *,                    /* distance desired/actual bit depth */
                   2704:     inflate_huft * FAR *,       /* literal/length tree result */
                   2705:     inflate_huft * FAR *));     /* distance tree result */
                   2706:
                   2707: local int inflate_trees_free OF((
                   2708:     inflate_huft *,             /* tables to free */
                   2709:     z_stream *));               /* for zfree function */
                   2710:
                   2711:
                   2712: /*+++++*/
                   2713: /* infcodes.h -- header to use infcodes.c
                   2714:  * Copyright (C) 1995 Mark Adler
                   2715:  * For conditions of distribution and use, see copyright notice in zlib.h
                   2716:  */
                   2717:
                   2718: /* WARNING: this file should *not* be used by applications. It is
                   2719:    part of the implementation of the compression library and is
                   2720:    subject to change. Applications should only use zlib.h.
                   2721:  */
                   2722:
                   2723: struct inflate_codes_state;
                   2724: typedef struct inflate_codes_state FAR inflate_codes_statef;
                   2725:
                   2726: local inflate_codes_statef *inflate_codes_new OF((
                   2727:     uInt, uInt,
                   2728:     inflate_huft *, inflate_huft *,
                   2729:     z_stream *));
                   2730:
                   2731: local int inflate_codes OF((
                   2732:     inflate_blocks_statef *,
                   2733:     z_stream *,
                   2734:     int));
                   2735:
                   2736: local void inflate_codes_free OF((
                   2737:     inflate_codes_statef *,
                   2738:     z_stream *));
                   2739:
                   2740:
                   2741: /*+++++*/
                   2742: /* inflate.c -- zlib interface to inflate modules
                   2743:  * Copyright (C) 1995 Mark Adler
                   2744:  * For conditions of distribution and use, see copyright notice in zlib.h
                   2745:  */
                   2746:
                   2747: /* inflate private state */
                   2748: struct internal_state {
                   2749:
                   2750:   /* mode */
                   2751:   enum {
                   2752:       METHOD,   /* waiting for method byte */
                   2753:       FLAG,     /* waiting for flag byte */
                   2754:       BLOCKS,   /* decompressing blocks */
                   2755:       CHECK4,   /* four check bytes to go */
                   2756:       CHECK3,   /* three check bytes to go */
                   2757:       CHECK2,   /* two check bytes to go */
                   2758:       CHECK1,   /* one check byte to go */
                   2759:       DONE,     /* finished check, done */
                   2760:       BAD}      /* got an error--stay here */
                   2761:     mode;               /* current inflate mode */
                   2762:
                   2763:   /* mode dependent information */
                   2764:   union {
                   2765:     uInt method;        /* if FLAGS, method byte */
                   2766:     struct {
                   2767:       uLong was;                /* computed check value */
                   2768:       uLong need;               /* stream check value */
                   2769:     } check;            /* if CHECK, check values to compare */
                   2770:     uInt marker;        /* if BAD, inflateSync's marker bytes count */
                   2771:   } sub;        /* submode */
                   2772:
                   2773:   /* mode independent information */
                   2774:   int  nowrap;          /* flag for no wrapper */
                   2775:   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
                   2776:   inflate_blocks_statef
                   2777:     *blocks;            /* current inflate_blocks state */
                   2778:
                   2779: };
                   2780:
                   2781:
                   2782: int inflateReset(z)
                   2783: z_stream *z;
                   2784: {
                   2785:   uLong c;
                   2786:
                   2787:   if (z == Z_NULL || z->state == Z_NULL)
                   2788:     return Z_STREAM_ERROR;
                   2789:   z->total_in = z->total_out = 0;
                   2790:   z->msg = Z_NULL;
                   2791:   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
                   2792:   inflate_blocks_reset(z->state->blocks, z, &c);
                   2793:   Trace((stderr, "inflate: reset\n"));
                   2794:   return Z_OK;
                   2795: }
                   2796:
                   2797:
                   2798: int inflateEnd(z)
                   2799: z_stream *z;
                   2800: {
                   2801:   uLong c;
                   2802:
                   2803:   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
                   2804:     return Z_STREAM_ERROR;
                   2805:   if (z->state->blocks != Z_NULL)
                   2806:     inflate_blocks_free(z->state->blocks, z, &c);
                   2807:   ZFREE(z, z->state, sizeof(struct internal_state));
                   2808:   z->state = Z_NULL;
                   2809:   Trace((stderr, "inflate: end\n"));
                   2810:   return Z_OK;
                   2811: }
                   2812:
                   2813:
                   2814: int inflateInit2(z, w)
                   2815: z_stream *z;
                   2816: int w;
                   2817: {
                   2818:   /* initialize state */
                   2819:   if (z == Z_NULL)
                   2820:     return Z_STREAM_ERROR;
                   2821: /*  if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
                   2822: /*  if (z->zfree == Z_NULL) z->zfree = zcfree; */
                   2823:   if ((z->state = (struct internal_state FAR *)
                   2824:        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
                   2825:     return Z_MEM_ERROR;
                   2826:   z->state->blocks = Z_NULL;
                   2827:
                   2828:   /* handle undocumented nowrap option (no zlib header or check) */
                   2829:   z->state->nowrap = 0;
                   2830:   if (w < 0)
                   2831:   {
                   2832:     w = - w;
                   2833:     z->state->nowrap = 1;
                   2834:   }
                   2835:
                   2836:   /* set window size */
                   2837:   if (w < 8 || w > 15)
                   2838:   {
                   2839:     inflateEnd(z);
                   2840:     return Z_STREAM_ERROR;
                   2841:   }
                   2842:   z->state->wbits = (uInt)w;
                   2843:
                   2844:   /* create inflate_blocks state */
                   2845:   if ((z->state->blocks =
                   2846:        inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
                   2847:       == Z_NULL)
                   2848:   {
                   2849:     inflateEnd(z);
                   2850:     return Z_MEM_ERROR;
                   2851:   }
                   2852:   Trace((stderr, "inflate: allocated\n"));
                   2853:
                   2854:   /* reset state */
                   2855:   inflateReset(z);
                   2856:   return Z_OK;
                   2857: }
                   2858:
                   2859:
                   2860: int inflateInit(z)
                   2861: z_stream *z;
                   2862: {
                   2863:   return inflateInit2(z, DEF_WBITS);
                   2864: }
                   2865:
                   2866:
                   2867: #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
                   2868: #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
                   2869:
                   2870: int inflate(z, f)
                   2871: z_stream *z;
                   2872: int f;
                   2873: {
                   2874:   int r;
                   2875:   uInt b;
                   2876:
                   2877:   if (z == Z_NULL || z->next_in == Z_NULL)
                   2878:     return Z_STREAM_ERROR;
                   2879:   r = Z_BUF_ERROR;
                   2880:   while (1) switch (z->state->mode)
                   2881:   {
                   2882:     case METHOD:
                   2883:       NEEDBYTE
                   2884:       if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
                   2885:       {
                   2886:         z->state->mode = BAD;
                   2887:         z->msg = "unknown compression method";
                   2888:         z->state->sub.marker = 5;       /* can't try inflateSync */
                   2889:         break;
                   2890:       }
                   2891:       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
                   2892:       {
                   2893:         z->state->mode = BAD;
                   2894:         z->msg = "invalid window size";
                   2895:         z->state->sub.marker = 5;       /* can't try inflateSync */
                   2896:         break;
                   2897:       }
                   2898:       z->state->mode = FLAG;
                   2899:     case FLAG:
                   2900:       NEEDBYTE
                   2901:       if ((b = NEXTBYTE) & 0x20)
                   2902:       {
                   2903:         z->state->mode = BAD;
                   2904:         z->msg = "invalid reserved bit";
                   2905:         z->state->sub.marker = 5;       /* can't try inflateSync */
                   2906:         break;
                   2907:       }
                   2908:       if (((z->state->sub.method << 8) + b) % 31)
                   2909:       {
                   2910:         z->state->mode = BAD;
                   2911:         z->msg = "incorrect header check";
                   2912:         z->state->sub.marker = 5;       /* can't try inflateSync */
                   2913:         break;
                   2914:       }
                   2915:       Trace((stderr, "inflate: zlib header ok\n"));
                   2916:       z->state->mode = BLOCKS;
                   2917:     case BLOCKS:
                   2918:       r = inflate_blocks(z->state->blocks, z, r);
                   2919:       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
                   2920:          r = inflate_packet_flush(z->state->blocks);
                   2921:       if (r == Z_DATA_ERROR)
                   2922:       {
                   2923:         z->state->mode = BAD;
                   2924:         z->state->sub.marker = 0;       /* can try inflateSync */
                   2925:         break;
                   2926:       }
                   2927:       if (r != Z_STREAM_END)
                   2928:         return r;
                   2929:       r = Z_OK;
                   2930:       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
                   2931:       if (z->state->nowrap)
                   2932:       {
                   2933:         z->state->mode = DONE;
                   2934:         break;
                   2935:       }
                   2936:       z->state->mode = CHECK4;
                   2937:     case CHECK4:
                   2938:       NEEDBYTE
                   2939:       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
                   2940:       z->state->mode = CHECK3;
                   2941:     case CHECK3:
                   2942:       NEEDBYTE
                   2943:       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
                   2944:       z->state->mode = CHECK2;
                   2945:     case CHECK2:
                   2946:       NEEDBYTE
                   2947:       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
                   2948:       z->state->mode = CHECK1;
                   2949:     case CHECK1:
                   2950:       NEEDBYTE
                   2951:       z->state->sub.check.need += (uLong)NEXTBYTE;
                   2952:
                   2953:       if (z->state->sub.check.was != z->state->sub.check.need)
                   2954:       {
                   2955:         z->state->mode = BAD;
                   2956:         z->msg = "incorrect data check";
                   2957:         z->state->sub.marker = 5;       /* can't try inflateSync */
                   2958:         break;
                   2959:       }
                   2960:       Trace((stderr, "inflate: zlib check ok\n"));
                   2961:       z->state->mode = DONE;
                   2962:     case DONE:
                   2963:       return Z_STREAM_END;
                   2964:     case BAD:
                   2965:       return Z_DATA_ERROR;
                   2966:     default:
                   2967:       return Z_STREAM_ERROR;
                   2968:   }
                   2969:
                   2970:  empty:
                   2971:   if (f != Z_PACKET_FLUSH)
                   2972:     return r;
                   2973:   z->state->mode = BAD;
                   2974:   z->state->sub.marker = 0;       /* can try inflateSync */
                   2975:   return Z_DATA_ERROR;
                   2976: }
                   2977:
                   2978: /*
                   2979:  * This subroutine adds the data at next_in/avail_in to the output history
                   2980:  * without performing any output.  The output buffer must be "caught up";
                   2981:  * i.e. no pending output (hence s->read equals s->write), and the state must
                   2982:  * be BLOCKS (i.e. we should be willing to see the start of a series of
                   2983:  * BLOCKS).  On exit, the output will also be caught up, and the checksum
                   2984:  * will have been updated if need be.
                   2985:  */
                   2986:
                   2987: int inflateIncomp(z)
                   2988: z_stream *z;
                   2989: {
                   2990:     if (z->state->mode != BLOCKS)
                   2991:        return Z_DATA_ERROR;
                   2992:     return inflate_addhistory(z->state->blocks, z);
                   2993: }
                   2994:
                   2995:
                   2996: int inflateSync(z)
                   2997: z_stream *z;
                   2998: {
                   2999:   uInt n;       /* number of bytes to look at */
                   3000:   Bytef *p;     /* pointer to bytes */
                   3001:   uInt m;       /* number of marker bytes found in a row */
                   3002:   uLong r, w;   /* temporaries to save total_in and total_out */
                   3003:
                   3004:   /* set up */
                   3005:   if (z == Z_NULL || z->state == Z_NULL)
                   3006:     return Z_STREAM_ERROR;
                   3007:   if (z->state->mode != BAD)
                   3008:   {
                   3009:     z->state->mode = BAD;
                   3010:     z->state->sub.marker = 0;
                   3011:   }
                   3012:   if ((n = z->avail_in) == 0)
                   3013:     return Z_BUF_ERROR;
                   3014:   p = z->next_in;
                   3015:   m = z->state->sub.marker;
                   3016:
                   3017:   /* search */
                   3018:   while (n && m < 4)
                   3019:   {
                   3020:     if (*p == (Byte)(m < 2 ? 0 : 0xff))
                   3021:       m++;
                   3022:     else if (*p)
                   3023:       m = 0;
                   3024:     else
                   3025:       m = 4 - m;
                   3026:     p++, n--;
                   3027:   }
                   3028:
                   3029:   /* restore */
                   3030:   z->total_in += p - z->next_in;
                   3031:   z->next_in = p;
                   3032:   z->avail_in = n;
                   3033:   z->state->sub.marker = m;
                   3034:
                   3035:   /* return no joy or set up to restart on a new block */
                   3036:   if (m != 4)
                   3037:     return Z_DATA_ERROR;
                   3038:   r = z->total_in;  w = z->total_out;
                   3039:   inflateReset(z);
                   3040:   z->total_in = r;  z->total_out = w;
                   3041:   z->state->mode = BLOCKS;
                   3042:   return Z_OK;
                   3043: }
                   3044:
                   3045: #undef NEEDBYTE
                   3046: #undef NEXTBYTE
                   3047:
                   3048: /*+++++*/
                   3049: /* infutil.h -- types and macros common to blocks and codes
                   3050:  * Copyright (C) 1995 Mark Adler
                   3051:  * For conditions of distribution and use, see copyright notice in zlib.h
                   3052:  */
                   3053:
                   3054: /* WARNING: this file should *not* be used by applications. It is
                   3055:    part of the implementation of the compression library and is
                   3056:    subject to change. Applications should only use zlib.h.
                   3057:  */
                   3058:
                   3059: /* inflate blocks semi-private state */
                   3060: struct inflate_blocks_state {
                   3061:
                   3062:   /* mode */
                   3063:   enum {
                   3064:       TYPE,     /* get type bits (3, including end bit) */
                   3065:       LENS,     /* get lengths for stored */
                   3066:       STORED,   /* processing stored block */
                   3067:       TABLE,    /* get table lengths */
                   3068:       BTREE,    /* get bit lengths tree for a dynamic block */
                   3069:       DTREE,    /* get length, distance trees for a dynamic block */
                   3070:       CODES,    /* processing fixed or dynamic block */
                   3071:       DRY,      /* output remaining window bytes */
                   3072:       DONEB,     /* finished last block, done */
                   3073:       BADB}      /* got a data error--stuck here */
                   3074:     mode;               /* current inflate_block mode */
                   3075:
                   3076:   /* mode dependent information */
                   3077:   union {
                   3078:     uInt left;          /* if STORED, bytes left to copy */
                   3079:     struct {
                   3080:       uInt table;               /* table lengths (14 bits) */
                   3081:       uInt index;               /* index into blens (or border) */
                   3082:       uIntf *blens;             /* bit lengths of codes */
                   3083:       uInt bb;                  /* bit length tree depth */
                   3084:       inflate_huft *tb;         /* bit length decoding tree */
                   3085:       int nblens;              /* # elements allocated at blens */
                   3086:     } trees;            /* if DTREE, decoding info for trees */
                   3087:     struct {
                   3088:       inflate_huft *tl, *td;    /* trees to free */
                   3089:       inflate_codes_statef
                   3090:          *codes;
                   3091:     } decode;           /* if CODES, current state */
                   3092:   } sub;                /* submode */
                   3093:   uInt last;            /* true if this block is the last block */
                   3094:
                   3095:   /* mode independent information */
                   3096:   uInt bitk;            /* bits in bit buffer */
                   3097:   uLong bitb;           /* bit buffer */
                   3098:   Bytef *window;        /* sliding window */
                   3099:   Bytef *end;           /* one byte after sliding window */
                   3100:   Bytef *read;          /* window read pointer */
                   3101:   Bytef *write;         /* window write pointer */
                   3102:   check_func checkfn;   /* check function */
                   3103:   uLong check;          /* check on output */
                   3104:
                   3105: };
                   3106:
                   3107:
                   3108: /* defines for inflate input/output */
                   3109: /*   update pointers and return */
                   3110: #define UPDBITS {s->bitb=b;s->bitk=k;}
                   3111: #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
                   3112: #define UPDOUT {s->write=q;}
                   3113: #define UPDATE {UPDBITS UPDIN UPDOUT}
                   3114: #define LEAVE {UPDATE return inflate_flush(s,z,r);}
                   3115: /*   get bytes and bits */
                   3116: #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
                   3117: #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
                   3118: #define NEXTBYTE (n--,*p++)
                   3119: #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
                   3120: #define DUMPBITS(j) {b>>=(j);k-=(j);}
                   3121: /*   output bytes */
                   3122: #define WAVAIL (q<s->read?s->read-q-1:s->end-q)
                   3123: #define LOADOUT {q=s->write;m=WAVAIL;}
                   3124: #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
                   3125: #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
                   3126: #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
                   3127: #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
                   3128: /*   load local pointers */
                   3129: #define LOAD {LOADIN LOADOUT}
                   3130:
                   3131: /* And'ing with mask[n] masks the lower n bits */
                   3132: local const uInt inflate_mask[] = {
                   3133:     0x0000,
                   3134:     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
                   3135:     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
                   3136: };
                   3137:
                   3138: /* copy as much as possible from the sliding window to the output area */
                   3139: local int inflate_flush OF((
                   3140:     inflate_blocks_statef *,
                   3141:     z_stream *,
                   3142:     int));
                   3143:
                   3144: /*+++++*/
                   3145: /* inffast.h -- header to use inffast.c
                   3146:  * Copyright (C) 1995 Mark Adler
                   3147:  * For conditions of distribution and use, see copyright notice in zlib.h
                   3148:  */
                   3149:
                   3150: /* WARNING: this file should *not* be used by applications. It is
                   3151:    part of the implementation of the compression library and is
                   3152:    subject to change. Applications should only use zlib.h.
                   3153:  */
                   3154:
                   3155: local int inflate_fast OF((
                   3156:     uInt,
                   3157:     uInt,
                   3158:     inflate_huft *,
                   3159:     inflate_huft *,
                   3160:     inflate_blocks_statef *,
                   3161:     z_stream *));
                   3162:
                   3163:
                   3164: /*+++++*/
                   3165: /* infblock.c -- interpret and process block types to last block
                   3166:  * Copyright (C) 1995 Mark Adler
                   3167:  * For conditions of distribution and use, see copyright notice in zlib.h
                   3168:  */
                   3169:
                   3170: /* Table for deflate from PKZIP's appnote.txt. */
                   3171: local uInt border[] = { /* Order of the bit length code lengths */
                   3172:         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
                   3173:
                   3174: /*
                   3175:    Notes beyond the 1.93a appnote.txt:
                   3176:
                   3177:    1. Distance pointers never point before the beginning of the output
                   3178:       stream.
                   3179:    2. Distance pointers can point back across blocks, up to 32k away.
                   3180:    3. There is an implied maximum of 7 bits for the bit length table and
                   3181:       15 bits for the actual data.
                   3182:    4. If only one code exists, then it is encoded using one bit.  (Zero
                   3183:       would be more efficient, but perhaps a little confusing.)  If two
                   3184:       codes exist, they are coded using one bit each (0 and 1).
                   3185:    5. There is no way of sending zero distance codes--a dummy must be
                   3186:       sent if there are none.  (History: a pre 2.0 version of PKZIP would
                   3187:       store blocks with no distance codes, but this was discovered to be
                   3188:       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
                   3189:       zero distance codes, which is sent as one code of zero bits in
                   3190:       length.
                   3191:    6. There are up to 286 literal/length codes.  Code 256 represents the
                   3192:       end-of-block.  Note however that the static length tree defines
                   3193:       288 codes just to fill out the Huffman codes.  Codes 286 and 287
                   3194:       cannot be used though, since there is no length base or extra bits
                   3195:       defined for them.  Similarily, there are up to 30 distance codes.
                   3196:       However, static trees define 32 codes (all 5 bits) to fill out the
                   3197:       Huffman codes, but the last two had better not show up in the data.
                   3198:    7. Unzip can check dynamic Huffman blocks for complete code sets.
                   3199:       The exception is that a single code would not be complete (see #4).
                   3200:    8. The five bits following the block type is really the number of
                   3201:       literal codes sent minus 257.
                   3202:    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
                   3203:       (1+6+6).  Therefore, to output three times the length, you output
                   3204:       three codes (1+1+1), whereas to output four times the same length,
                   3205:       you only need two codes (1+3).  Hmm.
                   3206:   10. In the tree reconstruction algorithm, Code = Code + Increment
                   3207:       only if BitLength(i) is not zero.  (Pretty obvious.)
                   3208:   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
                   3209:   12. Note: length code 284 can represent 227-258, but length code 285
                   3210:       really is 258.  The last length deserves its own, short code
                   3211:       since it gets used a lot in very redundant files.  The length
                   3212:       258 is special since 258 - 3 (the min match length) is 255.
                   3213:   13. The literal/length and distance code bit lengths are read as a
                   3214:       single stream of lengths.  It is possible (and advantageous) for
                   3215:       a repeat code (16, 17, or 18) to go across the boundary between
                   3216:       the two sets of lengths.
                   3217:  */
                   3218:
                   3219:
                   3220: local void inflate_blocks_reset(s, z, c)
                   3221: inflate_blocks_statef *s;
                   3222: z_stream *z;
                   3223: uLongf *c;
                   3224: {
                   3225:   if (s->checkfn != Z_NULL)
                   3226:     *c = s->check;
                   3227:   if (s->mode == BTREE || s->mode == DTREE)
                   3228:     ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
                   3229:   if (s->mode == CODES)
                   3230:   {
                   3231:     inflate_codes_free(s->sub.decode.codes, z);
                   3232:     inflate_trees_free(s->sub.decode.td, z);
                   3233:     inflate_trees_free(s->sub.decode.tl, z);
                   3234:   }
                   3235:   s->mode = TYPE;
                   3236:   s->bitk = 0;
                   3237:   s->bitb = 0;
                   3238:   s->read = s->write = s->window;
                   3239:   if (s->checkfn != Z_NULL)
                   3240:     s->check = (*s->checkfn)(0L, Z_NULL, 0);
                   3241:   Trace((stderr, "inflate:   blocks reset\n"));
                   3242: }
                   3243:
                   3244:
                   3245: local inflate_blocks_statef *inflate_blocks_new(z, c, w)
                   3246: z_stream *z;
                   3247: check_func c;
                   3248: uInt w;
                   3249: {
                   3250:   inflate_blocks_statef *s;
                   3251:
                   3252:   if ((s = (inflate_blocks_statef *)ZALLOC
                   3253:        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
                   3254:     return s;
                   3255:   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
                   3256:   {
                   3257:     ZFREE(z, s, sizeof(struct inflate_blocks_state));
                   3258:     return Z_NULL;
                   3259:   }
                   3260:   s->end = s->window + w;
                   3261:   s->checkfn = c;
                   3262:   s->mode = TYPE;
                   3263:   Trace((stderr, "inflate:   blocks allocated\n"));
                   3264:   inflate_blocks_reset(s, z, &s->check);
                   3265:   return s;
                   3266: }
                   3267:
                   3268:
                   3269: local int inflate_blocks(s, z, r)
                   3270: inflate_blocks_statef *s;
                   3271: z_stream *z;
                   3272: int r;
                   3273: {
                   3274:   uInt t;               /* temporary storage */
                   3275:   uLong b;              /* bit buffer */
                   3276:   uInt k;               /* bits in bit buffer */
                   3277:   Bytef *p;             /* input data pointer */
                   3278:   uInt n;               /* bytes available there */
                   3279:   Bytef *q;             /* output window write pointer */
                   3280:   uInt m;               /* bytes to end of window or read pointer */
                   3281:
                   3282:   /* copy input/output information to locals (UPDATE macro restores) */
                   3283:   LOAD
                   3284:
                   3285:   /* process input based on current state */
                   3286:   while (1) switch (s->mode)
                   3287:   {
                   3288:     case TYPE:
                   3289:       NEEDBITS(3)
                   3290:       t = (uInt)b & 7;
                   3291:       s->last = t & 1;
                   3292:       switch (t >> 1)
                   3293:       {
                   3294:         case 0:                         /* stored */
                   3295:           Trace((stderr, "inflate:     stored block%s\n",
                   3296:                  s->last ? " (last)" : ""));
                   3297:           DUMPBITS(3)
                   3298:           t = k & 7;                    /* go to byte boundary */
                   3299:           DUMPBITS(t)
                   3300:           s->mode = LENS;               /* get length of stored block */
                   3301:           break;
                   3302:         case 1:                         /* fixed */
                   3303:           Trace((stderr, "inflate:     fixed codes block%s\n",
                   3304:                  s->last ? " (last)" : ""));
                   3305:           {
                   3306:             uInt bl, bd;
                   3307:             inflate_huft *tl, *td;
                   3308:
                   3309:             inflate_trees_fixed(&bl, &bd, &tl, &td);
                   3310:             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
                   3311:             if (s->sub.decode.codes == Z_NULL)
                   3312:             {
                   3313:               r = Z_MEM_ERROR;
                   3314:               LEAVE
                   3315:             }
                   3316:             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
                   3317:             s->sub.decode.td = Z_NULL;
                   3318:           }
                   3319:           DUMPBITS(3)
                   3320:           s->mode = CODES;
                   3321:           break;
                   3322:         case 2:                         /* dynamic */
                   3323:           Trace((stderr, "inflate:     dynamic codes block%s\n",
                   3324:                  s->last ? " (last)" : ""));
                   3325:           DUMPBITS(3)
                   3326:           s->mode = TABLE;
                   3327:           break;
                   3328:         case 3:                         /* illegal */
                   3329:           DUMPBITS(3)
                   3330:           s->mode = BADB;
                   3331:           z->msg = "invalid block type";
                   3332:           r = Z_DATA_ERROR;
                   3333:           LEAVE
                   3334:       }
                   3335:       break;
                   3336:     case LENS:
                   3337:       NEEDBITS(32)
                   3338:       if (((~b) >> 16) != (b & 0xffff))
                   3339:       {
                   3340:         s->mode = BADB;
                   3341:         z->msg = "invalid stored block lengths";
                   3342:         r = Z_DATA_ERROR;
                   3343:         LEAVE
                   3344:       }
                   3345:       s->sub.left = (uInt)b & 0xffff;
                   3346:       b = k = 0;                      /* dump bits */
                   3347:       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
                   3348:       s->mode = s->sub.left ? STORED : TYPE;
                   3349:       break;
                   3350:     case STORED:
                   3351:       if (n == 0)
                   3352:         LEAVE
                   3353:       NEEDOUT
                   3354:       t = s->sub.left;
                   3355:       if (t > n) t = n;
                   3356:       if (t > m) t = m;
                   3357:       zmemcpy(q, p, t);
                   3358:       p += t;  n -= t;
                   3359:       q += t;  m -= t;
                   3360:       if ((s->sub.left -= t) != 0)
                   3361:         break;
                   3362:       Tracev((stderr, "inflate:       stored end, %lu total out\n",
                   3363:               z->total_out + (q >= s->read ? q - s->read :
                   3364:               (s->end - s->read) + (q - s->window))));
                   3365:       s->mode = s->last ? DRY : TYPE;
                   3366:       break;
                   3367:     case TABLE:
                   3368:       NEEDBITS(14)
                   3369:       s->sub.trees.table = t = (uInt)b & 0x3fff;
                   3370: #ifndef PKZIP_BUG_WORKAROUND
                   3371:       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
                   3372:       {
                   3373:         s->mode = BADB;
                   3374:         z->msg = "too many length or distance symbols";
                   3375:         r = Z_DATA_ERROR;
                   3376:         LEAVE
                   3377:       }
                   3378: #endif
                   3379:       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
                   3380:       if (t < 19)
                   3381:         t = 19;
                   3382:       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
                   3383:       {
                   3384:         r = Z_MEM_ERROR;
                   3385:         LEAVE
                   3386:       }
                   3387:       s->sub.trees.nblens = t;
                   3388:       DUMPBITS(14)
                   3389:       s->sub.trees.index = 0;
                   3390:       Tracev((stderr, "inflate:       table sizes ok\n"));
                   3391:       s->mode = BTREE;
                   3392:     case BTREE:
                   3393:       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
                   3394:       {
                   3395:         NEEDBITS(3)
                   3396:         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
                   3397:         DUMPBITS(3)
                   3398:       }
                   3399:       while (s->sub.trees.index < 19)
                   3400:         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
                   3401:       s->sub.trees.bb = 7;
                   3402:       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
                   3403:                              &s->sub.trees.tb, z);
                   3404:       if (t != Z_OK)
                   3405:       {
                   3406:         r = t;
                   3407:         if (r == Z_DATA_ERROR)
                   3408:         {
                   3409:           ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
                   3410:           s->mode = BADB;
                   3411:         }
                   3412:         LEAVE
                   3413:       }
                   3414:       s->sub.trees.index = 0;
                   3415:       Tracev((stderr, "inflate:       bits tree ok\n"));
                   3416:       s->mode = DTREE;
                   3417:     case DTREE:
                   3418:       while (t = s->sub.trees.table,
                   3419:              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
                   3420:       {
                   3421:         inflate_huft *h;
                   3422:         uInt i, j, c;
                   3423:
                   3424:         t = s->sub.trees.bb;
                   3425:         NEEDBITS(t)
                   3426:         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
                   3427:         t = h->word.what.Bits;
                   3428:         c = h->more.Base;
                   3429:         if (c < 16)
                   3430:         {
                   3431:           DUMPBITS(t)
                   3432:           s->sub.trees.blens[s->sub.trees.index++] = c;
                   3433:         }
                   3434:         else /* c == 16..18 */
                   3435:         {
                   3436:           i = c == 18 ? 7 : c - 14;
                   3437:           j = c == 18 ? 11 : 3;
                   3438:           NEEDBITS(t + i)
                   3439:           DUMPBITS(t)
                   3440:           j += (uInt)b & inflate_mask[i];
                   3441:           DUMPBITS(i)
                   3442:           i = s->sub.trees.index;
                   3443:           t = s->sub.trees.table;
                   3444:           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
                   3445:               (c == 16 && i < 1))
                   3446:           {
                   3447:             s->mode = BADB;
                   3448:             z->msg = "invalid bit length repeat";
                   3449:             r = Z_DATA_ERROR;
                   3450:             LEAVE
                   3451:           }
                   3452:           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
                   3453:           do {
                   3454:             s->sub.trees.blens[i++] = c;
                   3455:           } while (--j);
                   3456:           s->sub.trees.index = i;
                   3457:         }
                   3458:       }
                   3459:       inflate_trees_free(s->sub.trees.tb, z);
                   3460:       s->sub.trees.tb = Z_NULL;
                   3461:       {
                   3462:         uInt bl, bd;
                   3463:         inflate_huft *tl, *td;
                   3464:         inflate_codes_statef *c;
                   3465:
                   3466:         bl = 9;         /* must be <= 9 for lookahead assumptions */
                   3467:         bd = 6;         /* must be <= 9 for lookahead assumptions */
                   3468:         t = s->sub.trees.table;
                   3469:         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
                   3470:                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
                   3471:         if (t != Z_OK)
                   3472:         {
                   3473:           if (t == (uInt)Z_DATA_ERROR)
                   3474:           {
                   3475:             ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
                   3476:             s->mode = BADB;
                   3477:           }
                   3478:           r = t;
                   3479:           LEAVE
                   3480:         }
                   3481:         Tracev((stderr, "inflate:       trees ok\n"));
                   3482:         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
                   3483:         {
                   3484:           inflate_trees_free(td, z);
                   3485:           inflate_trees_free(tl, z);
                   3486:           r = Z_MEM_ERROR;
                   3487:           LEAVE
                   3488:         }
                   3489:         ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
                   3490:         s->sub.decode.codes = c;
                   3491:         s->sub.decode.tl = tl;
                   3492:         s->sub.decode.td = td;
                   3493:       }
                   3494:       s->mode = CODES;
                   3495:     case CODES:
                   3496:       UPDATE
                   3497:       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
                   3498:         return inflate_flush(s, z, r);
                   3499:       r = Z_OK;
                   3500:       inflate_codes_free(s->sub.decode.codes, z);
                   3501:       inflate_trees_free(s->sub.decode.td, z);
                   3502:       inflate_trees_free(s->sub.decode.tl, z);
                   3503:       LOAD
                   3504:       Tracev((stderr, "inflate:       codes end, %lu total out\n",
                   3505:               z->total_out + (q >= s->read ? q - s->read :
                   3506:               (s->end - s->read) + (q - s->window))));
                   3507:       if (!s->last)
                   3508:       {
                   3509:         s->mode = TYPE;
                   3510:         break;
                   3511:       }
                   3512:       if (k > 7)              /* return unused byte, if any */
                   3513:       {
                   3514:         Assert(k < 16, "inflate_codes grabbed too many bytes")
                   3515:         k -= 8;
                   3516:         n++;
                   3517:         p--;                    /* can always return one */
                   3518:       }
                   3519:       s->mode = DRY;
                   3520:     case DRY:
                   3521:       FLUSH
                   3522:       if (s->read != s->write)
                   3523:         LEAVE
                   3524:       s->mode = DONEB;
                   3525:     case DONEB:
                   3526:       r = Z_STREAM_END;
                   3527:       LEAVE
                   3528:     case BADB:
                   3529:       r = Z_DATA_ERROR;
                   3530:       LEAVE
                   3531:     default:
                   3532:       r = Z_STREAM_ERROR;
                   3533:       LEAVE
                   3534:   }
                   3535: }
                   3536:
                   3537:
                   3538: local int inflate_blocks_free(s, z, c)
                   3539: inflate_blocks_statef *s;
                   3540: z_stream *z;
                   3541: uLongf *c;
                   3542: {
                   3543:   inflate_blocks_reset(s, z, c);
                   3544:   ZFREE(z, s->window, s->end - s->window);
                   3545:   ZFREE(z, s, sizeof(struct inflate_blocks_state));
                   3546:   Trace((stderr, "inflate:   blocks freed\n"));
                   3547:   return Z_OK;
                   3548: }
                   3549:
                   3550: /*
                   3551:  * This subroutine adds the data at next_in/avail_in to the output history
                   3552:  * without performing any output.  The output buffer must be "caught up";
                   3553:  * i.e. no pending output (hence s->read equals s->write), and the state must
                   3554:  * be BLOCKS (i.e. we should be willing to see the start of a series of
                   3555:  * BLOCKS).  On exit, the output will also be caught up, and the checksum
                   3556:  * will have been updated if need be.
                   3557:  */
                   3558: local int inflate_addhistory(s, z)
                   3559: inflate_blocks_statef *s;
                   3560: z_stream *z;
                   3561: {
                   3562:     uLong b;              /* bit buffer */  /* NOT USED HERE */
                   3563:     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
                   3564:     uInt t;               /* temporary storage */
                   3565:     Bytef *p;             /* input data pointer */
                   3566:     uInt n;               /* bytes available there */
                   3567:     Bytef *q;             /* output window write pointer */
                   3568:     uInt m;               /* bytes to end of window or read pointer */
                   3569:
                   3570:     if (s->read != s->write)
                   3571:        return Z_STREAM_ERROR;
                   3572:     if (s->mode != TYPE)
                   3573:        return Z_DATA_ERROR;
                   3574:
                   3575:     /* we're ready to rock */
                   3576:     LOAD
                   3577:     /* while there is input ready, copy to output buffer, moving
                   3578:      * pointers as needed.
                   3579:      */
                   3580:     while (n) {
                   3581:        t = n;  /* how many to do */
                   3582:        /* is there room until end of buffer? */
                   3583:        if (t > m) t = m;
                   3584:        /* update check information */
                   3585:        if (s->checkfn != Z_NULL)
                   3586:            s->check = (*s->checkfn)(s->check, q, t);
                   3587:        zmemcpy(q, p, t);
                   3588:        q += t;
                   3589:        p += t;
                   3590:        n -= t;
                   3591:        z->total_out += t;
                   3592:        s->read = q;    /* drag read pointer forward */
                   3593: /*      WRAP  */       /* expand WRAP macro by hand to handle s->read */
                   3594:        if (q == s->end) {
                   3595:            s->read = q = s->window;
                   3596:            m = WAVAIL;
                   3597:        }
                   3598:     }
                   3599:     UPDATE
                   3600:     return Z_OK;
                   3601: }
                   3602:
                   3603:
                   3604: /*
                   3605:  * At the end of a Deflate-compressed PPP packet, we expect to have seen
                   3606:  * a `stored' block type value but not the (zero) length bytes.
                   3607:  */
                   3608: local int inflate_packet_flush(s)
                   3609:     inflate_blocks_statef *s;
                   3610: {
                   3611:     if (s->mode != LENS)
                   3612:        return Z_DATA_ERROR;
                   3613:     s->mode = TYPE;
                   3614:     return Z_OK;
                   3615: }
                   3616:
                   3617:
                   3618: /*+++++*/
                   3619: /* inftrees.c -- generate Huffman trees for efficient decoding
                   3620:  * Copyright (C) 1995 Mark Adler
                   3621:  * For conditions of distribution and use, see copyright notice in zlib.h
                   3622:  */
                   3623:
                   3624: /* simplify the use of the inflate_huft type with some defines */
                   3625: #define base more.Base
                   3626: #define next more.Next
                   3627: #define exop word.what.Exop
                   3628: #define bits word.what.Bits
                   3629:
                   3630:
                   3631: local int huft_build OF((
                   3632:     uIntf *,            /* code lengths in bits */
                   3633:     uInt,               /* number of codes */
                   3634:     uInt,               /* number of "simple" codes */
                   3635:     const uIntf *,      /* list of base values for non-simple codes */
                   3636:     const uIntf *,      /* list of extra bits for non-simple codes */
                   3637:     inflate_huft * FAR*,/* result: starting table */
                   3638:     uIntf *,            /* maximum lookup bits (returns actual) */
                   3639:     z_stream *));       /* for zalloc function */
                   3640:
                   3641: local voidpf falloc OF((
                   3642:     voidpf,             /* opaque pointer (not used) */
                   3643:     uInt,               /* number of items */
                   3644:     uInt));             /* size of item */
                   3645:
                   3646: local void ffree OF((
                   3647:     voidpf q,           /* opaque pointer (not used) */
                   3648:     voidpf p,           /* what to free (not used) */
                   3649:     uInt n));          /* number of bytes (not used) */
                   3650:
                   3651: /* Tables for deflate from PKZIP's appnote.txt. */
                   3652: local const uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
                   3653:         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
                   3654:         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
                   3655:         /* actually lengths - 2; also see note #13 above about 258 */
                   3656: local const uInt cplext[] = { /* Extra bits for literal codes 257..285 */
                   3657:         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
                   3658:         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
                   3659: local const uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
                   3660:         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
                   3661:         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
                   3662:         8193, 12289, 16385, 24577};
                   3663: local const uInt cpdext[] = { /* Extra bits for distance codes */
                   3664:         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
                   3665:         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
                   3666:         12, 12, 13, 13};
                   3667:
                   3668: /*
                   3669:    Huffman code decoding is performed using a multi-level table lookup.
                   3670:    The fastest way to decode is to simply build a lookup table whose
                   3671:    size is determined by the longest code.  However, the time it takes
                   3672:    to build this table can also be a factor if the data being decoded
                   3673:    is not very long.  The most common codes are necessarily the
                   3674:    shortest codes, so those codes dominate the decoding time, and hence
                   3675:    the speed.  The idea is you can have a shorter table that decodes the
                   3676:    shorter, more probable codes, and then point to subsidiary tables for
                   3677:    the longer codes.  The time it costs to decode the longer codes is
                   3678:    then traded against the time it takes to make longer tables.
                   3679:
                   3680:    This results of this trade are in the variables lbits and dbits
                   3681:    below.  lbits is the number of bits the first level table for literal/
                   3682:    length codes can decode in one step, and dbits is the same thing for
                   3683:    the distance codes.  Subsequent tables are also less than or equal to
                   3684:    those sizes.  These values may be adjusted either when all of the
                   3685:    codes are shorter than that, in which case the longest code length in
                   3686:    bits is used, or when the shortest code is *longer* than the requested
                   3687:    table size, in which case the length of the shortest code in bits is
                   3688:    used.
                   3689:
                   3690:    There are two different values for the two tables, since they code a
                   3691:    different number of possibilities each.  The literal/length table
                   3692:    codes 286 possible values, or in a flat code, a little over eight
                   3693:    bits.  The distance table codes 30 possible values, or a little less
                   3694:    than five bits, flat.  The optimum values for speed end up being
                   3695:    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
                   3696:    The optimum values may differ though from machine to machine, and
                   3697:    possibly even between compilers.  Your mileage may vary.
                   3698:  */
                   3699:
                   3700:
                   3701: /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
                   3702: #define BMAX 15         /* maximum bit length of any code */
                   3703: #define N_MAX 288       /* maximum number of codes in any set */
                   3704:
                   3705: #ifdef DEBUG_ZLIB
                   3706:   uInt inflate_hufts;
                   3707: #endif
                   3708:
                   3709: local int huft_build(b, n, s, d, e, t, m, zs)
                   3710: uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
                   3711: uInt n;                 /* number of codes (assumed <= N_MAX) */
                   3712: uInt s;                 /* number of simple-valued codes (0..s-1) */
                   3713: const uIntf *d;         /* list of base values for non-simple codes */
                   3714: const uIntf *e;         /* list of extra bits for non-simple codes */
                   3715: inflate_huft * FAR *t;  /* result: starting table */
                   3716: uIntf *m;               /* maximum lookup bits, returns actual */
                   3717: z_stream *zs;           /* for zalloc function */
                   3718: /* Given a list of code lengths and a maximum table size, make a set of
                   3719:    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
                   3720:    if the given code set is incomplete (the tables are still built in this
                   3721:    case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
                   3722:    over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
                   3723: {
                   3724:
                   3725:   uInt a;                       /* counter for codes of length k */
                   3726:   uInt c[BMAX+1];               /* bit length count table */
                   3727:   uInt f;                       /* i repeats in table every f entries */
                   3728:   int g;                        /* maximum code length */
                   3729:   int h;                        /* table level */
                   3730:   uInt i;                      /* counter, current code */
                   3731:   uInt j;                      /* counter */
                   3732:   int k;                       /* number of bits in current code */
                   3733:   int l;                        /* bits per table (returned in m) */
                   3734:   uIntf *p;                    /* pointer into c[], b[], or v[] */
                   3735:   inflate_huft *q;              /* points to current table */
                   3736:   struct inflate_huft_s r;      /* table entry for structure assignment */
                   3737:   inflate_huft *u[BMAX];        /* table stack */
                   3738:   uInt v[N_MAX];                /* values in order of bit length */
                   3739:   int w;                       /* bits before this table == (l * h) */
                   3740:   uInt x[BMAX+1];               /* bit offsets, then code stack */
                   3741:   uIntf *xp;                    /* pointer into x */
                   3742:   int y;                        /* number of dummy codes added */
                   3743:   uInt z;                       /* number of entries in current table */
                   3744:
                   3745:
                   3746:   /* Generate counts for each bit length */
                   3747:   p = c;
                   3748: #define C0 *p++ = 0;
                   3749: #define C2 C0 C0 C0 C0
                   3750: #define C4 C2 C2 C2 C2
                   3751:   C4                            /* clear c[]--assume BMAX+1 is 16 */
                   3752:   p = b;  i = n;
                   3753:   do {
                   3754:     c[*p++]++;                  /* assume all entries <= BMAX */
                   3755:   } while (--i);
                   3756:   if (c[0] == n)                /* null input--all zero length codes */
                   3757:   {
                   3758:     *t = (inflate_huft *)Z_NULL;
                   3759:     *m = 0;
                   3760:     return Z_OK;
                   3761:   }
                   3762:
                   3763:
                   3764:   /* Find minimum and maximum length, bound *m by those */
                   3765:   l = *m;
                   3766:   for (j = 1; j <= BMAX; j++)
                   3767:     if (c[j])
                   3768:       break;
                   3769:   k = j;                        /* minimum code length */
                   3770:   if ((uInt)l < j)
                   3771:     l = j;
                   3772:   for (i = BMAX; i; i--)
                   3773:     if (c[i])
                   3774:       break;
                   3775:   g = i;                        /* maximum code length */
                   3776:   if ((uInt)l > i)
                   3777:     l = i;
                   3778:   *m = l;
                   3779:
                   3780:
                   3781:   /* Adjust last length count to fill out codes, if needed */
                   3782:   for (y = 1 << j; j < i; j++, y <<= 1)
                   3783:     if ((y -= c[j]) < 0)
                   3784:       return Z_DATA_ERROR;
                   3785:   if ((y -= c[i]) < 0)
                   3786:     return Z_DATA_ERROR;
                   3787:   c[i] += y;
                   3788:
                   3789:
                   3790:   /* Generate starting offsets into the value table for each length */
                   3791:   x[1] = j = 0;
                   3792:   p = c + 1;  xp = x + 2;
                   3793:   while (--i) {                 /* note that i == g from above */
                   3794:     *xp++ = (j += *p++);
                   3795:   }
                   3796:
                   3797:
                   3798:   /* Make a table of values in order of bit lengths */
                   3799:   p = b;  i = 0;
                   3800:   do {
                   3801:     if ((j = *p++) != 0)
                   3802:       v[x[j]++] = i;
                   3803:   } while (++i < n);
                   3804:
                   3805:
                   3806:   /* Generate the Huffman codes and for each, make the table entries */
                   3807:   x[0] = i = 0;                 /* first Huffman code is zero */
                   3808:   p = v;                        /* grab values in bit order */
                   3809:   h = -1;                       /* no tables yet--level -1 */
                   3810:   w = -l;                       /* bits decoded == (l * h) */
                   3811:   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
                   3812:   q = (inflate_huft *)Z_NULL;   /* ditto */
                   3813:   z = 0;                        /* ditto */
                   3814:
                   3815:   /* go through the bit lengths (k already is bits in shortest code) */
                   3816:   for (; k <= g; k++)
                   3817:   {
                   3818:     a = c[k];
                   3819:     while (a--)
                   3820:     {
                   3821:       /* here i is the Huffman code of length k bits for value *p */
                   3822:       /* make tables up to required level */
                   3823:       while (k > w + l)
                   3824:       {
                   3825:         h++;
                   3826:         w += l;                 /* previous table always l bits */
                   3827:
                   3828:         /* compute minimum size table less than or equal to l bits */
                   3829:         z = (z = g - w) > (uInt)l ? l : z;      /* table size upper limit */
                   3830:         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
                   3831:         {                       /* too few codes for k-w bit table */
                   3832:           f -= a + 1;           /* deduct codes from patterns left */
                   3833:           xp = c + k;
                   3834:           if (j < z)
                   3835:             while (++j < z)     /* try smaller tables up to z bits */
                   3836:             {
                   3837:               if ((f <<= 1) <= *++xp)
                   3838:                 break;          /* enough codes to use up j bits */
                   3839:               f -= *xp;         /* else deduct codes from patterns */
                   3840:             }
                   3841:         }
                   3842:         z = 1 << j;             /* table entries for j-bit table */
                   3843:
                   3844:         /* allocate and link in new table */
                   3845:         if ((q = (inflate_huft *)ZALLOC
                   3846:              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
                   3847:         {
                   3848:           if (h)
                   3849:             inflate_trees_free(u[0], zs);
                   3850:           return Z_MEM_ERROR;   /* not enough memory */
                   3851:         }
                   3852:        q->word.Nalloc = z + 1;
                   3853: #ifdef DEBUG_ZLIB
                   3854:         inflate_hufts += z + 1;
                   3855: #endif
                   3856:         *t = q + 1;             /* link to list for huft_free() */
                   3857:         *(t = &(q->next)) = Z_NULL;
                   3858:         u[h] = ++q;             /* table starts after link */
                   3859:
                   3860:         /* connect to last table, if there is one */
                   3861:         if (h)
                   3862:         {
                   3863:           x[h] = i;             /* save pattern for backing up */
                   3864:           r.bits = (Byte)l;     /* bits to dump before this table */
                   3865:           r.exop = (Byte)j;     /* bits in this table */
                   3866:           r.next = q;           /* pointer to this table */
                   3867:           j = i >> (w - l);     /* (get around Turbo C bug) */
                   3868:           u[h-1][j] = r;        /* connect to last table */
                   3869:         }
                   3870:       }
                   3871:
                   3872:       /* set up table entry in r */
                   3873:       r.bits = (Byte)(k - w);
                   3874:       if (p >= v + n)
                   3875:         r.exop = 128 + 64;      /* out of values--invalid code */
                   3876:       else if (*p < s)
                   3877:       {
                   3878:         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
                   3879:         r.base = *p++;          /* simple code is just the value */
                   3880:       }
                   3881:       else
                   3882:       {
                   3883:         r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
                   3884:         r.base = d[*p++ - s];
                   3885:       }
                   3886:
                   3887:       /* fill code-like entries with r */
                   3888:       f = 1 << (k - w);
                   3889:       for (j = i >> w; j < z; j += f)
                   3890:         q[j] = r;
                   3891:
                   3892:       /* backwards increment the k-bit code i */
                   3893:       for (j = 1 << (k - 1); i & j; j >>= 1)
                   3894:         i ^= j;
                   3895:       i ^= j;
                   3896:
                   3897:       /* backup over finished tables */
                   3898:       while ((i & ((1 << w) - 1)) != x[h])
                   3899:       {
                   3900:         h--;                    /* don't need to update q */
                   3901:         w -= l;
                   3902:       }
                   3903:     }
                   3904:   }
                   3905:
                   3906:
                   3907:   /* Return Z_BUF_ERROR if we were given an incomplete table */
                   3908:   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
                   3909: }
                   3910:
                   3911:
                   3912: local int inflate_trees_bits(c, bb, tb, z)
                   3913: uIntf *c;               /* 19 code lengths */
                   3914: uIntf *bb;              /* bits tree desired/actual depth */
                   3915: inflate_huft * FAR *tb; /* bits tree result */
                   3916: z_stream *z;            /* for zfree function */
                   3917: {
                   3918:   int r;
                   3919:
                   3920:   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
                   3921:   if (r == Z_DATA_ERROR)
                   3922:     z->msg = "oversubscribed dynamic bit lengths tree";
                   3923:   else if (r == Z_BUF_ERROR)
                   3924:   {
                   3925:     inflate_trees_free(*tb, z);
                   3926:     z->msg = "incomplete dynamic bit lengths tree";
                   3927:     r = Z_DATA_ERROR;
                   3928:   }
                   3929:   return r;
                   3930: }
                   3931:
                   3932:
                   3933: local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
                   3934: uInt nl;                /* number of literal/length codes */
                   3935: uInt nd;                /* number of distance codes */
                   3936: uIntf *c;               /* that many (total) code lengths */
                   3937: uIntf *bl;              /* literal desired/actual bit depth */
                   3938: uIntf *bd;              /* distance desired/actual bit depth */
                   3939: inflate_huft * FAR *tl; /* literal/length tree result */
                   3940: inflate_huft * FAR *td; /* distance tree result */
                   3941: z_stream *z;            /* for zfree function */
                   3942: {
                   3943:   int r;
                   3944:
                   3945:   /* build literal/length tree */
                   3946:   if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
                   3947:   {
                   3948:     if (r == Z_DATA_ERROR)
                   3949:       z->msg = "oversubscribed literal/length tree";
                   3950:     else if (r == Z_BUF_ERROR)
                   3951:     {
                   3952:       inflate_trees_free(*tl, z);
                   3953:       z->msg = "incomplete literal/length tree";
                   3954:       r = Z_DATA_ERROR;
                   3955:     }
                   3956:     return r;
                   3957:   }
                   3958:
                   3959:   /* build distance tree */
                   3960:   if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
                   3961:   {
                   3962:     if (r == Z_DATA_ERROR)
                   3963:       z->msg = "oversubscribed literal/length tree";
                   3964:     else if (r == Z_BUF_ERROR) {
                   3965: #ifdef PKZIP_BUG_WORKAROUND
                   3966:       r = Z_OK;
                   3967:     }
                   3968: #else
                   3969:       inflate_trees_free(*td, z);
                   3970:       z->msg = "incomplete literal/length tree";
                   3971:       r = Z_DATA_ERROR;
                   3972:     }
                   3973:     inflate_trees_free(*tl, z);
                   3974:     return r;
                   3975: #endif
                   3976:   }
                   3977:
                   3978:   /* done */
                   3979:   return Z_OK;
                   3980: }
                   3981:
                   3982:
                   3983: /* build fixed tables only once--keep them here */
                   3984: local int fixed_lock = 0;
                   3985: local int fixed_built = 0;
                   3986: #define FIXEDH 530      /* number of hufts used by fixed tables */
                   3987: local uInt fixed_left = FIXEDH;
                   3988: local inflate_huft fixed_mem[FIXEDH];
                   3989: local uInt fixed_bl;
                   3990: local uInt fixed_bd;
                   3991: local inflate_huft *fixed_tl;
                   3992: local inflate_huft *fixed_td;
                   3993:
                   3994:
                   3995: local voidpf falloc(q, n, s)
                   3996: voidpf q;        /* opaque pointer (not used) */
                   3997: uInt n;         /* number of items */
                   3998: uInt s;         /* size of item */
                   3999: {
                   4000:   Assert(s == sizeof(inflate_huft) && n <= fixed_left,
                   4001:          "inflate_trees falloc overflow");
                   4002:   if (q) s++; /* to make some compilers happy */
                   4003:   fixed_left -= n;
                   4004:   return (voidpf)(fixed_mem + fixed_left);
                   4005: }
                   4006:
                   4007:
                   4008: local void ffree(q, p, n)
                   4009: voidpf q;
                   4010: voidpf p;
                   4011: uInt n;
                   4012: {
                   4013:   Assert(0, "inflate_trees ffree called!");
                   4014:   if (q) q = p; /* to make some compilers happy */
                   4015: }
                   4016:
                   4017:
                   4018: local int inflate_trees_fixed(bl, bd, tl, td)
                   4019: uIntf *bl;               /* literal desired/actual bit depth */
                   4020: uIntf *bd;               /* distance desired/actual bit depth */
                   4021: inflate_huft * FAR *tl;  /* literal/length tree result */
                   4022: inflate_huft * FAR *td;  /* distance tree result */
                   4023: {
                   4024:   /* build fixed tables if not built already--lock out other instances */
                   4025:   while (++fixed_lock > 1)
                   4026:     fixed_lock--;
                   4027:   if (!fixed_built)
                   4028:   {
                   4029:     int k;              /* temporary variable */
                   4030:     unsigned c[288];    /* length list for huft_build */
                   4031:     z_stream z;         /* for falloc function */
                   4032:
                   4033:     /* set up fake z_stream for memory routines */
                   4034:     z.zalloc = falloc;
                   4035:     z.zfree = ffree;
                   4036:     z.opaque = Z_NULL;
                   4037:
                   4038:     /* literal table */
                   4039:     for (k = 0; k < 144; k++)
                   4040:       c[k] = 8;
                   4041:     for (; k < 256; k++)
                   4042:       c[k] = 9;
                   4043:     for (; k < 280; k++)
                   4044:       c[k] = 7;
                   4045:     for (; k < 288; k++)
                   4046:       c[k] = 8;
                   4047:     fixed_bl = 7;
                   4048:     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
                   4049:
                   4050:     /* distance table */
                   4051:     for (k = 0; k < 30; k++)
                   4052:       c[k] = 5;
                   4053:     fixed_bd = 5;
                   4054:     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
                   4055:
                   4056:     /* done */
                   4057:     fixed_built = 1;
                   4058:   }
                   4059:   fixed_lock--;
                   4060:   *bl = fixed_bl;
                   4061:   *bd = fixed_bd;
                   4062:   *tl = fixed_tl;
                   4063:   *td = fixed_td;
                   4064:   return Z_OK;
                   4065: }
                   4066:
                   4067:
                   4068: local int inflate_trees_free(t, z)
                   4069: inflate_huft *t;        /* table to free */
                   4070: z_stream *z;            /* for zfree function */
                   4071: /* Free the malloc'ed tables built by huft_build(), which makes a linked
                   4072:    list of the tables it made, with the links in a dummy first entry of
                   4073:    each table. */
                   4074: {
                   4075:   inflate_huft *p, *q;
                   4076:
                   4077:   /* Go through linked list, freeing from the malloced (t[-1]) address. */
                   4078:   p = t;
                   4079:   while (p != Z_NULL)
                   4080:   {
                   4081:     q = (--p)->next;
                   4082:     ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
                   4083:     p = q;
                   4084:   }
                   4085:   return Z_OK;
                   4086: }
                   4087:
                   4088: /*+++++*/
                   4089: /* infcodes.c -- process literals and length/distance pairs
                   4090:  * Copyright (C) 1995 Mark Adler
                   4091:  * For conditions of distribution and use, see copyright notice in zlib.h
                   4092:  */
                   4093:
                   4094: /* simplify the use of the inflate_huft type with some defines */
                   4095: #define base more.Base
                   4096: #define next more.Next
                   4097: #define exop word.what.Exop
                   4098: #define bits word.what.Bits
                   4099:
                   4100: /* inflate codes private state */
                   4101: struct inflate_codes_state {
                   4102:
                   4103:   /* mode */
                   4104:   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
                   4105:       START,    /* x: set up for LEN */
                   4106:       LEN,      /* i: get length/literal/eob next */
                   4107:       LENEXT,   /* i: getting length extra (have base) */
                   4108:       DIST,     /* i: get distance next */
                   4109:       DISTEXT,  /* i: getting distance extra */
                   4110:       COPY,     /* o: copying bytes in window, waiting for space */
                   4111:       LIT,      /* o: got literal, waiting for output space */
                   4112:       WASH,     /* o: got eob, possibly still output waiting */
                   4113:       END,      /* x: got eob and all data flushed */
                   4114:       BADCODE}  /* x: got error */
                   4115:     mode;               /* current inflate_codes mode */
                   4116:
                   4117:   /* mode dependent information */
                   4118:   uInt len;
                   4119:   union {
                   4120:     struct {
                   4121:       inflate_huft *tree;       /* pointer into tree */
                   4122:       uInt need;                /* bits needed */
                   4123:     } code;             /* if LEN or DIST, where in tree */
                   4124:     uInt lit;           /* if LIT, literal */
                   4125:     struct {
                   4126:       uInt get;                 /* bits to get for extra */
                   4127:       uInt dist;                /* distance back to copy from */
                   4128:     } copy;             /* if EXT or COPY, where and how much */
                   4129:   } sub;                /* submode */
                   4130:
                   4131:   /* mode independent information */
                   4132:   Byte lbits;           /* ltree bits decoded per branch */
                   4133:   Byte dbits;           /* dtree bits decoder per branch */
                   4134:   inflate_huft *ltree;          /* literal/length/eob tree */
                   4135:   inflate_huft *dtree;          /* distance tree */
                   4136:
                   4137: };
                   4138:
                   4139:
                   4140: local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
                   4141: uInt bl, bd;
                   4142: inflate_huft *tl, *td;
                   4143: z_stream *z;
                   4144: {
                   4145:   inflate_codes_statef *c;
                   4146:
                   4147:   if ((c = (inflate_codes_statef *)
                   4148:        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
                   4149:   {
                   4150:     c->mode = START;
                   4151:     c->lbits = (Byte)bl;
                   4152:     c->dbits = (Byte)bd;
                   4153:     c->ltree = tl;
                   4154:     c->dtree = td;
                   4155:     Tracev((stderr, "inflate:       codes new\n"));
                   4156:   }
                   4157:   return c;
                   4158: }
                   4159:
                   4160:
                   4161: local int inflate_codes(s, z, r)
                   4162: inflate_blocks_statef *s;
                   4163: z_stream *z;
                   4164: int r;
                   4165: {
                   4166:   uInt j;               /* temporary storage */
                   4167:   inflate_huft *t;      /* temporary pointer */
                   4168:   uInt e;               /* extra bits or operation */
                   4169:   uLong b;              /* bit buffer */
                   4170:   uInt k;               /* bits in bit buffer */
                   4171:   Bytef *p;             /* input data pointer */
                   4172:   uInt n;               /* bytes available there */
                   4173:   Bytef *q;             /* output window write pointer */
                   4174:   uInt m;               /* bytes to end of window or read pointer */
                   4175:   Bytef *f;             /* pointer to copy strings from */
                   4176:   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
                   4177:
                   4178:   /* copy input/output information to locals (UPDATE macro restores) */
                   4179:   LOAD
                   4180:
                   4181:   /* process input and output based on current state */
                   4182:   while (1) switch (c->mode)
                   4183:   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
                   4184:     case START:         /* x: set up for LEN */
                   4185: #ifndef SLOW
                   4186:       if (m >= 258 && n >= 10)
                   4187:       {
                   4188:         UPDATE
                   4189:         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
                   4190:         LOAD
                   4191:         if (r != Z_OK)
                   4192:         {
                   4193:           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
                   4194:           break;
                   4195:         }
                   4196:       }
                   4197: #endif /* !SLOW */
                   4198:       c->sub.code.need = c->lbits;
                   4199:       c->sub.code.tree = c->ltree;
                   4200:       c->mode = LEN;
                   4201:     case LEN:           /* i: get length/literal/eob next */
                   4202:       j = c->sub.code.need;
                   4203:       NEEDBITS(j)
                   4204:       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
                   4205:       DUMPBITS(t->bits)
                   4206:       e = (uInt)(t->exop);
                   4207:       if (e == 0)               /* literal */
                   4208:       {
                   4209:         c->sub.lit = t->base;
                   4210:         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
                   4211:                  "inflate:         literal '%c'\n" :
                   4212:                  "inflate:         literal 0x%02x\n", t->base));
                   4213:         c->mode = LIT;
                   4214:         break;
                   4215:       }
                   4216:       if (e & 16)               /* length */
                   4217:       {
                   4218:         c->sub.copy.get = e & 15;
                   4219:         c->len = t->base;
                   4220:         c->mode = LENEXT;
                   4221:         break;
                   4222:       }
                   4223:       if ((e & 64) == 0)        /* next table */
                   4224:       {
                   4225:         c->sub.code.need = e;
                   4226:         c->sub.code.tree = t->next;
                   4227:         break;
                   4228:       }
                   4229:       if (e & 32)               /* end of block */
                   4230:       {
                   4231:         Tracevv((stderr, "inflate:         end of block\n"));
                   4232:         c->mode = WASH;
                   4233:         break;
                   4234:       }
                   4235:       c->mode = BADCODE;        /* invalid code */
                   4236:       z->msg = "invalid literal/length code";
                   4237:       r = Z_DATA_ERROR;
                   4238:       LEAVE
                   4239:     case LENEXT:        /* i: getting length extra (have base) */
                   4240:       j = c->sub.copy.get;
                   4241:       NEEDBITS(j)
                   4242:       c->len += (uInt)b & inflate_mask[j];
                   4243:       DUMPBITS(j)
                   4244:       c->sub.code.need = c->dbits;
                   4245:       c->sub.code.tree = c->dtree;
                   4246:       Tracevv((stderr, "inflate:         length %u\n", c->len));
                   4247:       c->mode = DIST;
                   4248:     case DIST:          /* i: get distance next */
                   4249:       j = c->sub.code.need;
                   4250:       NEEDBITS(j)
                   4251:       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
                   4252:       DUMPBITS(t->bits)
                   4253:       e = (uInt)(t->exop);
                   4254:       if (e & 16)               /* distance */
                   4255:       {
                   4256:         c->sub.copy.get = e & 15;
                   4257:         c->sub.copy.dist = t->base;
                   4258:         c->mode = DISTEXT;
                   4259:         break;
                   4260:       }
                   4261:       if ((e & 64) == 0)        /* next table */
                   4262:       {
                   4263:         c->sub.code.need = e;
                   4264:         c->sub.code.tree = t->next;
                   4265:         break;
                   4266:       }
                   4267:       c->mode = BADCODE;        /* invalid code */
                   4268:       z->msg = "invalid distance code";
                   4269:       r = Z_DATA_ERROR;
                   4270:       LEAVE
                   4271:     case DISTEXT:       /* i: getting distance extra */
                   4272:       j = c->sub.copy.get;
                   4273:       NEEDBITS(j)
                   4274:       c->sub.copy.dist += (uInt)b & inflate_mask[j];
                   4275:       DUMPBITS(j)
                   4276:       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
                   4277:       c->mode = COPY;
                   4278:     case COPY:          /* o: copying bytes in window, waiting for space */
                   4279: #ifndef __TURBOC__ /* Turbo C bug for following expression */
                   4280:       f = (uInt)(q - s->window) < c->sub.copy.dist ?
                   4281:           s->end - (c->sub.copy.dist - (q - s->window)) :
                   4282:           q - c->sub.copy.dist;
                   4283: #else
                   4284:       f = q - c->sub.copy.dist;
                   4285:       if ((uInt)(q - s->window) < c->sub.copy.dist)
                   4286:         f = s->end - (c->sub.copy.dist - (q - s->window));
                   4287: #endif
                   4288:       while (c->len)
                   4289:       {
                   4290:         NEEDOUT
                   4291:         OUTBYTE(*f++)
                   4292:         if (f == s->end)
                   4293:           f = s->window;
                   4294:         c->len--;
                   4295:       }
                   4296:       c->mode = START;
                   4297:       break;
                   4298:     case LIT:           /* o: got literal, waiting for output space */
                   4299:       NEEDOUT
                   4300:       OUTBYTE(c->sub.lit)
                   4301:       c->mode = START;
                   4302:       break;
                   4303:     case WASH:          /* o: got eob, possibly more output */
                   4304:       FLUSH
                   4305:       if (s->read != s->write)
                   4306:         LEAVE
                   4307:       c->mode = END;
                   4308:     case END:
                   4309:       r = Z_STREAM_END;
                   4310:       LEAVE
                   4311:     case BADCODE:       /* x: got error */
                   4312:       r = Z_DATA_ERROR;
                   4313:       LEAVE
                   4314:     default:
                   4315:       r = Z_STREAM_ERROR;
                   4316:       LEAVE
                   4317:   }
                   4318: }
                   4319:
                   4320:
                   4321: local void inflate_codes_free(c, z)
                   4322: inflate_codes_statef *c;
                   4323: z_stream *z;
                   4324: {
                   4325:   ZFREE(z, c, sizeof(struct inflate_codes_state));
                   4326:   Tracev((stderr, "inflate:       codes free\n"));
                   4327: }
                   4328:
                   4329: /*+++++*/
                   4330: /* inflate_util.c -- data and routines common to blocks and codes
                   4331:  * Copyright (C) 1995 Mark Adler
                   4332:  * For conditions of distribution and use, see copyright notice in zlib.h
                   4333:  */
                   4334:
                   4335: /* copy as much as possible from the sliding window to the output area */
                   4336: local int inflate_flush(s, z, r)
                   4337: inflate_blocks_statef *s;
                   4338: z_stream *z;
                   4339: int r;
                   4340: {
                   4341:   uInt n;
                   4342:   Bytef *p, *q;
                   4343:
                   4344:   /* local copies of source and destination pointers */
                   4345:   p = z->next_out;
                   4346:   q = s->read;
                   4347:
                   4348:   /* compute number of bytes to copy as far as end of window */
                   4349:   n = (uInt)((q <= s->write ? s->write : s->end) - q);
                   4350:   if (n > z->avail_out) n = z->avail_out;
                   4351:   if (n && r == Z_BUF_ERROR) r = Z_OK;
                   4352:
                   4353:   /* update counters */
                   4354:   z->avail_out -= n;
                   4355:   z->total_out += n;
                   4356:
                   4357:   /* update check information */
                   4358:   if (s->checkfn != Z_NULL)
                   4359:     s->check = (*s->checkfn)(s->check, q, n);
                   4360:
                   4361:   /* copy as far as end of window */
                   4362:   if (p != NULL) {
                   4363:     zmemcpy(p, q, n);
                   4364:     p += n;
                   4365:   }
                   4366:   q += n;
                   4367:
                   4368:   /* see if more to copy at beginning of window */
                   4369:   if (q == s->end)
                   4370:   {
                   4371:     /* wrap pointers */
                   4372:     q = s->window;
                   4373:     if (s->write == s->end)
                   4374:       s->write = s->window;
                   4375:
                   4376:     /* compute bytes to copy */
                   4377:     n = (uInt)(s->write - q);
                   4378:     if (n > z->avail_out) n = z->avail_out;
                   4379:     if (n && r == Z_BUF_ERROR) r = Z_OK;
                   4380:
                   4381:     /* update counters */
                   4382:     z->avail_out -= n;
                   4383:     z->total_out += n;
                   4384:
                   4385:     /* update check information */
                   4386:     if (s->checkfn != Z_NULL)
                   4387:       s->check = (*s->checkfn)(s->check, q, n);
                   4388:
                   4389:     /* copy */
                   4390:     if (p != NULL) {
                   4391:       zmemcpy(p, q, n);
                   4392:       p += n;
                   4393:     }
                   4394:     q += n;
                   4395:   }
                   4396:
                   4397:   /* update pointers */
                   4398:   z->next_out = p;
                   4399:   s->read = q;
                   4400:
                   4401:   /* done */
                   4402:   return r;
                   4403: }
                   4404:
                   4405:
                   4406: /*+++++*/
                   4407: /* inffast.c -- process literals and length/distance pairs fast
                   4408:  * Copyright (C) 1995 Mark Adler
                   4409:  * For conditions of distribution and use, see copyright notice in zlib.h
                   4410:  */
                   4411:
                   4412: /* simplify the use of the inflate_huft type with some defines */
                   4413: #define base more.Base
                   4414: #define next more.Next
                   4415: #define exop word.what.Exop
                   4416: #define bits word.what.Bits
                   4417:
                   4418: /* macros for bit input with no checking and for returning unused bytes */
                   4419: #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
                   4420: #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
                   4421:
                   4422: /* Called with number of bytes left to write in window at least 258
                   4423:    (the maximum string length) and number of input bytes available
                   4424:    at least ten.  The ten bytes are six bytes for the longest length/
                   4425:    distance pair plus four bytes for overloading the bit buffer. */
                   4426:
                   4427: local int inflate_fast(bl, bd, tl, td, s, z)
                   4428: uInt bl, bd;
                   4429: inflate_huft *tl, *td;
                   4430: inflate_blocks_statef *s;
                   4431: z_stream *z;
                   4432: {
                   4433:   inflate_huft *t;      /* temporary pointer */
                   4434:   uInt e;               /* extra bits or operation */
                   4435:   uLong b;              /* bit buffer */
                   4436:   uInt k;               /* bits in bit buffer */
                   4437:   Bytef *p;             /* input data pointer */
                   4438:   uInt n;               /* bytes available there */
                   4439:   Bytef *q;             /* output window write pointer */
                   4440:   uInt m;               /* bytes to end of window or read pointer */
                   4441:   uInt ml;              /* mask for literal/length tree */
                   4442:   uInt md;              /* mask for distance tree */
                   4443:   uInt c;               /* bytes to copy */
                   4444:   uInt d;               /* distance back to copy from */
                   4445:   Bytef *r;             /* copy source pointer */
                   4446:
                   4447:   /* load input, output, bit values */
                   4448:   LOAD
                   4449:
                   4450:   /* initialize masks */
                   4451:   ml = inflate_mask[bl];
                   4452:   md = inflate_mask[bd];
                   4453:
                   4454:   /* do until not enough input or output space for fast loop */
                   4455:   do {                          /* assume called with m >= 258 && n >= 10 */
                   4456:     /* get literal/length code */
                   4457:     GRABBITS(20)                /* max bits for literal/length code */
                   4458:     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
                   4459:     {
                   4460:       DUMPBITS(t->bits)
                   4461:       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
                   4462:                 "inflate:         * literal '%c'\n" :
                   4463:                 "inflate:         * literal 0x%02x\n", t->base));
                   4464:       *q++ = (Byte)t->base;
                   4465:       m--;
                   4466:       continue;
                   4467:     }
                   4468:     do {
                   4469:       DUMPBITS(t->bits)
                   4470:       if (e & 16)
                   4471:       {
                   4472:         /* get extra bits for length */
                   4473:         e &= 15;
                   4474:         c = t->base + ((uInt)b & inflate_mask[e]);
                   4475:         DUMPBITS(e)
                   4476:         Tracevv((stderr, "inflate:         * length %u\n", c));
                   4477:
                   4478:         /* decode distance base of block to copy */
                   4479:         GRABBITS(15);           /* max bits for distance code */
                   4480:         e = (t = td + ((uInt)b & md))->exop;
                   4481:         do {
                   4482:           DUMPBITS(t->bits)
                   4483:           if (e & 16)
                   4484:           {
                   4485:             /* get extra bits to add to distance base */
                   4486:             e &= 15;
                   4487:             GRABBITS(e)         /* get extra bits (up to 13) */
                   4488:             d = t->base + ((uInt)b & inflate_mask[e]);
                   4489:             DUMPBITS(e)
                   4490:             Tracevv((stderr, "inflate:         * distance %u\n", d));
                   4491:
                   4492:             /* do the copy */
                   4493:             m -= c;
                   4494:             if ((uInt)(q - s->window) >= d)     /* offset before dest */
                   4495:             {                                   /*  just copy */
                   4496:               r = q - d;
                   4497:               *q++ = *r++;  c--;        /* minimum count is three, */
                   4498:               *q++ = *r++;  c--;        /*  so unroll loop a little */
                   4499:             }
                   4500:             else                        /* else offset after destination */
                   4501:             {
                   4502:               e = d - (q - s->window);  /* bytes from offset to end */
                   4503:               r = s->end - e;           /* pointer to offset */
                   4504:               if (c > e)                /* if source crosses, */
                   4505:               {
                   4506:                 c -= e;                 /* copy to end of window */
                   4507:                 do {
                   4508:                   *q++ = *r++;
                   4509:                 } while (--e);
                   4510:                 r = s->window;          /* copy rest from start of window */
                   4511:               }
                   4512:             }
                   4513:             do {                        /* copy all or what's left */
                   4514:               *q++ = *r++;
                   4515:             } while (--c);
                   4516:             break;
                   4517:           }
                   4518:           else if ((e & 64) == 0)
                   4519:             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
                   4520:           else
                   4521:           {
                   4522:             z->msg = "invalid distance code";
                   4523:             UNGRAB
                   4524:             UPDATE
                   4525:             return Z_DATA_ERROR;
                   4526:           }
                   4527:         } while (1);
                   4528:         break;
                   4529:       }
                   4530:       if ((e & 64) == 0)
                   4531:       {
                   4532:         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
                   4533:         {
                   4534:           DUMPBITS(t->bits)
                   4535:           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
                   4536:                     "inflate:         * literal '%c'\n" :
                   4537:                     "inflate:         * literal 0x%02x\n", t->base));
                   4538:           *q++ = (Byte)t->base;
                   4539:           m--;
                   4540:           break;
                   4541:         }
                   4542:       }
                   4543:       else if (e & 32)
                   4544:       {
                   4545:         Tracevv((stderr, "inflate:         * end of block\n"));
                   4546:         UNGRAB
                   4547:         UPDATE
                   4548:         return Z_STREAM_END;
                   4549:       }
                   4550:       else
                   4551:       {
                   4552:         z->msg = "invalid literal/length code";
                   4553:         UNGRAB
                   4554:         UPDATE
                   4555:         return Z_DATA_ERROR;
                   4556:       }
                   4557:     } while (1);
                   4558:   } while (m >= 258 && n >= 10);
                   4559:
                   4560:   /* not enough input or output--restore pointers and return */
                   4561:   UNGRAB
                   4562:   UPDATE
                   4563:   return Z_OK;
                   4564: }
                   4565:
                   4566:
                   4567: /*+++++*/
                   4568: /* zutil.c -- target dependent utility functions for the compression library
                   4569:  * Copyright (C) 1995 Jean-loup Gailly.
                   4570:  * For conditions of distribution and use, see copyright notice in zlib.h
                   4571:  */
                   4572:
                   4573: /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
                   4574:
                   4575: char *zlib_version = ZLIB_VERSION;
                   4576:
                   4577: #ifndef NO_DEFLATE
                   4578: char *z_errmsg[] = {
                   4579: "stream end",          /* Z_STREAM_END    1 */
                   4580: "",                    /* Z_OK            0 */
                   4581: "file error",          /* Z_ERRNO        (-1) */
                   4582: "stream error",        /* Z_STREAM_ERROR (-2) */
                   4583: "data error",          /* Z_DATA_ERROR   (-3) */
                   4584: "insufficient memory", /* Z_MEM_ERROR    (-4) */
                   4585: "buffer error",        /* Z_BUF_ERROR    (-5) */
                   4586: ""};
                   4587: #endif /* NO_DEFLATE */
                   4588:
                   4589: /*+++++*/
                   4590: /* adler32.c -- compute the Adler-32 checksum of a data stream
                   4591:  * Copyright (C) 1995 Mark Adler
                   4592:  * For conditions of distribution and use, see copyright notice in zlib.h
                   4593:  */
                   4594:
                   4595: /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
                   4596:
                   4597: #define BASE 65521L /* largest prime smaller than 65536 */
                   4598: #define NMAX 5552
                   4599: /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
                   4600:
                   4601: #define DO1(buf)  {s1 += *buf++; s2 += s1;}
                   4602: #define DO2(buf)  DO1(buf); DO1(buf);
                   4603: #define DO4(buf)  DO2(buf); DO2(buf);
                   4604: #define DO8(buf)  DO4(buf); DO4(buf);
                   4605: #define DO16(buf) DO8(buf); DO8(buf);
                   4606:
                   4607: /* ========================================================================= */
                   4608: uLong adler32(adler, buf, len)
                   4609:     uLong adler;
                   4610:     Bytef *buf;
                   4611:     uInt len;
                   4612: {
                   4613:     unsigned long s1 = adler & 0xffff;
                   4614:     unsigned long s2 = (adler >> 16) & 0xffff;
                   4615:     int k;
                   4616:
                   4617:     if (buf == Z_NULL) return 1L;
                   4618:
                   4619:     while (len > 0) {
                   4620:         k = len < NMAX ? len : NMAX;
                   4621:         len -= k;
                   4622:         while (k >= 16) {
                   4623:             DO16(buf);
                   4624:             k -= 16;
                   4625:         }
                   4626:         if (k != 0) do {
                   4627:             DO1(buf);
                   4628:         } while (--k);
                   4629:         s1 %= BASE;
                   4630:         s2 %= BASE;
                   4631:     }
                   4632:     return (s2 << 16) | s1;
                   4633: }

CVSweb