[BACK]Return to qdivrem.c CVS log [TXT][DIR] Up to [local] / sys / lib / libkern

Annotation of sys/lib/libkern/qdivrem.c, Revision 1.1.1.1

1.1       nbrk        1: /*-
                      2:  * Copyright (c) 1992, 1993
                      3:  *     The Regents of the University of California.  All rights reserved.
                      4:  *
                      5:  * This software was developed by the Computer Systems Engineering group
                      6:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
                      7:  * contributed to Berkeley.
                      8:  *
                      9:  * Redistribution and use in source and binary forms, with or without
                     10:  * modification, are permitted provided that the following conditions
                     11:  * are met:
                     12:  * 1. Redistributions of source code must retain the above copyright
                     13:  *    notice, this list of conditions and the following disclaimer.
                     14:  * 2. Redistributions in binary form must reproduce the above copyright
                     15:  *    notice, this list of conditions and the following disclaimer in the
                     16:  *    documentation and/or other materials provided with the distribution.
                     17:  * 3. Neither the name of the University nor the names of its contributors
                     18:  *    may be used to endorse or promote products derived from this software
                     19:  *    without specific prior written permission.
                     20:  *
                     21:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
                     22:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     23:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     24:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
                     25:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     26:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     27:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     28:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     29:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     30:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     31:  * SUCH DAMAGE.
                     32:  */
                     33:
                     34: #if defined(LIBC_SCCS) && !defined(lint)
                     35: static char rcsid[] = "$OpenBSD: qdivrem.c,v 1.8 2005/02/13 03:37:14 jsg Exp $";
                     36: #endif /* LIBC_SCCS and not lint */
                     37:
                     38: /*
                     39:  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
                     40:  * section 4.3.1, pp. 257--259.
                     41:  */
                     42:
                     43: #include "quad.h"
                     44:
                     45: #define        B       ((int)1 << HALF_BITS)   /* digit base */
                     46:
                     47: /* Combine two `digits' to make a single two-digit number. */
                     48: #define        COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
                     49:
                     50: /* select a type for digits in base B: use unsigned short if they fit */
                     51: #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
                     52: typedef unsigned short digit;
                     53: #else
                     54: typedef u_int digit;
                     55: #endif
                     56:
                     57: static void shl(digit *p, int len, int sh);
                     58:
                     59: /*
                     60:  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
                     61:  *
                     62:  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
                     63:  * fit within u_int.  As a consequence, the maximum length dividend and
                     64:  * divisor are 4 `digits' in this base (they are shorter if they have
                     65:  * leading zeros).
                     66:  */
                     67: u_quad_t
                     68: __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
                     69: {
                     70:        union uu tmp;
                     71:        digit *u, *v, *q;
                     72:        digit v1, v2;
                     73:        u_int qhat, rhat, t;
                     74:        int m, n, d, j, i;
                     75:        digit uspace[5], vspace[5], qspace[5];
                     76:
                     77:        /*
                     78:         * Take care of special cases: divide by zero, and u < v.
                     79:         */
                     80:        if (vq == 0) {
                     81:                /* divide by zero. */
                     82:                static volatile const unsigned int zero = 0;
                     83:
                     84:                tmp.ul[H] = tmp.ul[L] = 1 / zero;
                     85:                if (arq)
                     86:                        *arq = uq;
                     87:                return (tmp.q);
                     88:        }
                     89:        if (uq < vq) {
                     90:                if (arq)
                     91:                        *arq = uq;
                     92:                return (0);
                     93:        }
                     94:        u = &uspace[0];
                     95:        v = &vspace[0];
                     96:        q = &qspace[0];
                     97:
                     98:        /*
                     99:         * Break dividend and divisor into digits in base B, then
                    100:         * count leading zeros to determine m and n.  When done, we
                    101:         * will have:
                    102:         *      u = (u[1]u[2]...u[m+n]) sub B
                    103:         *      v = (v[1]v[2]...v[n]) sub B
                    104:         *      v[1] != 0
                    105:         *      1 < n <= 4 (if n = 1, we use a different division algorithm)
                    106:         *      m >= 0 (otherwise u < v, which we already checked)
                    107:         *      m + n = 4
                    108:         * and thus
                    109:         *      m = 4 - n <= 2
                    110:         */
                    111:        tmp.uq = uq;
                    112:        u[0] = 0;
                    113:        u[1] = (digit)HHALF(tmp.ul[H]);
                    114:        u[2] = (digit)LHALF(tmp.ul[H]);
                    115:        u[3] = (digit)HHALF(tmp.ul[L]);
                    116:        u[4] = (digit)LHALF(tmp.ul[L]);
                    117:        tmp.uq = vq;
                    118:        v[1] = (digit)HHALF(tmp.ul[H]);
                    119:        v[2] = (digit)LHALF(tmp.ul[H]);
                    120:        v[3] = (digit)HHALF(tmp.ul[L]);
                    121:        v[4] = (digit)LHALF(tmp.ul[L]);
                    122:        for (n = 4; v[1] == 0; v++) {
                    123:                if (--n == 1) {
                    124:                        u_int rbj;      /* r*B+u[j] (not root boy jim) */
                    125:                        digit q1, q2, q3, q4;
                    126:
                    127:                        /*
                    128:                         * Change of plan, per exercise 16.
                    129:                         *      r = 0;
                    130:                         *      for j = 1..4:
                    131:                         *              q[j] = floor((r*B + u[j]) / v),
                    132:                         *              r = (r*B + u[j]) % v;
                    133:                         * We unroll this completely here.
                    134:                         */
                    135:                        t = v[2];       /* nonzero, by definition */
                    136:                        q1 = (digit)(u[1] / t);
                    137:                        rbj = COMBINE(u[1] % t, u[2]);
                    138:                        q2 = (digit)(rbj / t);
                    139:                        rbj = COMBINE(rbj % t, u[3]);
                    140:                        q3 = (digit)(rbj / t);
                    141:                        rbj = COMBINE(rbj % t, u[4]);
                    142:                        q4 = (digit)(rbj / t);
                    143:                        if (arq)
                    144:                                *arq = rbj % t;
                    145:                        tmp.ul[H] = COMBINE(q1, q2);
                    146:                        tmp.ul[L] = COMBINE(q3, q4);
                    147:                        return (tmp.q);
                    148:                }
                    149:        }
                    150:
                    151:        /*
                    152:         * By adjusting q once we determine m, we can guarantee that
                    153:         * there is a complete four-digit quotient at &qspace[1] when
                    154:         * we finally stop.
                    155:         */
                    156:        for (m = 4 - n; u[1] == 0; u++)
                    157:                m--;
                    158:        for (i = 4 - m; --i >= 0;)
                    159:                q[i] = 0;
                    160:        q += 4 - m;
                    161:
                    162:        /*
                    163:         * Here we run Program D, translated from MIX to C and acquiring
                    164:         * a few minor changes.
                    165:         *
                    166:         * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
                    167:         */
                    168:        d = 0;
                    169:        for (t = v[1]; t < B / 2; t <<= 1)
                    170:                d++;
                    171:        if (d > 0) {
                    172:                shl(&u[0], m + n, d);           /* u <<= d */
                    173:                shl(&v[1], n - 1, d);           /* v <<= d */
                    174:        }
                    175:        /*
                    176:         * D2: j = 0.
                    177:         */
                    178:        j = 0;
                    179:        v1 = v[1];      /* for D3 -- note that v[1..n] are constant */
                    180:        v2 = v[2];      /* for D3 */
                    181:        do {
                    182:                digit uj0, uj1, uj2;
                    183:
                    184:                /*
                    185:                 * D3: Calculate qhat (\^q, in TeX notation).
                    186:                 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
                    187:                 * let rhat = (u[j]*B + u[j+1]) mod v[1].
                    188:                 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
                    189:                 * decrement qhat and increase rhat correspondingly.
                    190:                 * Note that if rhat >= B, v[2]*qhat < rhat*B.
                    191:                 */
                    192:                uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
                    193:                uj1 = u[j + 1]; /* for D3 only */
                    194:                uj2 = u[j + 2]; /* for D3 only */
                    195:                if (uj0 == v1) {
                    196:                        qhat = B;
                    197:                        rhat = uj1;
                    198:                        goto qhat_too_big;
                    199:                } else {
                    200:                        u_int nn = COMBINE(uj0, uj1);
                    201:                        qhat = nn / v1;
                    202:                        rhat = nn % v1;
                    203:                }
                    204:                while (v2 * qhat > COMBINE(rhat, uj2)) {
                    205:        qhat_too_big:
                    206:                        qhat--;
                    207:                        if ((rhat += v1) >= B)
                    208:                                break;
                    209:                }
                    210:                /*
                    211:                 * D4: Multiply and subtract.
                    212:                 * The variable `t' holds any borrows across the loop.
                    213:                 * We split this up so that we do not require v[0] = 0,
                    214:                 * and to eliminate a final special case.
                    215:                 */
                    216:                for (t = 0, i = n; i > 0; i--) {
                    217:                        t = u[i + j] - v[i] * qhat - t;
                    218:                        u[i + j] = (digit)LHALF(t);
                    219:                        t = (B - HHALF(t)) & (B - 1);
                    220:                }
                    221:                t = u[j] - t;
                    222:                u[j] = (digit)LHALF(t);
                    223:                /*
                    224:                 * D5: test remainder.
                    225:                 * There is a borrow if and only if HHALF(t) is nonzero;
                    226:                 * in that (rare) case, qhat was too large (by exactly 1).
                    227:                 * Fix it by adding v[1..n] to u[j..j+n].
                    228:                 */
                    229:                if (HHALF(t)) {
                    230:                        qhat--;
                    231:                        for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
                    232:                                t += u[i + j] + v[i];
                    233:                                u[i + j] = (digit)LHALF(t);
                    234:                                t = HHALF(t);
                    235:                        }
                    236:                        u[j] = (digit)LHALF(u[j] + t);
                    237:                }
                    238:                q[j] = (digit)qhat;
                    239:        } while (++j <= m);             /* D7: loop on j. */
                    240:
                    241:        /*
                    242:         * If caller wants the remainder, we have to calculate it as
                    243:         * u[m..m+n] >> d (this is at most n digits and thus fits in
                    244:         * u[m+1..m+n], but we may need more source digits).
                    245:         */
                    246:        if (arq) {
                    247:                if (d) {
                    248:                        for (i = m + n; i > m; --i)
                    249:                                u[i] = (digit)(((u_int)u[i] >> d) |
                    250:                                    LHALF((u_int)u[i - 1] << (HALF_BITS - d)));
                    251:                        u[i] = 0;
                    252:                }
                    253:                tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
                    254:                tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
                    255:                *arq = tmp.q;
                    256:        }
                    257:
                    258:        tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
                    259:        tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
                    260:        return (tmp.q);
                    261: }
                    262:
                    263: /*
                    264:  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
                    265:  * `fall out' the left (there never will be any such anyway).
                    266:  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
                    267:  */
                    268: static void
                    269: shl(digit *p, int len, int sh)
                    270: {
                    271:        int i;
                    272:
                    273:        for (i = 0; i < len; i++)
                    274:                p[i] = (digit)(LHALF((u_int)p[i] << sh) |
                    275:                    ((u_int)p[i + 1] >> (HALF_BITS - sh)));
                    276:        p[i] = (digit)(LHALF((u_int)p[i] << sh));
                    277: }

CVSweb