[BACK]Return to qdivrem.c CVS log [TXT][DIR] Up to [local] / sys / lib / libkern

Annotation of sys/lib/libkern/qdivrem.c, Revision 1.1

1.1     ! nbrk        1: /*-
        !             2:  * Copyright (c) 1992, 1993
        !             3:  *     The Regents of the University of California.  All rights reserved.
        !             4:  *
        !             5:  * This software was developed by the Computer Systems Engineering group
        !             6:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
        !             7:  * contributed to Berkeley.
        !             8:  *
        !             9:  * Redistribution and use in source and binary forms, with or without
        !            10:  * modification, are permitted provided that the following conditions
        !            11:  * are met:
        !            12:  * 1. Redistributions of source code must retain the above copyright
        !            13:  *    notice, this list of conditions and the following disclaimer.
        !            14:  * 2. Redistributions in binary form must reproduce the above copyright
        !            15:  *    notice, this list of conditions and the following disclaimer in the
        !            16:  *    documentation and/or other materials provided with the distribution.
        !            17:  * 3. Neither the name of the University nor the names of its contributors
        !            18:  *    may be used to endorse or promote products derived from this software
        !            19:  *    without specific prior written permission.
        !            20:  *
        !            21:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
        !            22:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
        !            23:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
        !            24:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
        !            25:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
        !            26:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
        !            27:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
        !            28:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
        !            29:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
        !            30:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
        !            31:  * SUCH DAMAGE.
        !            32:  */
        !            33:
        !            34: #if defined(LIBC_SCCS) && !defined(lint)
        !            35: static char rcsid[] = "$OpenBSD: qdivrem.c,v 1.8 2005/02/13 03:37:14 jsg Exp $";
        !            36: #endif /* LIBC_SCCS and not lint */
        !            37:
        !            38: /*
        !            39:  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
        !            40:  * section 4.3.1, pp. 257--259.
        !            41:  */
        !            42:
        !            43: #include "quad.h"
        !            44:
        !            45: #define        B       ((int)1 << HALF_BITS)   /* digit base */
        !            46:
        !            47: /* Combine two `digits' to make a single two-digit number. */
        !            48: #define        COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
        !            49:
        !            50: /* select a type for digits in base B: use unsigned short if they fit */
        !            51: #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
        !            52: typedef unsigned short digit;
        !            53: #else
        !            54: typedef u_int digit;
        !            55: #endif
        !            56:
        !            57: static void shl(digit *p, int len, int sh);
        !            58:
        !            59: /*
        !            60:  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
        !            61:  *
        !            62:  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
        !            63:  * fit within u_int.  As a consequence, the maximum length dividend and
        !            64:  * divisor are 4 `digits' in this base (they are shorter if they have
        !            65:  * leading zeros).
        !            66:  */
        !            67: u_quad_t
        !            68: __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
        !            69: {
        !            70:        union uu tmp;
        !            71:        digit *u, *v, *q;
        !            72:        digit v1, v2;
        !            73:        u_int qhat, rhat, t;
        !            74:        int m, n, d, j, i;
        !            75:        digit uspace[5], vspace[5], qspace[5];
        !            76:
        !            77:        /*
        !            78:         * Take care of special cases: divide by zero, and u < v.
        !            79:         */
        !            80:        if (vq == 0) {
        !            81:                /* divide by zero. */
        !            82:                static volatile const unsigned int zero = 0;
        !            83:
        !            84:                tmp.ul[H] = tmp.ul[L] = 1 / zero;
        !            85:                if (arq)
        !            86:                        *arq = uq;
        !            87:                return (tmp.q);
        !            88:        }
        !            89:        if (uq < vq) {
        !            90:                if (arq)
        !            91:                        *arq = uq;
        !            92:                return (0);
        !            93:        }
        !            94:        u = &uspace[0];
        !            95:        v = &vspace[0];
        !            96:        q = &qspace[0];
        !            97:
        !            98:        /*
        !            99:         * Break dividend and divisor into digits in base B, then
        !           100:         * count leading zeros to determine m and n.  When done, we
        !           101:         * will have:
        !           102:         *      u = (u[1]u[2]...u[m+n]) sub B
        !           103:         *      v = (v[1]v[2]...v[n]) sub B
        !           104:         *      v[1] != 0
        !           105:         *      1 < n <= 4 (if n = 1, we use a different division algorithm)
        !           106:         *      m >= 0 (otherwise u < v, which we already checked)
        !           107:         *      m + n = 4
        !           108:         * and thus
        !           109:         *      m = 4 - n <= 2
        !           110:         */
        !           111:        tmp.uq = uq;
        !           112:        u[0] = 0;
        !           113:        u[1] = (digit)HHALF(tmp.ul[H]);
        !           114:        u[2] = (digit)LHALF(tmp.ul[H]);
        !           115:        u[3] = (digit)HHALF(tmp.ul[L]);
        !           116:        u[4] = (digit)LHALF(tmp.ul[L]);
        !           117:        tmp.uq = vq;
        !           118:        v[1] = (digit)HHALF(tmp.ul[H]);
        !           119:        v[2] = (digit)LHALF(tmp.ul[H]);
        !           120:        v[3] = (digit)HHALF(tmp.ul[L]);
        !           121:        v[4] = (digit)LHALF(tmp.ul[L]);
        !           122:        for (n = 4; v[1] == 0; v++) {
        !           123:                if (--n == 1) {
        !           124:                        u_int rbj;      /* r*B+u[j] (not root boy jim) */
        !           125:                        digit q1, q2, q3, q4;
        !           126:
        !           127:                        /*
        !           128:                         * Change of plan, per exercise 16.
        !           129:                         *      r = 0;
        !           130:                         *      for j = 1..4:
        !           131:                         *              q[j] = floor((r*B + u[j]) / v),
        !           132:                         *              r = (r*B + u[j]) % v;
        !           133:                         * We unroll this completely here.
        !           134:                         */
        !           135:                        t = v[2];       /* nonzero, by definition */
        !           136:                        q1 = (digit)(u[1] / t);
        !           137:                        rbj = COMBINE(u[1] % t, u[2]);
        !           138:                        q2 = (digit)(rbj / t);
        !           139:                        rbj = COMBINE(rbj % t, u[3]);
        !           140:                        q3 = (digit)(rbj / t);
        !           141:                        rbj = COMBINE(rbj % t, u[4]);
        !           142:                        q4 = (digit)(rbj / t);
        !           143:                        if (arq)
        !           144:                                *arq = rbj % t;
        !           145:                        tmp.ul[H] = COMBINE(q1, q2);
        !           146:                        tmp.ul[L] = COMBINE(q3, q4);
        !           147:                        return (tmp.q);
        !           148:                }
        !           149:        }
        !           150:
        !           151:        /*
        !           152:         * By adjusting q once we determine m, we can guarantee that
        !           153:         * there is a complete four-digit quotient at &qspace[1] when
        !           154:         * we finally stop.
        !           155:         */
        !           156:        for (m = 4 - n; u[1] == 0; u++)
        !           157:                m--;
        !           158:        for (i = 4 - m; --i >= 0;)
        !           159:                q[i] = 0;
        !           160:        q += 4 - m;
        !           161:
        !           162:        /*
        !           163:         * Here we run Program D, translated from MIX to C and acquiring
        !           164:         * a few minor changes.
        !           165:         *
        !           166:         * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
        !           167:         */
        !           168:        d = 0;
        !           169:        for (t = v[1]; t < B / 2; t <<= 1)
        !           170:                d++;
        !           171:        if (d > 0) {
        !           172:                shl(&u[0], m + n, d);           /* u <<= d */
        !           173:                shl(&v[1], n - 1, d);           /* v <<= d */
        !           174:        }
        !           175:        /*
        !           176:         * D2: j = 0.
        !           177:         */
        !           178:        j = 0;
        !           179:        v1 = v[1];      /* for D3 -- note that v[1..n] are constant */
        !           180:        v2 = v[2];      /* for D3 */
        !           181:        do {
        !           182:                digit uj0, uj1, uj2;
        !           183:
        !           184:                /*
        !           185:                 * D3: Calculate qhat (\^q, in TeX notation).
        !           186:                 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
        !           187:                 * let rhat = (u[j]*B + u[j+1]) mod v[1].
        !           188:                 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
        !           189:                 * decrement qhat and increase rhat correspondingly.
        !           190:                 * Note that if rhat >= B, v[2]*qhat < rhat*B.
        !           191:                 */
        !           192:                uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
        !           193:                uj1 = u[j + 1]; /* for D3 only */
        !           194:                uj2 = u[j + 2]; /* for D3 only */
        !           195:                if (uj0 == v1) {
        !           196:                        qhat = B;
        !           197:                        rhat = uj1;
        !           198:                        goto qhat_too_big;
        !           199:                } else {
        !           200:                        u_int nn = COMBINE(uj0, uj1);
        !           201:                        qhat = nn / v1;
        !           202:                        rhat = nn % v1;
        !           203:                }
        !           204:                while (v2 * qhat > COMBINE(rhat, uj2)) {
        !           205:        qhat_too_big:
        !           206:                        qhat--;
        !           207:                        if ((rhat += v1) >= B)
        !           208:                                break;
        !           209:                }
        !           210:                /*
        !           211:                 * D4: Multiply and subtract.
        !           212:                 * The variable `t' holds any borrows across the loop.
        !           213:                 * We split this up so that we do not require v[0] = 0,
        !           214:                 * and to eliminate a final special case.
        !           215:                 */
        !           216:                for (t = 0, i = n; i > 0; i--) {
        !           217:                        t = u[i + j] - v[i] * qhat - t;
        !           218:                        u[i + j] = (digit)LHALF(t);
        !           219:                        t = (B - HHALF(t)) & (B - 1);
        !           220:                }
        !           221:                t = u[j] - t;
        !           222:                u[j] = (digit)LHALF(t);
        !           223:                /*
        !           224:                 * D5: test remainder.
        !           225:                 * There is a borrow if and only if HHALF(t) is nonzero;
        !           226:                 * in that (rare) case, qhat was too large (by exactly 1).
        !           227:                 * Fix it by adding v[1..n] to u[j..j+n].
        !           228:                 */
        !           229:                if (HHALF(t)) {
        !           230:                        qhat--;
        !           231:                        for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
        !           232:                                t += u[i + j] + v[i];
        !           233:                                u[i + j] = (digit)LHALF(t);
        !           234:                                t = HHALF(t);
        !           235:                        }
        !           236:                        u[j] = (digit)LHALF(u[j] + t);
        !           237:                }
        !           238:                q[j] = (digit)qhat;
        !           239:        } while (++j <= m);             /* D7: loop on j. */
        !           240:
        !           241:        /*
        !           242:         * If caller wants the remainder, we have to calculate it as
        !           243:         * u[m..m+n] >> d (this is at most n digits and thus fits in
        !           244:         * u[m+1..m+n], but we may need more source digits).
        !           245:         */
        !           246:        if (arq) {
        !           247:                if (d) {
        !           248:                        for (i = m + n; i > m; --i)
        !           249:                                u[i] = (digit)(((u_int)u[i] >> d) |
        !           250:                                    LHALF((u_int)u[i - 1] << (HALF_BITS - d)));
        !           251:                        u[i] = 0;
        !           252:                }
        !           253:                tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
        !           254:                tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
        !           255:                *arq = tmp.q;
        !           256:        }
        !           257:
        !           258:        tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
        !           259:        tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
        !           260:        return (tmp.q);
        !           261: }
        !           262:
        !           263: /*
        !           264:  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
        !           265:  * `fall out' the left (there never will be any such anyway).
        !           266:  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
        !           267:  */
        !           268: static void
        !           269: shl(digit *p, int len, int sh)
        !           270: {
        !           271:        int i;
        !           272:
        !           273:        for (i = 0; i < len; i++)
        !           274:                p[i] = (digit)(LHALF((u_int)p[i] << sh) |
        !           275:                    ((u_int)p[i + 1] >> (HALF_BITS - sh)));
        !           276:        p[i] = (digit)(LHALF((u_int)p[i] << sh));
        !           277: }

CVSweb