[BACK]Return to muldi3.c CVS log [TXT][DIR] Up to [local] / sys / lib / libkern

Annotation of sys/lib/libkern/muldi3.c, Revision 1.1.1.1

1.1       nbrk        1: /*-
                      2:  * Copyright (c) 1992, 1993
                      3:  *     The Regents of the University of California.  All rights reserved.
                      4:  *
                      5:  * This software was developed by the Computer Systems Engineering group
                      6:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
                      7:  * contributed to Berkeley.
                      8:  *
                      9:  * Redistribution and use in source and binary forms, with or without
                     10:  * modification, are permitted provided that the following conditions
                     11:  * are met:
                     12:  * 1. Redistributions of source code must retain the above copyright
                     13:  *    notice, this list of conditions and the following disclaimer.
                     14:  * 2. Redistributions in binary form must reproduce the above copyright
                     15:  *    notice, this list of conditions and the following disclaimer in the
                     16:  *    documentation and/or other materials provided with the distribution.
                     17:  * 3. Neither the name of the University nor the names of its contributors
                     18:  *    may be used to endorse or promote products derived from this software
                     19:  *    without specific prior written permission.
                     20:  *
                     21:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
                     22:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     23:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     24:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
                     25:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     26:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     27:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     28:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     29:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     30:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     31:  * SUCH DAMAGE.
                     32:  */
                     33:
                     34: #if defined(LIBC_SCCS) && !defined(lint)
                     35: static char rcsid[] = "$OpenBSD: muldi3.c,v 1.7 2004/11/28 07:23:41 mickey Exp $";
                     36: #endif /* LIBC_SCCS and not lint */
                     37:
                     38: #include "quad.h"
                     39:
                     40: /*
                     41:  * Multiply two quads.
                     42:  *
                     43:  * Our algorithm is based on the following.  Split incoming quad values
                     44:  * u and v (where u,v >= 0) into
                     45:  *
                     46:  *     u = 2^n u1  *  u0       (n = number of bits in `u_int', usu. 32)
                     47:  *
                     48:  * and
                     49:  *
                     50:  *     v = 2^n v1  *  v0
                     51:  *
                     52:  * Then
                     53:  *
                     54:  *     uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
                     55:  *        = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
                     56:  *
                     57:  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
                     58:  * and add 2^n u0 v0 to the last term and subtract it from the middle.
                     59:  * This gives:
                     60:  *
                     61:  *     uv = (2^2n + 2^n) (u1 v1)  +
                     62:  *              (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
                     63:  *            (2^n + 1)  (u0 v0)
                     64:  *
                     65:  * Factoring the middle a bit gives us:
                     66:  *
                     67:  *     uv = (2^2n + 2^n) (u1 v1)  +                    [u1v1 = high]
                     68:  *              (2^n)    (u1 - u0) (v0 - v1)  +        [(u1-u0)... = mid]
                     69:  *            (2^n + 1)  (u0 v0)                       [u0v0 = low]
                     70:  *
                     71:  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
                     72:  * in just half the precision of the original.  (Note that either or both
                     73:  * of (u1 - u0) or (v0 - v1) may be negative.)
                     74:  *
                     75:  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
                     76:  *
                     77:  * Since C does not give us a `int * int = quad' operator, we split
                     78:  * our input quads into two ints, then split the two ints into two
                     79:  * shorts.  We can then calculate `short * short = int' in native
                     80:  * arithmetic.
                     81:  *
                     82:  * Our product should, strictly speaking, be a `long quad', with 128
                     83:  * bits, but we are going to discard the upper 64.  In other words,
                     84:  * we are not interested in uv, but rather in (uv mod 2^2n).  This
                     85:  * makes some of the terms above vanish, and we get:
                     86:  *
                     87:  *     (2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
                     88:  *
                     89:  * or
                     90:  *
                     91:  *     (2^n)(high + mid + low) + low
                     92:  *
                     93:  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
                     94:  * of 2^n in either one will also vanish.  Only `low' need be computed
                     95:  * mod 2^2n, and only because of the final term above.
                     96:  */
                     97: static quad_t __lmulq(u_int, u_int);
                     98:
                     99: quad_t
                    100: __muldi3(a, b)
                    101:        quad_t a, b;
                    102: {
                    103:        union uu u, v, low, prod;
                    104:        u_int high, mid, udiff, vdiff;
                    105:        int negall, negmid;
                    106: #define        u1      u.ul[H]
                    107: #define        u0      u.ul[L]
                    108: #define        v1      v.ul[H]
                    109: #define        v0      v.ul[L]
                    110:
                    111:        /*
                    112:         * Get u and v such that u, v >= 0.  When this is finished,
                    113:         * u1, u0, v1, and v0 will be directly accessible through the
                    114:         * int fields.
                    115:         */
                    116:        if (a >= 0)
                    117:                u.q = a, negall = 0;
                    118:        else
                    119:                u.q = -a, negall = 1;
                    120:        if (b >= 0)
                    121:                v.q = b;
                    122:        else
                    123:                v.q = -b, negall ^= 1;
                    124:
                    125:        if (u1 == 0 && v1 == 0) {
                    126:                /*
                    127:                 * An (I hope) important optimization occurs when u1 and v1
                    128:                 * are both 0.  This should be common since most numbers
                    129:                 * are small.  Here the product is just u0*v0.
                    130:                 */
                    131:                prod.q = __lmulq(u0, v0);
                    132:        } else {
                    133:                /*
                    134:                 * Compute the three intermediate products, remembering
                    135:                 * whether the middle term is negative.  We can discard
                    136:                 * any upper bits in high and mid, so we can use native
                    137:                 * u_int * u_int => u_int arithmetic.
                    138:                 */
                    139:                low.q = __lmulq(u0, v0);
                    140:
                    141:                if (u1 >= u0)
                    142:                        negmid = 0, udiff = u1 - u0;
                    143:                else
                    144:                        negmid = 1, udiff = u0 - u1;
                    145:                if (v0 >= v1)
                    146:                        vdiff = v0 - v1;
                    147:                else
                    148:                        vdiff = v1 - v0, negmid ^= 1;
                    149:                mid = udiff * vdiff;
                    150:
                    151:                high = u1 * v1;
                    152:
                    153:                /*
                    154:                 * Assemble the final product.
                    155:                 */
                    156:                prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
                    157:                    low.ul[H];
                    158:                prod.ul[L] = low.ul[L];
                    159:        }
                    160:        return (negall ? -prod.q : prod.q);
                    161: #undef u1
                    162: #undef u0
                    163: #undef v1
                    164: #undef v0
                    165: }
                    166:
                    167: /*
                    168:  * Multiply two 2N-bit ints to produce a 4N-bit quad, where N is half
                    169:  * the number of bits in an int (whatever that is---the code below
                    170:  * does not care as long as quad.h does its part of the bargain---but
                    171:  * typically N==16).
                    172:  *
                    173:  * We use the same algorithm from Knuth, but this time the modulo refinement
                    174:  * does not apply.  On the other hand, since N is half the size of an int,
                    175:  * we can get away with native multiplication---none of our input terms
                    176:  * exceeds (UINT_MAX >> 1).
                    177:  *
                    178:  * Note that, for u_int l, the quad-precision result
                    179:  *
                    180:  *     l << N
                    181:  *
                    182:  * splits into high and low ints as HHALF(l) and LHUP(l) respectively.
                    183:  */
                    184: static quad_t
                    185: __lmulq(u_int u, u_int v)
                    186: {
                    187:        u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
                    188:        u_int prodh, prodl, was;
                    189:        union uu prod;
                    190:        int neg;
                    191:
                    192:        u1 = HHALF(u);
                    193:        u0 = LHALF(u);
                    194:        v1 = HHALF(v);
                    195:        v0 = LHALF(v);
                    196:
                    197:        low = u0 * v0;
                    198:
                    199:        /* This is the same small-number optimization as before. */
                    200:        if (u1 == 0 && v1 == 0)
                    201:                return (low);
                    202:
                    203:        if (u1 >= u0)
                    204:                udiff = u1 - u0, neg = 0;
                    205:        else
                    206:                udiff = u0 - u1, neg = 1;
                    207:        if (v0 >= v1)
                    208:                vdiff = v0 - v1;
                    209:        else
                    210:                vdiff = v1 - v0, neg ^= 1;
                    211:        mid = udiff * vdiff;
                    212:
                    213:        high = u1 * v1;
                    214:
                    215:        /* prod = (high << 2N) + (high << N); */
                    216:        prodh = high + HHALF(high);
                    217:        prodl = LHUP(high);
                    218:
                    219:        /* if (neg) prod -= mid << N; else prod += mid << N; */
                    220:        if (neg) {
                    221:                was = prodl;
                    222:                prodl -= LHUP(mid);
                    223:                prodh -= HHALF(mid) + (prodl > was);
                    224:        } else {
                    225:                was = prodl;
                    226:                prodl += LHUP(mid);
                    227:                prodh += HHALF(mid) + (prodl < was);
                    228:        }
                    229:
                    230:        /* prod += low << N */
                    231:        was = prodl;
                    232:        prodl += LHUP(low);
                    233:        prodh += HHALF(low) + (prodl < was);
                    234:        /* ... + low; */
                    235:        if ((prodl += low) < low)
                    236:                prodh++;
                    237:
                    238:        /* return 4N-bit product */
                    239:        prod.ul[H] = prodh;
                    240:        prod.ul[L] = prodl;
                    241:        return (prod.q);
                    242: }

CVSweb