[BACK]Return to muldi3.c CVS log [TXT][DIR] Up to [local] / sys / lib / libkern

Annotation of sys/lib/libkern/muldi3.c, Revision 1.1

1.1     ! nbrk        1: /*-
        !             2:  * Copyright (c) 1992, 1993
        !             3:  *     The Regents of the University of California.  All rights reserved.
        !             4:  *
        !             5:  * This software was developed by the Computer Systems Engineering group
        !             6:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
        !             7:  * contributed to Berkeley.
        !             8:  *
        !             9:  * Redistribution and use in source and binary forms, with or without
        !            10:  * modification, are permitted provided that the following conditions
        !            11:  * are met:
        !            12:  * 1. Redistributions of source code must retain the above copyright
        !            13:  *    notice, this list of conditions and the following disclaimer.
        !            14:  * 2. Redistributions in binary form must reproduce the above copyright
        !            15:  *    notice, this list of conditions and the following disclaimer in the
        !            16:  *    documentation and/or other materials provided with the distribution.
        !            17:  * 3. Neither the name of the University nor the names of its contributors
        !            18:  *    may be used to endorse or promote products derived from this software
        !            19:  *    without specific prior written permission.
        !            20:  *
        !            21:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
        !            22:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
        !            23:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
        !            24:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
        !            25:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
        !            26:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
        !            27:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
        !            28:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
        !            29:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
        !            30:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
        !            31:  * SUCH DAMAGE.
        !            32:  */
        !            33:
        !            34: #if defined(LIBC_SCCS) && !defined(lint)
        !            35: static char rcsid[] = "$OpenBSD: muldi3.c,v 1.7 2004/11/28 07:23:41 mickey Exp $";
        !            36: #endif /* LIBC_SCCS and not lint */
        !            37:
        !            38: #include "quad.h"
        !            39:
        !            40: /*
        !            41:  * Multiply two quads.
        !            42:  *
        !            43:  * Our algorithm is based on the following.  Split incoming quad values
        !            44:  * u and v (where u,v >= 0) into
        !            45:  *
        !            46:  *     u = 2^n u1  *  u0       (n = number of bits in `u_int', usu. 32)
        !            47:  *
        !            48:  * and
        !            49:  *
        !            50:  *     v = 2^n v1  *  v0
        !            51:  *
        !            52:  * Then
        !            53:  *
        !            54:  *     uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
        !            55:  *        = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
        !            56:  *
        !            57:  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
        !            58:  * and add 2^n u0 v0 to the last term and subtract it from the middle.
        !            59:  * This gives:
        !            60:  *
        !            61:  *     uv = (2^2n + 2^n) (u1 v1)  +
        !            62:  *              (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
        !            63:  *            (2^n + 1)  (u0 v0)
        !            64:  *
        !            65:  * Factoring the middle a bit gives us:
        !            66:  *
        !            67:  *     uv = (2^2n + 2^n) (u1 v1)  +                    [u1v1 = high]
        !            68:  *              (2^n)    (u1 - u0) (v0 - v1)  +        [(u1-u0)... = mid]
        !            69:  *            (2^n + 1)  (u0 v0)                       [u0v0 = low]
        !            70:  *
        !            71:  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
        !            72:  * in just half the precision of the original.  (Note that either or both
        !            73:  * of (u1 - u0) or (v0 - v1) may be negative.)
        !            74:  *
        !            75:  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
        !            76:  *
        !            77:  * Since C does not give us a `int * int = quad' operator, we split
        !            78:  * our input quads into two ints, then split the two ints into two
        !            79:  * shorts.  We can then calculate `short * short = int' in native
        !            80:  * arithmetic.
        !            81:  *
        !            82:  * Our product should, strictly speaking, be a `long quad', with 128
        !            83:  * bits, but we are going to discard the upper 64.  In other words,
        !            84:  * we are not interested in uv, but rather in (uv mod 2^2n).  This
        !            85:  * makes some of the terms above vanish, and we get:
        !            86:  *
        !            87:  *     (2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
        !            88:  *
        !            89:  * or
        !            90:  *
        !            91:  *     (2^n)(high + mid + low) + low
        !            92:  *
        !            93:  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
        !            94:  * of 2^n in either one will also vanish.  Only `low' need be computed
        !            95:  * mod 2^2n, and only because of the final term above.
        !            96:  */
        !            97: static quad_t __lmulq(u_int, u_int);
        !            98:
        !            99: quad_t
        !           100: __muldi3(a, b)
        !           101:        quad_t a, b;
        !           102: {
        !           103:        union uu u, v, low, prod;
        !           104:        u_int high, mid, udiff, vdiff;
        !           105:        int negall, negmid;
        !           106: #define        u1      u.ul[H]
        !           107: #define        u0      u.ul[L]
        !           108: #define        v1      v.ul[H]
        !           109: #define        v0      v.ul[L]
        !           110:
        !           111:        /*
        !           112:         * Get u and v such that u, v >= 0.  When this is finished,
        !           113:         * u1, u0, v1, and v0 will be directly accessible through the
        !           114:         * int fields.
        !           115:         */
        !           116:        if (a >= 0)
        !           117:                u.q = a, negall = 0;
        !           118:        else
        !           119:                u.q = -a, negall = 1;
        !           120:        if (b >= 0)
        !           121:                v.q = b;
        !           122:        else
        !           123:                v.q = -b, negall ^= 1;
        !           124:
        !           125:        if (u1 == 0 && v1 == 0) {
        !           126:                /*
        !           127:                 * An (I hope) important optimization occurs when u1 and v1
        !           128:                 * are both 0.  This should be common since most numbers
        !           129:                 * are small.  Here the product is just u0*v0.
        !           130:                 */
        !           131:                prod.q = __lmulq(u0, v0);
        !           132:        } else {
        !           133:                /*
        !           134:                 * Compute the three intermediate products, remembering
        !           135:                 * whether the middle term is negative.  We can discard
        !           136:                 * any upper bits in high and mid, so we can use native
        !           137:                 * u_int * u_int => u_int arithmetic.
        !           138:                 */
        !           139:                low.q = __lmulq(u0, v0);
        !           140:
        !           141:                if (u1 >= u0)
        !           142:                        negmid = 0, udiff = u1 - u0;
        !           143:                else
        !           144:                        negmid = 1, udiff = u0 - u1;
        !           145:                if (v0 >= v1)
        !           146:                        vdiff = v0 - v1;
        !           147:                else
        !           148:                        vdiff = v1 - v0, negmid ^= 1;
        !           149:                mid = udiff * vdiff;
        !           150:
        !           151:                high = u1 * v1;
        !           152:
        !           153:                /*
        !           154:                 * Assemble the final product.
        !           155:                 */
        !           156:                prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
        !           157:                    low.ul[H];
        !           158:                prod.ul[L] = low.ul[L];
        !           159:        }
        !           160:        return (negall ? -prod.q : prod.q);
        !           161: #undef u1
        !           162: #undef u0
        !           163: #undef v1
        !           164: #undef v0
        !           165: }
        !           166:
        !           167: /*
        !           168:  * Multiply two 2N-bit ints to produce a 4N-bit quad, where N is half
        !           169:  * the number of bits in an int (whatever that is---the code below
        !           170:  * does not care as long as quad.h does its part of the bargain---but
        !           171:  * typically N==16).
        !           172:  *
        !           173:  * We use the same algorithm from Knuth, but this time the modulo refinement
        !           174:  * does not apply.  On the other hand, since N is half the size of an int,
        !           175:  * we can get away with native multiplication---none of our input terms
        !           176:  * exceeds (UINT_MAX >> 1).
        !           177:  *
        !           178:  * Note that, for u_int l, the quad-precision result
        !           179:  *
        !           180:  *     l << N
        !           181:  *
        !           182:  * splits into high and low ints as HHALF(l) and LHUP(l) respectively.
        !           183:  */
        !           184: static quad_t
        !           185: __lmulq(u_int u, u_int v)
        !           186: {
        !           187:        u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
        !           188:        u_int prodh, prodl, was;
        !           189:        union uu prod;
        !           190:        int neg;
        !           191:
        !           192:        u1 = HHALF(u);
        !           193:        u0 = LHALF(u);
        !           194:        v1 = HHALF(v);
        !           195:        v0 = LHALF(v);
        !           196:
        !           197:        low = u0 * v0;
        !           198:
        !           199:        /* This is the same small-number optimization as before. */
        !           200:        if (u1 == 0 && v1 == 0)
        !           201:                return (low);
        !           202:
        !           203:        if (u1 >= u0)
        !           204:                udiff = u1 - u0, neg = 0;
        !           205:        else
        !           206:                udiff = u0 - u1, neg = 1;
        !           207:        if (v0 >= v1)
        !           208:                vdiff = v0 - v1;
        !           209:        else
        !           210:                vdiff = v1 - v0, neg ^= 1;
        !           211:        mid = udiff * vdiff;
        !           212:
        !           213:        high = u1 * v1;
        !           214:
        !           215:        /* prod = (high << 2N) + (high << N); */
        !           216:        prodh = high + HHALF(high);
        !           217:        prodl = LHUP(high);
        !           218:
        !           219:        /* if (neg) prod -= mid << N; else prod += mid << N; */
        !           220:        if (neg) {
        !           221:                was = prodl;
        !           222:                prodl -= LHUP(mid);
        !           223:                prodh -= HHALF(mid) + (prodl > was);
        !           224:        } else {
        !           225:                was = prodl;
        !           226:                prodl += LHUP(mid);
        !           227:                prodh += HHALF(mid) + (prodl < was);
        !           228:        }
        !           229:
        !           230:        /* prod += low << N */
        !           231:        was = prodl;
        !           232:        prodl += LHUP(low);
        !           233:        prodh += HHALF(low) + (prodl < was);
        !           234:        /* ... + low; */
        !           235:        if ((prodl += low) < low)
        !           236:                prodh++;
        !           237:
        !           238:        /* return 4N-bit product */
        !           239:        prod.ul[H] = prodh;
        !           240:        prod.ul[L] = prodl;
        !           241:        return (prod.q);
        !           242: }

CVSweb