[BACK]Return to sched_bsd.c CVS log [TXT][DIR] Up to [local] / sys / kern

Annotation of sys/kern/sched_bsd.c, Revision 1.1

1.1     ! nbrk        1: /*     $OpenBSD: sched_bsd.c,v 1.12 2007/05/18 16:10:15 art Exp $      */
        !             2: /*     $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */
        !             3:
        !             4: /*-
        !             5:  * Copyright (c) 1982, 1986, 1990, 1991, 1993
        !             6:  *     The Regents of the University of California.  All rights reserved.
        !             7:  * (c) UNIX System Laboratories, Inc.
        !             8:  * All or some portions of this file are derived from material licensed
        !             9:  * to the University of California by American Telephone and Telegraph
        !            10:  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
        !            11:  * the permission of UNIX System Laboratories, Inc.
        !            12:  *
        !            13:  * Redistribution and use in source and binary forms, with or without
        !            14:  * modification, are permitted provided that the following conditions
        !            15:  * are met:
        !            16:  * 1. Redistributions of source code must retain the above copyright
        !            17:  *    notice, this list of conditions and the following disclaimer.
        !            18:  * 2. Redistributions in binary form must reproduce the above copyright
        !            19:  *    notice, this list of conditions and the following disclaimer in the
        !            20:  *    documentation and/or other materials provided with the distribution.
        !            21:  * 3. Neither the name of the University nor the names of its contributors
        !            22:  *    may be used to endorse or promote products derived from this software
        !            23:  *    without specific prior written permission.
        !            24:  *
        !            25:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
        !            26:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
        !            27:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
        !            28:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
        !            29:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
        !            30:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
        !            31:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
        !            32:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
        !            33:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
        !            34:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
        !            35:  * SUCH DAMAGE.
        !            36:  *
        !            37:  *     @(#)kern_synch.c        8.6 (Berkeley) 1/21/94
        !            38:  */
        !            39:
        !            40: #include <sys/param.h>
        !            41: #include <sys/systm.h>
        !            42: #include <sys/proc.h>
        !            43: #include <sys/kernel.h>
        !            44: #include <sys/buf.h>
        !            45: #include <sys/signalvar.h>
        !            46: #include <sys/resourcevar.h>
        !            47: #include <uvm/uvm_extern.h>
        !            48: #include <sys/sched.h>
        !            49: #include <sys/timeout.h>
        !            50:
        !            51: #ifdef KTRACE
        !            52: #include <sys/ktrace.h>
        !            53: #endif
        !            54:
        !            55: #include <machine/cpu.h>
        !            56:
        !            57: int    lbolt;                  /* once a second sleep address */
        !            58: int    rrticks_init;           /* # of hardclock ticks per roundrobin() */
        !            59:
        !            60: int whichqs;                   /* Bit mask summary of non-empty Q's. */
        !            61: struct prochd qs[NQS];
        !            62:
        !            63: struct SIMPLELOCK sched_lock;
        !            64:
        !            65: void scheduler_start(void);
        !            66:
        !            67: void roundrobin(struct cpu_info *);
        !            68: void schedcpu(void *);
        !            69: void updatepri(struct proc *);
        !            70: void endtsleep(void *);
        !            71:
        !            72: void
        !            73: scheduler_start(void)
        !            74: {
        !            75:        static struct timeout schedcpu_to;
        !            76:
        !            77:        /*
        !            78:         * We avoid polluting the global namespace by keeping the scheduler
        !            79:         * timeouts static in this function.
        !            80:         * We setup the timeouts here and kick schedcpu and roundrobin once to
        !            81:         * make them do their job.
        !            82:         */
        !            83:
        !            84:        timeout_set(&schedcpu_to, schedcpu, &schedcpu_to);
        !            85:
        !            86:        rrticks_init = hz / 10;
        !            87:        schedcpu(&schedcpu_to);
        !            88: }
        !            89:
        !            90: /*
        !            91:  * Force switch among equal priority processes every 100ms.
        !            92:  */
        !            93: /* ARGSUSED */
        !            94: void
        !            95: roundrobin(struct cpu_info *ci)
        !            96: {
        !            97:        struct schedstate_percpu *spc = &ci->ci_schedstate;
        !            98:        int s;
        !            99:
        !           100:        spc->spc_rrticks = rrticks_init;
        !           101:
        !           102:        if (curproc != NULL) {
        !           103:                s = splstatclock();
        !           104:                if (spc->spc_schedflags & SPCF_SEENRR) {
        !           105:                        /*
        !           106:                         * The process has already been through a roundrobin
        !           107:                         * without switching and may be hogging the CPU.
        !           108:                         * Indicate that the process should yield.
        !           109:                         */
        !           110:                        spc->spc_schedflags |= SPCF_SHOULDYIELD;
        !           111:                } else {
        !           112:                        spc->spc_schedflags |= SPCF_SEENRR;
        !           113:                }
        !           114:                splx(s);
        !           115:        }
        !           116:
        !           117:        need_resched(curcpu());
        !           118: }
        !           119:
        !           120: /*
        !           121:  * Constants for digital decay and forget:
        !           122:  *     90% of (p_estcpu) usage in 5 * loadav time
        !           123:  *     95% of (p_pctcpu) usage in 60 seconds (load insensitive)
        !           124:  *          Note that, as ps(1) mentions, this can let percentages
        !           125:  *          total over 100% (I've seen 137.9% for 3 processes).
        !           126:  *
        !           127:  * Note that hardclock updates p_estcpu and p_cpticks independently.
        !           128:  *
        !           129:  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
        !           130:  * That is, the system wants to compute a value of decay such
        !           131:  * that the following for loop:
        !           132:  *     for (i = 0; i < (5 * loadavg); i++)
        !           133:  *             p_estcpu *= decay;
        !           134:  * will compute
        !           135:  *     p_estcpu *= 0.1;
        !           136:  * for all values of loadavg:
        !           137:  *
        !           138:  * Mathematically this loop can be expressed by saying:
        !           139:  *     decay ** (5 * loadavg) ~= .1
        !           140:  *
        !           141:  * The system computes decay as:
        !           142:  *     decay = (2 * loadavg) / (2 * loadavg + 1)
        !           143:  *
        !           144:  * We wish to prove that the system's computation of decay
        !           145:  * will always fulfill the equation:
        !           146:  *     decay ** (5 * loadavg) ~= .1
        !           147:  *
        !           148:  * If we compute b as:
        !           149:  *     b = 2 * loadavg
        !           150:  * then
        !           151:  *     decay = b / (b + 1)
        !           152:  *
        !           153:  * We now need to prove two things:
        !           154:  *     1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
        !           155:  *     2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
        !           156:  *
        !           157:  * Facts:
        !           158:  *         For x close to zero, exp(x) =~ 1 + x, since
        !           159:  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
        !           160:  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
        !           161:  *         For x close to zero, ln(1+x) =~ x, since
        !           162:  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
        !           163:  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
        !           164:  *         ln(.1) =~ -2.30
        !           165:  *
        !           166:  * Proof of (1):
        !           167:  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
        !           168:  *     solving for factor,
        !           169:  *      ln(factor) =~ (-2.30/5*loadav), or
        !           170:  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
        !           171:  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
        !           172:  *
        !           173:  * Proof of (2):
        !           174:  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
        !           175:  *     solving for power,
        !           176:  *      power*ln(b/(b+1)) =~ -2.30, or
        !           177:  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
        !           178:  *
        !           179:  * Actual power values for the implemented algorithm are as follows:
        !           180:  *      loadav: 1       2       3       4
        !           181:  *      power:  5.68    10.32   14.94   19.55
        !           182:  */
        !           183:
        !           184: /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
        !           185: #define        loadfactor(loadav)      (2 * (loadav))
        !           186: #define        decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
        !           187:
        !           188: /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
        !           189: fixpt_t        ccpu = 0.95122942450071400909 * FSCALE;         /* exp(-1/20) */
        !           190:
        !           191: /*
        !           192:  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
        !           193:  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
        !           194:  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
        !           195:  *
        !           196:  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
        !           197:  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
        !           198:  *
        !           199:  * If you don't want to bother with the faster/more-accurate formula, you
        !           200:  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
        !           201:  * (more general) method of calculating the %age of CPU used by a process.
        !           202:  */
        !           203: #define        CCPU_SHIFT      11
        !           204:
        !           205: /*
        !           206:  * Recompute process priorities, every hz ticks.
        !           207:  */
        !           208: /* ARGSUSED */
        !           209: void
        !           210: schedcpu(void *arg)
        !           211: {
        !           212:        struct timeout *to = (struct timeout *)arg;
        !           213:        fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
        !           214:        struct proc *p;
        !           215:        int s;
        !           216:        unsigned int newcpu;
        !           217:        int phz;
        !           218:
        !           219:        /*
        !           220:         * If we have a statistics clock, use that to calculate CPU
        !           221:         * time, otherwise revert to using the profiling clock (which,
        !           222:         * in turn, defaults to hz if there is no separate profiling
        !           223:         * clock available)
        !           224:         */
        !           225:        phz = stathz ? stathz : profhz;
        !           226:        KASSERT(phz);
        !           227:
        !           228:        for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
        !           229:                /*
        !           230:                 * Increment time in/out of memory and sleep time
        !           231:                 * (if sleeping).  We ignore overflow; with 16-bit int's
        !           232:                 * (remember them?) overflow takes 45 days.
        !           233:                 */
        !           234:                p->p_swtime++;
        !           235:                if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
        !           236:                        p->p_slptime++;
        !           237:                p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
        !           238:                /*
        !           239:                 * If the process has slept the entire second,
        !           240:                 * stop recalculating its priority until it wakes up.
        !           241:                 */
        !           242:                if (p->p_slptime > 1)
        !           243:                        continue;
        !           244:                SCHED_LOCK(s);
        !           245:                /*
        !           246:                 * p_pctcpu is only for ps.
        !           247:                 */
        !           248: #if    (FSHIFT >= CCPU_SHIFT)
        !           249:                p->p_pctcpu += (phz == 100)?
        !           250:                        ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
        !           251:                        100 * (((fixpt_t) p->p_cpticks)
        !           252:                                << (FSHIFT - CCPU_SHIFT)) / phz;
        !           253: #else
        !           254:                p->p_pctcpu += ((FSCALE - ccpu) *
        !           255:                        (p->p_cpticks * FSCALE / phz)) >> FSHIFT;
        !           256: #endif
        !           257:                p->p_cpticks = 0;
        !           258:                newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu);
        !           259:                p->p_estcpu = newcpu;
        !           260:                resetpriority(p);
        !           261:                if (p->p_priority >= PUSER) {
        !           262:                        if ((p != curproc) &&
        !           263:                            p->p_stat == SRUN &&
        !           264:                            (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
        !           265:                                remrunqueue(p);
        !           266:                                p->p_priority = p->p_usrpri;
        !           267:                                setrunqueue(p);
        !           268:                        } else
        !           269:                                p->p_priority = p->p_usrpri;
        !           270:                }
        !           271:                SCHED_UNLOCK(s);
        !           272:        }
        !           273:        uvm_meter();
        !           274:        wakeup(&lbolt);
        !           275:        timeout_add(to, hz);
        !           276: }
        !           277:
        !           278: /*
        !           279:  * Recalculate the priority of a process after it has slept for a while.
        !           280:  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
        !           281:  * least six times the loadfactor will decay p_estcpu to zero.
        !           282:  */
        !           283: void
        !           284: updatepri(struct proc *p)
        !           285: {
        !           286:        unsigned int newcpu = p->p_estcpu;
        !           287:        fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
        !           288:
        !           289:        SCHED_ASSERT_LOCKED();
        !           290:
        !           291:        if (p->p_slptime > 5 * loadfac)
        !           292:                p->p_estcpu = 0;
        !           293:        else {
        !           294:                p->p_slptime--; /* the first time was done in schedcpu */
        !           295:                while (newcpu && --p->p_slptime)
        !           296:                        newcpu = (int) decay_cpu(loadfac, newcpu);
        !           297:                p->p_estcpu = newcpu;
        !           298:        }
        !           299:        resetpriority(p);
        !           300: }
        !           301:
        !           302: #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
        !           303: void
        !           304: sched_unlock_idle(void)
        !           305: {
        !           306:        SIMPLE_UNLOCK(&sched_lock);
        !           307: }
        !           308:
        !           309: void
        !           310: sched_lock_idle(void)
        !           311: {
        !           312:        SIMPLE_LOCK(&sched_lock);
        !           313: }
        !           314: #endif /* MULTIPROCESSOR || LOCKDEBUG */
        !           315:
        !           316: /*
        !           317:  * General yield call.  Puts the current process back on its run queue and
        !           318:  * performs a voluntary context switch.
        !           319:  */
        !           320: void
        !           321: yield(void)
        !           322: {
        !           323:        struct proc *p = curproc;
        !           324:        int s;
        !           325:
        !           326:        SCHED_LOCK(s);
        !           327:        p->p_priority = p->p_usrpri;
        !           328:        p->p_stat = SRUN;
        !           329:        setrunqueue(p);
        !           330:        p->p_stats->p_ru.ru_nvcsw++;
        !           331:        mi_switch();
        !           332:        SCHED_UNLOCK(s);
        !           333: }
        !           334:
        !           335: /*
        !           336:  * General preemption call.  Puts the current process back on its run queue
        !           337:  * and performs an involuntary context switch.  If a process is supplied,
        !           338:  * we switch to that process.  Otherwise, we use the normal process selection
        !           339:  * criteria.
        !           340:  */
        !           341: void
        !           342: preempt(struct proc *newp)
        !           343: {
        !           344:        struct proc *p = curproc;
        !           345:        int s;
        !           346:
        !           347:        /*
        !           348:         * XXX Switching to a specific process is not supported yet.
        !           349:         */
        !           350:        if (newp != NULL)
        !           351:                panic("preempt: cpu_preempt not yet implemented");
        !           352:
        !           353:        SCHED_LOCK(s);
        !           354:        p->p_priority = p->p_usrpri;
        !           355:        p->p_stat = SRUN;
        !           356:        setrunqueue(p);
        !           357:        p->p_stats->p_ru.ru_nivcsw++;
        !           358:        mi_switch();
        !           359:        SCHED_UNLOCK(s);
        !           360: }
        !           361:
        !           362:
        !           363: /*
        !           364:  * Must be called at splstatclock() or higher.
        !           365:  */
        !           366: void
        !           367: mi_switch(void)
        !           368: {
        !           369:        struct proc *p = curproc;       /* XXX */
        !           370:        struct rlimit *rlim;
        !           371:        struct timeval tv;
        !           372: #if defined(MULTIPROCESSOR)
        !           373:        int hold_count;
        !           374:        int sched_count;
        !           375: #endif
        !           376:        struct schedstate_percpu *spc = &p->p_cpu->ci_schedstate;
        !           377:
        !           378:        SCHED_ASSERT_LOCKED();
        !           379:
        !           380: #if defined(MULTIPROCESSOR)
        !           381:        /*
        !           382:         * Release the kernel_lock, as we are about to yield the CPU.
        !           383:         * The scheduler lock is still held until cpu_switch()
        !           384:         * selects a new process and removes it from the run queue.
        !           385:         */
        !           386:        sched_count = __mp_release_all_but_one(&sched_lock);
        !           387:        if (p->p_flag & P_BIGLOCK)
        !           388:                hold_count = __mp_release_all(&kernel_lock);
        !           389: #endif
        !           390:
        !           391:        /*
        !           392:         * Compute the amount of time during which the current
        !           393:         * process was running, and add that to its total so far.
        !           394:         * XXX - use microuptime here to avoid strangeness.
        !           395:         */
        !           396:        microuptime(&tv);
        !           397:        if (timercmp(&tv, &spc->spc_runtime, <)) {
        !           398: #if 0
        !           399:                printf("uptime is not monotonic! "
        !           400:                    "tv=%lu.%06lu, runtime=%lu.%06lu\n",
        !           401:                    tv.tv_sec, tv.tv_usec, spc->spc_runtime.tv_sec,
        !           402:                    spc->spc_runtime.tv_usec);
        !           403: #endif
        !           404:        } else {
        !           405:                timersub(&tv, &spc->spc_runtime, &tv);
        !           406:                timeradd(&p->p_rtime, &tv, &p->p_rtime);
        !           407:        }
        !           408:
        !           409:        /*
        !           410:         * Check if the process exceeds its cpu resource allocation.
        !           411:         * If over max, kill it.
        !           412:         */
        !           413:        rlim = &p->p_rlimit[RLIMIT_CPU];
        !           414:        if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_cur) {
        !           415:                if ((rlim_t)p->p_rtime.tv_sec >= rlim->rlim_max) {
        !           416:                        psignal(p, SIGKILL);
        !           417:                } else {
        !           418:                        psignal(p, SIGXCPU);
        !           419:                        if (rlim->rlim_cur < rlim->rlim_max)
        !           420:                                rlim->rlim_cur += 5;
        !           421:                }
        !           422:        }
        !           423:
        !           424:        /*
        !           425:         * Process is about to yield the CPU; clear the appropriate
        !           426:         * scheduling flags.
        !           427:         */
        !           428:        spc->spc_schedflags &= ~SPCF_SWITCHCLEAR;
        !           429:
        !           430:        /*
        !           431:         * Pick a new current process and record its start time.
        !           432:         */
        !           433:        uvmexp.swtch++;
        !           434:        cpu_switch(p);
        !           435:
        !           436:        /*
        !           437:         * Make sure that MD code released the scheduler lock before
        !           438:         * resuming us.
        !           439:         */
        !           440:        SCHED_ASSERT_UNLOCKED();
        !           441:
        !           442:        /*
        !           443:         * We're running again; record our new start time.  We might
        !           444:         * be running on a new CPU now, so don't use the cache'd
        !           445:         * schedstate_percpu pointer.
        !           446:         */
        !           447:        KDASSERT(p->p_cpu != NULL);
        !           448:        KDASSERT(p->p_cpu == curcpu());
        !           449:        microuptime(&p->p_cpu->ci_schedstate.spc_runtime);
        !           450:
        !           451: #if defined(MULTIPROCESSOR)
        !           452:        /*
        !           453:         * Reacquire the kernel_lock now.  We do this after we've
        !           454:         * released the scheduler lock to avoid deadlock, and before
        !           455:         * we reacquire the interlock and the scheduler lock.
        !           456:         */
        !           457:        if (p->p_flag & P_BIGLOCK)
        !           458:                __mp_acquire_count(&kernel_lock, hold_count);
        !           459:        __mp_acquire_count(&sched_lock, sched_count + 1);
        !           460: #endif
        !           461: }
        !           462:
        !           463: /*
        !           464:  * Initialize the (doubly-linked) run queues
        !           465:  * to be empty.
        !           466:  */
        !           467: void
        !           468: rqinit(void)
        !           469: {
        !           470:        int i;
        !           471:
        !           472:        for (i = 0; i < NQS; i++)
        !           473:                qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
        !           474:        SIMPLE_LOCK_INIT(&sched_lock);
        !           475: }
        !           476:
        !           477: static __inline void
        !           478: resched_proc(struct proc *p, u_char pri)
        !           479: {
        !           480:        struct cpu_info *ci;
        !           481:
        !           482:        /*
        !           483:         * XXXSMP
        !           484:         * Since p->p_cpu persists across a context switch,
        !           485:         * this gives us *very weak* processor affinity, in
        !           486:         * that we notify the CPU on which the process last
        !           487:         * ran that it should try to switch.
        !           488:         *
        !           489:         * This does not guarantee that the process will run on
        !           490:         * that processor next, because another processor might
        !           491:         * grab it the next time it performs a context switch.
        !           492:         *
        !           493:         * This also does not handle the case where its last
        !           494:         * CPU is running a higher-priority process, but every
        !           495:         * other CPU is running a lower-priority process.  There
        !           496:         * are ways to handle this situation, but they're not
        !           497:         * currently very pretty, and we also need to weigh the
        !           498:         * cost of moving a process from one CPU to another.
        !           499:         *
        !           500:         * XXXSMP
        !           501:         * There is also the issue of locking the other CPU's
        !           502:         * sched state, which we currently do not do.
        !           503:         */
        !           504:        ci = (p->p_cpu != NULL) ? p->p_cpu : curcpu();
        !           505:        if (pri < ci->ci_schedstate.spc_curpriority)
        !           506:                need_resched(ci);
        !           507: }
        !           508:
        !           509: /*
        !           510:  * Change process state to be runnable,
        !           511:  * placing it on the run queue if it is in memory,
        !           512:  * and awakening the swapper if it isn't in memory.
        !           513:  */
        !           514: void
        !           515: setrunnable(struct proc *p)
        !           516: {
        !           517:        SCHED_ASSERT_LOCKED();
        !           518:
        !           519:        switch (p->p_stat) {
        !           520:        case 0:
        !           521:        case SRUN:
        !           522:        case SONPROC:
        !           523:        case SZOMB:
        !           524:        case SDEAD:
        !           525:        default:
        !           526:                panic("setrunnable");
        !           527:        case SSTOP:
        !           528:                /*
        !           529:                 * If we're being traced (possibly because someone attached us
        !           530:                 * while we were stopped), check for a signal from the debugger.
        !           531:                 */
        !           532:                if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
        !           533:                        atomic_setbits_int(&p->p_siglist, sigmask(p->p_xstat));
        !           534:        case SSLEEP:
        !           535:                unsleep(p);             /* e.g. when sending signals */
        !           536:                break;
        !           537:        case SIDL:
        !           538:                break;
        !           539:        }
        !           540:        p->p_stat = SRUN;
        !           541:        setrunqueue(p);
        !           542:        if (p->p_slptime > 1)
        !           543:                updatepri(p);
        !           544:        p->p_slptime = 0;
        !           545:        resched_proc(p, p->p_priority);
        !           546: }
        !           547:
        !           548: /*
        !           549:  * Compute the priority of a process when running in user mode.
        !           550:  * Arrange to reschedule if the resulting priority is better
        !           551:  * than that of the current process.
        !           552:  */
        !           553: void
        !           554: resetpriority(struct proc *p)
        !           555: {
        !           556:        unsigned int newpriority;
        !           557:
        !           558:        SCHED_ASSERT_LOCKED();
        !           559:
        !           560:        newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
        !           561:        newpriority = min(newpriority, MAXPRI);
        !           562:        p->p_usrpri = newpriority;
        !           563:        resched_proc(p, p->p_usrpri);
        !           564: }
        !           565:
        !           566: /*
        !           567:  * We adjust the priority of the current process.  The priority of a process
        !           568:  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
        !           569:  * is increased here.  The formula for computing priorities (in kern_synch.c)
        !           570:  * will compute a different value each time p_estcpu increases. This can
        !           571:  * cause a switch, but unless the priority crosses a PPQ boundary the actual
        !           572:  * queue will not change.  The cpu usage estimator ramps up quite quickly
        !           573:  * when the process is running (linearly), and decays away exponentially, at
        !           574:  * a rate which is proportionally slower when the system is busy.  The basic
        !           575:  * principle is that the system will 90% forget that the process used a lot
        !           576:  * of CPU time in 5 * loadav seconds.  This causes the system to favor
        !           577:  * processes which haven't run much recently, and to round-robin among other
        !           578:  * processes.
        !           579:  */
        !           580:
        !           581: void
        !           582: schedclock(struct proc *p)
        !           583: {
        !           584:        int s;
        !           585:
        !           586:        SCHED_LOCK(s);
        !           587:        p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
        !           588:        resetpriority(p);
        !           589:        if (p->p_priority >= PUSER)
        !           590:                p->p_priority = p->p_usrpri;
        !           591:        SCHED_UNLOCK(s);
        !           592: }

CVSweb