[BACK]Return to rf_pqdegdags.c CVS log [TXT][DIR] Up to [local] / sys / dev / raidframe

Annotation of sys/dev/raidframe/rf_pqdegdags.c, Revision 1.1.1.1

1.1       nbrk        1: /*     $OpenBSD: rf_pqdegdags.c,v 1.5 2002/12/16 07:01:04 tdeval Exp $ */
                      2: /*     $NetBSD: rf_pqdegdags.c,v 1.5 1999/08/15 02:36:40 oster Exp $   */
                      3:
                      4: /*
                      5:  * Copyright (c) 1995 Carnegie-Mellon University.
                      6:  * All rights reserved.
                      7:  *
                      8:  * Author: Daniel Stodolsky
                      9:  *
                     10:  * Permission to use, copy, modify and distribute this software and
                     11:  * its documentation is hereby granted, provided that both the copyright
                     12:  * notice and this permission notice appear in all copies of the
                     13:  * software, derivative works or modified versions, and any portions
                     14:  * thereof, and that both notices appear in supporting documentation.
                     15:  *
                     16:  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
                     17:  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
                     18:  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
                     19:  *
                     20:  * Carnegie Mellon requests users of this software to return to
                     21:  *
                     22:  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
                     23:  *  School of Computer Science
                     24:  *  Carnegie Mellon University
                     25:  *  Pittsburgh PA 15213-3890
                     26:  *
                     27:  * any improvements or extensions that they make and grant Carnegie the
                     28:  * rights to redistribute these changes.
                     29:  */
                     30:
                     31: /*
                     32:  * rf_pqdegdags.c
                     33:  * Degraded mode dags for double fault cases.
                     34:  */
                     35:
                     36:
                     37: #include "rf_archs.h"
                     38:
                     39: #if    (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
                     40:
                     41: #include "rf_types.h"
                     42: #include "rf_raid.h"
                     43: #include "rf_dag.h"
                     44: #include "rf_dagdegrd.h"
                     45: #include "rf_dagdegwr.h"
                     46: #include "rf_dagfuncs.h"
                     47: #include "rf_dagutils.h"
                     48: #include "rf_etimer.h"
                     49: #include "rf_acctrace.h"
                     50: #include "rf_general.h"
                     51: #include "rf_pqdegdags.h"
                     52: #include "rf_pq.h"
                     53:
                     54: void rf_applyPDA(RF_Raid_t *, RF_PhysDiskAddr_t *, RF_PhysDiskAddr_t *,
                     55:        RF_PhysDiskAddr_t *, void *);
                     56:
                     57: /*
                     58:  * Two data drives have failed, and we are doing a read that covers one of them.
                     59:  * We may also be reading some of the surviving drives.
                     60:  */
                     61:
                     62:
                     63: /*****************************************************************************
                     64:  *
                     65:  * Creates a DAG to perform a degraded-mode read of data within one stripe.
                     66:  * This DAG is as follows:
                     67:  *
                     68:  *                                     Hdr
                     69:  *                                      |
                     70:  *                                    Block
                     71:  *                      /         /           \         \     \   \
                     72:  *                     Rud  ...  Rud         Rrd  ...  Rrd    Rp  Rq
                     73:  *                     | \       | \         | \       | \    | \ | \
                     74:  *
                     75:  *                                |                 |
                     76:  *                             Unblock              X
                     77:  *                                 \               /
                     78:  *                                  ------ T ------
                     79:  *
                     80:  * Each R node is a successor of the L node.
                     81:  * One successor arc from each R node goes to U, and the other to X.
                     82:  * There is one Rud for each chunk of surviving user data requested by the
                     83:  * user, and one Rrd for each chunk of surviving user data _not_ being read
                     84:  * by the user.
                     85:  * R = read, ud = user data, rd = recovery (surviving) data, p = P data,
                     86:  * q = Qdata, X = pq recovery node, T = terminate
                     87:  *
                     88:  * The block & unblock nodes are leftovers from a previous version. They
                     89:  * do nothing, but I haven't deleted them because it would be a tremendous
                     90:  * effort to put them back in.
                     91:  *
                     92:  * Note:  The target buffer for the XOR node is set to the actual user buffer
                     93:  * where the failed data is supposed to end up. This buffer is zero'd by the
                     94:  * code here. Thus, if you create a degraded read dag, use it, and then
                     95:  * re-use. You have to be sure to zero the target buffer prior to the re-use.
                     96:  *
                     97:  * Every buffer read is passed to the pq recovery node, whose job it is to
                     98:  * sort out what's needed and what's not.
                     99:  *****************************************************************************/
                    100:
                    101: /* Init a disk node with 2 successors and one predecessor. */
                    102: #define        INIT_DISK_NODE(node,name)                                       \
                    103: do {                                                                   \
                    104:        rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc,           \
                    105:            rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2, 1, 4, 0,      \
                    106:            dag_h, name, allocList);                                    \
                    107:        (node)->succedents[0] = unblockNode;                            \
                    108:        (node)->succedents[1] = recoveryNode;                           \
                    109:        (node)->antecedents[0] = blockNode;                             \
                    110:        (node)->antType[0] = rf_control;                                \
                    111: } while (0)
                    112:
                    113: #define        DISK_NODE_PARAMS(_node_,_p_)                                    \
                    114: do {                                                                   \
                    115:        (_node_).params[0].p = _p_ ;                                    \
                    116:        (_node_).params[1].p = (_p_)->bufPtr;                           \
                    117:        (_node_).params[2].v = parityStripeID;                          \
                    118:        (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,  \
                    119:            0, 0, which_ru);                                            \
                    120: } while (0)
                    121:
                    122: #define        DISK_NODE_PDA(node)     ((node)->params[0].p)
                    123:
                    124: RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead)
                    125: {
                    126:        rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList,
                    127:            "Rq", "PQ Recovery", rf_PQDoubleRecoveryFunc);
                    128: }
                    129:
                    130: void
                    131: rf_applyPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
                    132:     RF_PhysDiskAddr_t *ppda, RF_PhysDiskAddr_t *qpda, void *bp)
                    133: {
                    134:        RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
                    135:        RF_RaidAddr_t s0off = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
                    136:        RF_SectorCount_t s0len = ppda->numSector, len;
                    137:        RF_SectorNum_t suoffset;
                    138:        unsigned coeff;
                    139:        char *pbuf = ppda->bufPtr;
                    140:        char *qbuf = qpda->bufPtr;
                    141:        char *buf;
                    142:        int delta;
                    143:
                    144:        suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
                    145:        len = pda->numSector;
                    146:        /* See if pda intersects a recovery pda. */
                    147:        if ((suoffset < s0off + s0len) && (suoffset + len > s0off)) {
                    148:                buf = pda->bufPtr;
                    149:                coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),
                    150:                    pda->raidAddress);
                    151:                coeff = (coeff % raidPtr->Layout.numDataCol);
                    152:
                    153:                if (suoffset < s0off) {
                    154:                        delta = s0off - suoffset;
                    155:                        buf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),
                    156:                            delta);
                    157:                        suoffset = s0off;
                    158:                        len -= delta;
                    159:                }
                    160:                if (suoffset > s0off) {
                    161:                        delta = suoffset - s0off;
                    162:                        pbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),
                    163:                            delta);
                    164:                        qbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),
                    165:                            delta);
                    166:                }
                    167:                if ((suoffset + len) > (s0len + s0off))
                    168:                        len = s0len + s0off - suoffset;
                    169:
                    170:                /* Src, dest, len. */
                    171:                rf_bxor(buf, pbuf, rf_RaidAddressToByte(raidPtr, len), bp);
                    172:
                    173:                /* Dest, src, len, coeff. */
                    174:                rf_IncQ((unsigned long *) qbuf, (unsigned long *) buf,
                    175:                    rf_RaidAddressToByte(raidPtr, len), coeff);
                    176:        }
                    177: }
                    178:
                    179:
                    180: /*
                    181:  * Recover data in the case of a double failure. There can be two
                    182:  * result buffers, one for each chunk of data trying to be recovered.
                    183:  * The params are pda's that have not been range restricted or otherwise
                    184:  * politely massaged - this should be done here. The last params are the
                    185:  * pdas of P and Q, followed by the raidPtr. The list can look like
                    186:  *
                    187:  *   pda, pda, ..., p pda, q pda, raidptr, asm
                    188:  *
                    189:  * or
                    190:  *
                    191:  *   pda, pda, ..., p_1 pda, p_2 pda, q_1 pda, q_2 pda, raidptr, asm
                    192:  *
                    193:  * depending on whether two chunks of recovery data were required.
                    194:  *
                    195:  * The second condition only arises if there are two failed buffers
                    196:  * whose lengths do not add up a stripe unit.
                    197:  */
                    198:
                    199: int
                    200: rf_PQDoubleRecoveryFunc(RF_DagNode_t *node)
                    201: {
                    202:        int np = node->numParams;
                    203:        RF_AccessStripeMap_t *asmap =
                    204:            (RF_AccessStripeMap_t *) node->params[np - 1].p;
                    205:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
                    206:        RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
                    207:        int d, i;
                    208:        unsigned coeff;
                    209:        RF_RaidAddr_t sosAddr, suoffset;
                    210:        RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit;
                    211:        int two = 0;
                    212:        RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda;
                    213:        char *buf;
                    214:        int numDataCol = layoutPtr->numDataCol;
                    215:        RF_Etimer_t timer;
                    216:        RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
                    217:
                    218:        RF_ETIMER_START(timer);
                    219:
                    220:        if (asmap->failedPDAs[1] &&
                    221:            (asmap->failedPDAs[1]->numSector +
                    222:             asmap->failedPDAs[0]->numSector < secPerSU)) {
                    223:                RF_ASSERT(0);
                    224:                ppda = node->params[np - 6].p;
                    225:                ppda2 = node->params[np - 5].p;
                    226:                qpda = node->params[np - 4].p;
                    227:                qpda2 = node->params[np - 3].p;
                    228:                d = (np - 6);
                    229:                two = 1;
                    230:        } else {
                    231:                ppda = node->params[np - 4].p;
                    232:                qpda = node->params[np - 3].p;
                    233:                d = (np - 4);
                    234:        }
                    235:
                    236:        for (i = 0; i < d; i++) {
                    237:                pda = node->params[i].p;
                    238:                buf = pda->bufPtr;
                    239:                suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
                    240:                len = pda->numSector;
                    241:                coeff = rf_RaidAddressToStripeUnitID(layoutPtr,
                    242:                    pda->raidAddress);
                    243:                /* Compute the data unit offset within the column. */
                    244:                coeff = (coeff % raidPtr->Layout.numDataCol);
                    245:                /* See if pda intersects a recovery pda. */
                    246:                rf_applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
                    247:                if (two)
                    248:                        rf_applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
                    249:        }
                    250:
                    251:        /*
                    252:         * Ok, we got the parity back to the point where we can recover. We
                    253:         * now need to determine the coeff of the columns that need to be
                    254:         * recovered. We can also only need to recover a single stripe unit.
                    255:         */
                    256:
                    257:        if (asmap->failedPDAs[1] == NULL) {     /*
                    258:                                                 * Only a single stripe unit
                    259:                                                 * to recover.
                    260:                                                 */
                    261:                pda = asmap->failedPDAs[0];
                    262:                sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
                    263:                    asmap->raidAddress);
                    264:                /* Need to determine the column of the other failed disk. */
                    265:                coeff = rf_RaidAddressToStripeUnitID(layoutPtr,
                    266:                    pda->raidAddress);
                    267:                /* Compute the data unit offset within the column. */
                    268:                coeff = (coeff % raidPtr->Layout.numDataCol);
                    269:                for (i = 0; i < numDataCol; i++) {
                    270:                        npda.raidAddress = sosAddr + (i * secPerSU);
                    271:                        (raidPtr->Layout.map->MapSector) (raidPtr,
                    272:                            npda.raidAddress, &(npda.row), &(npda.col),
                    273:                            &(npda.startSector), 0);
                    274:                        /* Skip over dead disks. */
                    275:                        if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col]
                    276:                            .status))
                    277:                                if (i != coeff)
                    278:                                        break;
                    279:                }
                    280:                RF_ASSERT(i < numDataCol);
                    281:                RF_ASSERT(two == 0);
                    282:                /*
                    283:                 * Recover the data. Since we need only to recover one
                    284:                 * column, we overwrite the parity with the other one.
                    285:                 */
                    286:                if (coeff < i)  /* Recovering 'a'. */
                    287:                        rf_PQ_recover((unsigned long *) ppda->bufPtr,
                    288:                            (unsigned long *) qpda->bufPtr,
                    289:                            (unsigned long *) pda->bufPtr,
                    290:                            (unsigned long *) ppda->bufPtr,
                    291:                            rf_RaidAddressToByte(raidPtr, pda->numSector),
                    292:                            coeff, i);
                    293:                else            /* Recovering 'b'. */
                    294:                        rf_PQ_recover((unsigned long *) ppda->bufPtr,
                    295:                            (unsigned long *) qpda->bufPtr,
                    296:                            (unsigned long *) ppda->bufPtr,
                    297:                            (unsigned long *) pda->bufPtr,
                    298:                            rf_RaidAddressToByte(raidPtr, pda->numSector),
                    299:                            i, coeff);
                    300:        } else
                    301:                RF_PANIC();
                    302:
                    303:        RF_ETIMER_STOP(timer);
                    304:        RF_ETIMER_EVAL(timer);
                    305:        if (tracerec)
                    306:                tracerec->q_us += RF_ETIMER_VAL_US(timer);
                    307:        rf_GenericWakeupFunc(node, 0);
                    308:        return (0);
                    309: }
                    310:
                    311: int
                    312: rf_PQWriteDoubleRecoveryFunc(RF_DagNode_t *node)
                    313: {
                    314:        /*
                    315:         * The situation:
                    316:         *
                    317:         * We are doing a write that hits only one failed data unit. The other
                    318:         * failed data unit is not being overwritten, so we need to generate
                    319:         * it.
                    320:         *
                    321:         * For the moment, we assume all the nonfailed data being written is in
                    322:         * the shadow of the failed data unit. (i.e., either a single data
                    323:         * unit write or the entire failed stripe unit is being overwritten.)
                    324:         *
                    325:         * Recovery strategy: apply the recovery data to the parity and Q.
                    326:         * Use P & Q to recover the second failed data unit in P. Zero fill
                    327:         * Q, then apply the recovered data to P. Then apply the data being
                    328:         * written to the failed drive. Then walk through the surviving drives,
                    329:         * applying new data when it exists, othewise the recovery data.
                    330:         * Quite a mess.
                    331:         *
                    332:         *
                    333:         * The params:
                    334:         *
                    335:         *   read pda0, read pda1, ..., read pda (numDataCol-3),
                    336:         *   write pda0, ..., write pda (numStripeUnitAccess - numDataFailed),
                    337:         *   failed pda, raidPtr, asmap
                    338:         */
                    339:
                    340:        int np = node->numParams;
                    341:        RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *)
                    342:            node->params[np - 1].p;
                    343:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
                    344:        RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
                    345:        int i;
                    346:        RF_RaidAddr_t sosAddr;
                    347:        unsigned coeff;
                    348:        RF_StripeCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
                    349:        RF_PhysDiskAddr_t *ppda, *qpda, *pda, npda;
                    350:        int numDataCol = layoutPtr->numDataCol;
                    351:        RF_Etimer_t timer;
                    352:        RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
                    353:
                    354:        RF_ASSERT(node->numResults == 2);
                    355:        RF_ASSERT(asmap->failedPDAs[1] == NULL);
                    356:        RF_ETIMER_START(timer);
                    357:        ppda = node->results[0];
                    358:        qpda = node->results[1];
                    359:        /* apply the recovery data */
                    360:        for (i = 0; i < numDataCol - 2; i++)
                    361:                rf_applyPDA(raidPtr, node->params[i].p, ppda, qpda,
                    362:                    node->dagHdr->bp);
                    363:
                    364:        /* Determine the other failed data unit. */
                    365:        pda = asmap->failedPDAs[0];
                    366:        sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
                    367:            asmap->raidAddress);
                    368:        /* Need to determine the column of the other failed disk. */
                    369:        coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
                    370:        /* Compute the data unit offset within the column. */
                    371:        coeff = (coeff % raidPtr->Layout.numDataCol);
                    372:        for (i = 0; i < numDataCol; i++) {
                    373:                npda.raidAddress = sosAddr + (i * secPerSU);
                    374:                (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress,
                    375:                    &(npda.row), &(npda.col), &(npda.startSector), 0);
                    376:                /* Skip over dead disks. */
                    377:                if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
                    378:                        if (i != coeff)
                    379:                                break;
                    380:        }
                    381:        RF_ASSERT(i < numDataCol);
                    382:        /*
                    383:         * Recover the data. The column we want to recover, we write over the
                    384:         * parity. The column we don't care about, we dump in q.
                    385:         */
                    386:        if (coeff < i)          /* Recovering 'a'. */
                    387:                rf_PQ_recover((unsigned long *) ppda->bufPtr,
                    388:                    (unsigned long *) qpda->bufPtr,
                    389:                    (unsigned long *) ppda->bufPtr,
                    390:                    (unsigned long *) qpda->bufPtr,
                    391:                    rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
                    392:        else                    /* Recovering 'b'. */
                    393:                rf_PQ_recover((unsigned long *) ppda->bufPtr,
                    394:                    (unsigned long *) qpda->bufPtr,
                    395:                    (unsigned long *) qpda->bufPtr,
                    396:                    (unsigned long *) ppda->bufPtr,
                    397:                    rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
                    398:
                    399:        /* OK. The valid data is in P. Zero fill Q, then inc it into it. */
                    400:        bzero(qpda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector));
                    401:        rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr,
                    402:            rf_RaidAddressToByte(raidPtr, qpda->numSector), i);
                    403:
                    404:        /* Now apply all the write data to the buffer. */
                    405:        /*
                    406:         * Single stripe unit write case: The failed data is the only thing
                    407:         * we are writing.
                    408:         */
                    409:        RF_ASSERT(asmap->numStripeUnitsAccessed == 1);
                    410:        /* Dest, src, len, coeff. */
                    411:        rf_IncQ((unsigned long *) qpda->bufPtr,
                    412:            (unsigned long *) asmap->failedPDAs[0]->bufPtr,
                    413:            rf_RaidAddressToByte(raidPtr, qpda->numSector), coeff);
                    414:        rf_bxor(asmap->failedPDAs[0]->bufPtr, ppda->bufPtr,
                    415:            rf_RaidAddressToByte(raidPtr, ppda->numSector), node->dagHdr->bp);
                    416:
                    417:        /* Now apply all the recovery data. */
                    418:        for (i = 0; i < numDataCol - 2; i++)
                    419:                rf_applyPDA(raidPtr, node->params[i].p, ppda, qpda,
                    420:                    node->dagHdr->bp);
                    421:
                    422:        RF_ETIMER_STOP(timer);
                    423:        RF_ETIMER_EVAL(timer);
                    424:        if (tracerec)
                    425:                tracerec->q_us += RF_ETIMER_VAL_US(timer);
                    426:
                    427:        rf_GenericWakeupFunc(node, 0);
                    428:        return (0);
                    429: }
                    430:
                    431: RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite)
                    432: {
                    433:        RF_PANIC();
                    434: }
                    435:
                    436:
                    437: /*
                    438:  * Two lost data unit write case.
                    439:  *
                    440:  * There are really two cases here:
                    441:  *
                    442:  * (1) The write completely covers the two lost data units.
                    443:  *     In that case, a reconstruct write that doesn't write the
                    444:  *     failed data units will do the correct thing. So in this case,
                    445:  *     the dag looks like
                    446:  *
                    447:  *        Full stripe read of surviving data units (not being overwritten)
                    448:  *        Write new data (ignoring failed units)
                    449:  *        Compute P&Q
                    450:  *        Write P&Q
                    451:  *
                    452:  *
                    453:  * (2) The write does not completely cover both failed data units
                    454:  *     (but touches at least one of them). Then we need to do the
                    455:  *     equivalent of a reconstruct read to recover the missing data
                    456:  *     unit from the other stripe.
                    457:  *
                    458:  *     For any data we are writing that is not in the "shadow"
                    459:  *     of the failed units, we need to do a four cycle update.
                    460:  *     PANIC on this case. For now.
                    461:  *
                    462:  */
                    463:
                    464: RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG)
                    465: {
                    466:        RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
                    467:        RF_SectorCount_t sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
                    468:        int sum;
                    469:        int nf = asmap->numDataFailed;
                    470:
                    471:        sum = asmap->failedPDAs[0]->numSector;
                    472:        if (nf == 2)
                    473:                sum += asmap->failedPDAs[1]->numSector;
                    474:
                    475:        if ((nf == 2) && (sum == (2 * sectorsPerSU))) {
                    476:                /* Large write case. */
                    477:                rf_PQ_DDLargeWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
                    478:                return;
                    479:        }
                    480:        if ((nf == asmap->numStripeUnitsAccessed) || (sum >= sectorsPerSU)) {
                    481:                /* Small write case, no user data not in shadow. */
                    482:                rf_PQ_DDSimpleSmallWrite(raidPtr, asmap, dag_h, bp, flags,
                    483:                    allocList);
                    484:                return;
                    485:        }
                    486:        RF_PANIC();
                    487: }
                    488:
                    489: RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite)
                    490: {
                    491:        rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList,
                    492:            "Rq", "Wq", "PQ Recovery", rf_PQWriteDoubleRecoveryFunc);
                    493: }
                    494:
                    495: #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) */

CVSweb