[BACK]Return to rf_dagutils.c CVS log [TXT][DIR] Up to [local] / sys / dev / raidframe

Annotation of sys/dev/raidframe/rf_dagutils.c, Revision 1.1.1.1

1.1       nbrk        1: /*     $OpenBSD: rf_dagutils.c,v 1.4 2002/12/16 07:01:03 tdeval Exp $  */
                      2: /*     $NetBSD: rf_dagutils.c,v 1.6 1999/12/09 02:26:09 oster Exp $    */
                      3:
                      4: /*
                      5:  * Copyright (c) 1995 Carnegie-Mellon University.
                      6:  * All rights reserved.
                      7:  *
                      8:  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
                      9:  *
                     10:  * Permission to use, copy, modify and distribute this software and
                     11:  * its documentation is hereby granted, provided that both the copyright
                     12:  * notice and this permission notice appear in all copies of the
                     13:  * software, derivative works or modified versions, and any portions
                     14:  * thereof, and that both notices appear in supporting documentation.
                     15:  *
                     16:  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
                     17:  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
                     18:  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
                     19:  *
                     20:  * Carnegie Mellon requests users of this software to return to
                     21:  *
                     22:  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
                     23:  *  School of Computer Science
                     24:  *  Carnegie Mellon University
                     25:  *  Pittsburgh PA 15213-3890
                     26:  *
                     27:  * any improvements or extensions that they make and grant Carnegie the
                     28:  * rights to redistribute these changes.
                     29:  */
                     30:
                     31: /*****************************************************************************
                     32:  *
                     33:  * rf_dagutils.c -- Utility routines for manipulating dags.
                     34:  *
                     35:  *****************************************************************************/
                     36:
                     37: #include "rf_archs.h"
                     38: #include "rf_types.h"
                     39: #include "rf_threadstuff.h"
                     40: #include "rf_raid.h"
                     41: #include "rf_dag.h"
                     42: #include "rf_dagutils.h"
                     43: #include "rf_dagfuncs.h"
                     44: #include "rf_general.h"
                     45: #include "rf_freelist.h"
                     46: #include "rf_map.h"
                     47: #include "rf_shutdown.h"
                     48:
                     49: #define        SNUM_DIFF(_a_,_b_)      (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
                     50:
                     51: RF_RedFuncs_t rf_xorFuncs = {
                     52:        rf_RegularXorFunc, "Reg Xr", rf_SimpleXorFunc, "Simple Xr"
                     53: };
                     54:
                     55: RF_RedFuncs_t rf_xorRecoveryFuncs = {
                     56:        rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"
                     57: };
                     58:
                     59: void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
                     60: void rf_PrintDAG(RF_DagHeader_t *);
                     61: int  rf_ValidateBranch(RF_DagNode_t *, int *, int *, RF_DagNode_t **, int);
                     62: void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
                     63: void rf_ValidateVisitedBits(RF_DagHeader_t *);
                     64:
                     65: /*****************************************************************************
                     66:  *
                     67:  * InitNode - Initialize a dag node.
                     68:  *
                     69:  * The size of the propList array is always the same as that of the
                     70:  * successors array.
                     71:  *
                     72:  *****************************************************************************/
                     73: void
                     74: rf_InitNode(
                     75:        RF_DagNode_t     *node,
                     76:        RF_NodeStatus_t   initstatus,
                     77:        int               commit,
                     78:        int             (*doFunc) (RF_DagNode_t *),
                     79:        int             (*undoFunc) (RF_DagNode_t *node),
                     80:        int             (*wakeFunc) (RF_DagNode_t *node, int),
                     81:        int               nSucc,
                     82:        int               nAnte,
                     83:        int               nParam,
                     84:        int               nResult,
                     85:        RF_DagHeader_t   *hdr,
                     86:        char             *name,
                     87:        RF_AllocListElem_t *alist
                     88: )
                     89: {
                     90:        void **ptrs;
                     91:        int nptrs;
                     92:
                     93:        if (nAnte > RF_MAX_ANTECEDENTS)
                     94:                RF_PANIC();
                     95:        node->status = initstatus;
                     96:        node->commitNode = commit;
                     97:        node->doFunc = doFunc;
                     98:        node->undoFunc = undoFunc;
                     99:        node->wakeFunc = wakeFunc;
                    100:        node->numParams = nParam;
                    101:        node->numResults = nResult;
                    102:        node->numAntecedents = nAnte;
                    103:        node->numAntDone = 0;
                    104:        node->next = NULL;
                    105:        node->numSuccedents = nSucc;
                    106:        node->name = name;
                    107:        node->dagHdr = hdr;
                    108:        node->visited = 0;
                    109:
                    110:        /* Allocate all the pointers with one call to malloc. */
                    111:        nptrs = nSucc + nAnte + nResult + nSucc;
                    112:
                    113:        if (nptrs <= RF_DAG_PTRCACHESIZE) {
                    114:                /*
                    115:                 * The dag_ptrs field of the node is basically some scribble
                    116:                 * space to be used here. We could get rid of it, and always
                    117:                 * allocate the range of pointers, but that's expensive. So,
                    118:                 * we pick a "common case" size for the pointer cache.
                    119:                 * Hopefully, we'll find that:
                    120:                 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
                    121:                 *     only a little bit (least efficient case).
                    122:                 * (2) Generally, ntprs isn't a lot less than
                    123:                 *     RF_DAG_PTRCACHESIZE (wasted memory).
                    124:                 */
                    125:                ptrs = (void **) node->dag_ptrs;
                    126:        } else {
                    127:                RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
                    128:        }
                    129:        node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
                    130:        node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
                    131:        node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
                    132:        node->propList = (nSucc) ? (RF_PropHeader_t **)
                    133:            (ptrs + nSucc + nAnte + nResult) : NULL;
                    134:
                    135:        if (nParam) {
                    136:                if (nParam <= RF_DAG_PARAMCACHESIZE) {
                    137:                        node->params = (RF_DagParam_t *) node->dag_params;
                    138:                } else {
                    139:                        RF_CallocAndAdd(node->params, nParam,
                    140:                            sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
                    141:                }
                    142:        } else {
                    143:                node->params = NULL;
                    144:        }
                    145: }
                    146:
                    147:
                    148:
                    149: /*****************************************************************************
                    150:  *
                    151:  * Allocation and deallocation routines.
                    152:  *
                    153:  *****************************************************************************/
                    154:
                    155: void
                    156: rf_FreeDAG(RF_DagHeader_t *dag_h)
                    157: {
                    158:        RF_AccessStripeMapHeader_t *asmap, *t_asmap;
                    159:        RF_DagHeader_t *nextDag;
                    160:        int i;
                    161:
                    162:        while (dag_h) {
                    163:                nextDag = dag_h->next;
                    164:                for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
                    165:                        /* Release mem chunks. */
                    166:                        rf_ReleaseMemChunk(dag_h->memChunk[i]);
                    167:                        dag_h->memChunk[i] = NULL;
                    168:                }
                    169:
                    170:                RF_ASSERT(i == dag_h->chunkIndex);
                    171:                if (dag_h->xtraChunkCnt > 0) {
                    172:                        /* Free xtraMemChunks. */
                    173:                        for (i = 0; dag_h->xtraMemChunk[i] &&
                    174:                             i < dag_h->xtraChunkIndex; i++) {
                    175:                                rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
                    176:                                dag_h->xtraMemChunk[i] = NULL;
                    177:                        }
                    178:                        RF_ASSERT(i == dag_h->xtraChunkIndex);
                    179:                        /* Free ptrs to xtraMemChunks. */
                    180:                        RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt *
                    181:                            sizeof(RF_ChunkDesc_t *));
                    182:                }
                    183:                rf_FreeAllocList(dag_h->allocList);
                    184:                for (asmap = dag_h->asmList; asmap;) {
                    185:                        t_asmap = asmap;
                    186:                        asmap = asmap->next;
                    187:                        rf_FreeAccessStripeMap(t_asmap);
                    188:                }
                    189:                rf_FreeDAGHeader(dag_h);
                    190:                dag_h = nextDag;
                    191:        }
                    192: }
                    193:
                    194: RF_PropHeader_t *
                    195: rf_MakePropListEntry(RF_DagHeader_t *dag_h, int resultNum, int paramNum,
                    196:     RF_PropHeader_t *next, RF_AllocListElem_t *allocList)
                    197: {
                    198:        RF_PropHeader_t *p;
                    199:
                    200:        RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t), (RF_PropHeader_t *),
                    201:            allocList);
                    202:        p->resultNum = resultNum;
                    203:        p->paramNum = paramNum;
                    204:        p->next = next;
                    205:        return (p);
                    206: }
                    207:
                    208: static RF_FreeList_t *rf_dagh_freelist;
                    209:
                    210: #define        RF_MAX_FREE_DAGH        128
                    211: #define        RF_DAGH_INC              16
                    212: #define        RF_DAGH_INITIAL          32
                    213:
                    214: void rf_ShutdownDAGs(void *);
                    215: void
                    216: rf_ShutdownDAGs(void *ignored)
                    217: {
                    218:        RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
                    219: }
                    220:
                    221: int
                    222: rf_ConfigureDAGs(RF_ShutdownList_t **listp)
                    223: {
                    224:        int rc;
                    225:
                    226:        RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH, RF_DAGH_INC,
                    227:            sizeof(RF_DagHeader_t));
                    228:        if (rf_dagh_freelist == NULL)
                    229:                return (ENOMEM);
                    230:        rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
                    231:        if (rc) {
                    232:                RF_ERRORMSG3("Unable to add to shutdown list file %s line"
                    233:                    " %d rc=%d\n", __FILE__, __LINE__, rc);
                    234:                rf_ShutdownDAGs(NULL);
                    235:                return (rc);
                    236:        }
                    237:        RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
                    238:            (RF_DagHeader_t *));
                    239:        return (0);
                    240: }
                    241:
                    242: RF_DagHeader_t *
                    243: rf_AllocDAGHeader(void)
                    244: {
                    245:        RF_DagHeader_t *dh;
                    246:
                    247:        RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
                    248:        if (dh) {
                    249:                bzero((char *) dh, sizeof(RF_DagHeader_t));
                    250:        }
                    251:        return (dh);
                    252: }
                    253:
                    254: void
                    255: rf_FreeDAGHeader(RF_DagHeader_t *dh)
                    256: {
                    257:        RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
                    258: }
                    259:
                    260: /* Allocate a buffer big enough to hold the data described by pda. */
                    261: void *
                    262: rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
                    263:     RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
                    264: {
                    265:        char *p;
                    266:
                    267:        RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
                    268:            (char *), allocList);
                    269:        return ((void *) p);
                    270: }
                    271:
                    272:
                    273: /*****************************************************************************
                    274:  *
                    275:  * Debug routines.
                    276:  *
                    277:  *****************************************************************************/
                    278:
                    279: char *
                    280: rf_NodeStatusString(RF_DagNode_t *node)
                    281: {
                    282:        switch (node->status) {
                    283:        case rf_wait:
                    284:                return ("wait");
                    285:        case rf_fired:
                    286:                return ("fired");
                    287:        case rf_good:
                    288:                return ("good");
                    289:        case rf_bad:
                    290:                return ("bad");
                    291:        default:
                    292:                return ("?");
                    293:        }
                    294: }
                    295:
                    296: void
                    297: rf_PrintNodeInfoString(RF_DagNode_t *node)
                    298: {
                    299:        RF_PhysDiskAddr_t *pda;
                    300:        int (*df) (RF_DagNode_t *) = node->doFunc;
                    301:        int i, lk, unlk;
                    302:        void *bufPtr;
                    303:
                    304:        if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc) ||
                    305:            (df == rf_DiskReadMirrorIdleFunc) ||
                    306:            (df == rf_DiskReadMirrorPartitionFunc)) {
                    307:                pda = (RF_PhysDiskAddr_t *) node->params[0].p;
                    308:                bufPtr = (void *) node->params[1].p;
                    309:                lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
                    310:                unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
                    311:                RF_ASSERT(!(lk && unlk));
                    312:                printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row,
                    313:                    pda->col, (long) pda->startSector, (int) pda->numSector,
                    314:                    (long) bufPtr, (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
                    315:                return;
                    316:        }
                    317:        if (df == rf_DiskUnlockFunc) {
                    318:                pda = (RF_PhysDiskAddr_t *) node->params[0].p;
                    319:                lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
                    320:                unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
                    321:                RF_ASSERT(!(lk && unlk));
                    322:                printf("r %d c %d %s\n", pda->row, pda->col,
                    323:                    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
                    324:                return;
                    325:        }
                    326:        if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
                    327:            || (df == rf_RecoveryXorFunc)) {
                    328:                printf("result buf 0x%lx\n", (long) node->results[0]);
                    329:                for (i = 0; i < node->numParams - 1; i += 2) {
                    330:                        pda = (RF_PhysDiskAddr_t *) node->params[i].p;
                    331:                        bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
                    332:                        printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
                    333:                            (long) bufPtr, pda->row, pda->col,
                    334:                            (long) pda->startSector, (int) pda->numSector);
                    335:                }
                    336:                return;
                    337:        }
                    338: #if    RF_INCLUDE_PARITYLOGGING > 0
                    339:        if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
                    340:                for (i = 0; i < node->numParams - 1; i += 2) {
                    341:                        pda = (RF_PhysDiskAddr_t *) node->params[i].p;
                    342:                        bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
                    343:                        printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
                    344:                            pda->row, pda->col, (long) pda->startSector,
                    345:                            (int) pda->numSector, (long) bufPtr);
                    346:                }
                    347:                return;
                    348:        }
                    349: #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
                    350:
                    351:        if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
                    352:                printf("\n");
                    353:                return;
                    354:        }
                    355:        printf("?\n");
                    356: }
                    357:
                    358: void
                    359: rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
                    360: {
                    361:        char *anttype;
                    362:        int i;
                    363:
                    364:        node->visited = (unvisited) ? 0 : 1;
                    365:        printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
                    366:            node->nodeNum, node->commitNode, node->name,
                    367:            rf_NodeStatusString(node), node->numSuccedents,
                    368:            node->numSuccFired, node->numSuccDone,
                    369:            node->numAntecedents, node->numAntDone,
                    370:            node->numParams, node->numResults);
                    371:        for (i = 0; i < node->numSuccedents; i++) {
                    372:                printf("%d%s", node->succedents[i]->nodeNum,
                    373:                    ((i == node->numSuccedents - 1) ? "\0" : " "));
                    374:        }
                    375:        printf("} A{");
                    376:        for (i = 0; i < node->numAntecedents; i++) {
                    377:                switch (node->antType[i]) {
                    378:                case rf_trueData:
                    379:                        anttype = "T";
                    380:                        break;
                    381:                case rf_antiData:
                    382:                        anttype = "A";
                    383:                        break;
                    384:                case rf_outputData:
                    385:                        anttype = "O";
                    386:                        break;
                    387:                case rf_control:
                    388:                        anttype = "C";
                    389:                        break;
                    390:                default:
                    391:                        anttype = "?";
                    392:                        break;
                    393:                }
                    394:                printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype,
                    395:                    (i == node->numAntecedents - 1) ? "\0" : " ");
                    396:        }
                    397:        printf("}; ");
                    398:        rf_PrintNodeInfoString(node);
                    399:        for (i = 0; i < node->numSuccedents; i++) {
                    400:                if (node->succedents[i]->visited == unvisited)
                    401:                        rf_RecurPrintDAG(node->succedents[i], depth + 1,
                    402:                            unvisited);
                    403:        }
                    404: }
                    405:
                    406: void
                    407: rf_PrintDAG(RF_DagHeader_t *dag_h)
                    408: {
                    409:        int unvisited, i;
                    410:        char *status;
                    411:
                    412:        /* Set dag status. */
                    413:        switch (dag_h->status) {
                    414:        case rf_enable:
                    415:                status = "enable";
                    416:                break;
                    417:        case rf_rollForward:
                    418:                status = "rollForward";
                    419:                break;
                    420:        case rf_rollBackward:
                    421:                status = "rollBackward";
                    422:                break;
                    423:        default:
                    424:                status = "illegal !";
                    425:                break;
                    426:        }
                    427:        /* Find out if visited bits are currently set or cleared. */
                    428:        unvisited = dag_h->succedents[0]->visited;
                    429:
                    430:        printf("DAG type:  %s\n", dag_h->creator);
                    431:        printf("format is (depth) num commit type: status,nSucc nSuccFired/n"
                    432:            "SuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
                    433:        printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
                    434:            status, dag_h->numSuccedents, dag_h->numCommitNodes,
                    435:            dag_h->numCommits);
                    436:        for (i = 0; i < dag_h->numSuccedents; i++) {
                    437:                printf("%d%s", dag_h->succedents[i]->nodeNum,
                    438:                    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
                    439:        }
                    440:        printf("};\n");
                    441:        for (i = 0; i < dag_h->numSuccedents; i++) {
                    442:                if (dag_h->succedents[i]->visited == unvisited)
                    443:                        rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
                    444:        }
                    445: }
                    446:
                    447: /* Assign node numbers. */
                    448: int
                    449: rf_AssignNodeNums(RF_DagHeader_t *dag_h)
                    450: {
                    451:        int unvisited, i, nnum;
                    452:        RF_DagNode_t *node;
                    453:
                    454:        nnum = 0;
                    455:        unvisited = dag_h->succedents[0]->visited;
                    456:
                    457:        dag_h->nodeNum = nnum++;
                    458:        for (i = 0; i < dag_h->numSuccedents; i++) {
                    459:                node = dag_h->succedents[i];
                    460:                if (node->visited == unvisited) {
                    461:                        nnum = rf_RecurAssignNodeNums(dag_h->succedents[i],
                    462:                            nnum, unvisited);
                    463:                }
                    464:        }
                    465:        return (nnum);
                    466: }
                    467:
                    468: int
                    469: rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
                    470: {
                    471:        int i;
                    472:
                    473:        node->visited = (unvisited) ? 0 : 1;
                    474:
                    475:        node->nodeNum = num++;
                    476:        for (i = 0; i < node->numSuccedents; i++) {
                    477:                if (node->succedents[i]->visited == unvisited) {
                    478:                        num = rf_RecurAssignNodeNums(node->succedents[i],
                    479:                            num, unvisited);
                    480:                }
                    481:        }
                    482:        return (num);
                    483: }
                    484:
                    485: /* Set the header pointers in each node to "newptr". */
                    486: void
                    487: rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
                    488: {
                    489:        int i;
                    490:
                    491:        for (i = 0; i < dag_h->numSuccedents; i++)
                    492:                if (dag_h->succedents[i]->dagHdr != newptr)
                    493:                        rf_RecurResetDAGHeaderPointers(dag_h->succedents[i],
                    494:                            newptr);
                    495: }
                    496:
                    497: void
                    498: rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
                    499: {
                    500:        int i;
                    501:
                    502:        node->dagHdr = newptr;
                    503:        for (i = 0; i < node->numSuccedents; i++)
                    504:                if (node->succedents[i]->dagHdr != newptr)
                    505:                        rf_RecurResetDAGHeaderPointers(node->succedents[i],
                    506:                            newptr);
                    507: }
                    508:
                    509: void
                    510: rf_PrintDAGList(RF_DagHeader_t *dag_h)
                    511: {
                    512:        int i = 0;
                    513:
                    514:        for (; dag_h; dag_h = dag_h->next) {
                    515:                rf_AssignNodeNums(dag_h);
                    516:                printf("\n\nDAG %d IN LIST:\n", i++);
                    517:                rf_PrintDAG(dag_h);
                    518:        }
                    519: }
                    520:
                    521: int
                    522: rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
                    523:     RF_DagNode_t **nodes, int unvisited)
                    524: {
                    525:        int i, retcode = 0;
                    526:
                    527:        /* Construct an array of node pointers indexed by node num. */
                    528:        node->visited = (unvisited) ? 0 : 1;
                    529:        nodes[node->nodeNum] = node;
                    530:
                    531:        if (node->next != NULL) {
                    532:                printf("INVALID DAG: next pointer in node is not NULL.\n");
                    533:                retcode = 1;
                    534:        }
                    535:        if (node->status != rf_wait) {
                    536:                printf("INVALID DAG: Node status is not wait.\n");
                    537:                retcode = 1;
                    538:        }
                    539:        if (node->numAntDone != 0) {
                    540:                printf("INVALID DAG: numAntDone is not zero.\n");
                    541:                retcode = 1;
                    542:        }
                    543:        if (node->doFunc == rf_TerminateFunc) {
                    544:                if (node->numSuccedents != 0) {
                    545:                        printf("INVALID DAG: Terminator node has"
                    546:                            " succedents.\n");
                    547:                        retcode = 1;
                    548:                }
                    549:        } else {
                    550:                if (node->numSuccedents == 0) {
                    551:                        printf("INVALID DAG: Non-terminator node has no"
                    552:                            " succedents\n");
                    553:                        retcode = 1;
                    554:                }
                    555:        }
                    556:        for (i = 0; i < node->numSuccedents; i++) {
                    557:                if (!node->succedents[i]) {
                    558:                        printf("INVALID DAG: succedent %d of node %s"
                    559:                            " is NULL.\n", i, node->name);
                    560:                        retcode = 1;
                    561:                }
                    562:                scount[node->succedents[i]->nodeNum]++;
                    563:        }
                    564:        for (i = 0; i < node->numAntecedents; i++) {
                    565:                if (!node->antecedents[i]) {
                    566:                        printf("INVALID DAG: antecedent %d of node %s is"
                    567:                            " NULL.\n", i, node->name);
                    568:                        retcode = 1;
                    569:                }
                    570:                acount[node->antecedents[i]->nodeNum]++;
                    571:        }
                    572:        for (i = 0; i < node->numSuccedents; i++) {
                    573:                if (node->succedents[i]->visited == unvisited) {
                    574:                        if (rf_ValidateBranch(node->succedents[i], scount,
                    575:                                acount, nodes, unvisited)) {
                    576:                                retcode = 1;
                    577:                        }
                    578:                }
                    579:        }
                    580:        return (retcode);
                    581: }
                    582:
                    583: void
                    584: rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
                    585: {
                    586:        int i;
                    587:
                    588:        RF_ASSERT(node->visited == unvisited);
                    589:        for (i = 0; i < node->numSuccedents; i++) {
                    590:                if (node->succedents[i] == NULL) {
                    591:                        printf("node=%lx node->succedents[%d] is NULL.\n",
                    592:                            (long) node, i);
                    593:                        RF_ASSERT(0);
                    594:                }
                    595:                rf_ValidateBranchVisitedBits(node->succedents[i],
                    596:                    unvisited, rl + 1);
                    597:        }
                    598: }
                    599:
                    600: /*
                    601:  * NOTE:  Never call this on a big dag, because it is exponential
                    602:  * in execution time.
                    603:  */
                    604: void
                    605: rf_ValidateVisitedBits(RF_DagHeader_t *dag)
                    606: {
                    607:        int i, unvisited;
                    608:
                    609:        unvisited = dag->succedents[0]->visited;
                    610:
                    611:        for (i = 0; i < dag->numSuccedents; i++) {
                    612:                if (dag->succedents[i] == NULL) {
                    613:                        printf("dag=%lx dag->succedents[%d] is NULL.\n",
                    614:                            (long) dag, i);
                    615:                        RF_ASSERT(0);
                    616:                }
                    617:                rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
                    618:        }
                    619: }
                    620:
                    621: /*
                    622:  * Validate a DAG. _at entry_ verify that:
                    623:  *   -- numNodesCompleted is zero
                    624:  *   -- node queue is null
                    625:  *   -- dag status is rf_enable
                    626:  *   -- next pointer is null on every node
                    627:  *   -- all nodes have status wait
                    628:  *   -- numAntDone is zero in all nodes
                    629:  *   -- terminator node has zero successors
                    630:  *   -- no other node besides terminator has zero successors
                    631:  *   -- no successor or antecedent pointer in a node is NULL
                    632:  *   -- number of times that each node appears as a successor of another node
                    633:  *      is equal to the antecedent count on that node
                    634:  *   -- number of times that each node appears as an antecedent of another node
                    635:  *      is equal to the succedent count on that node
                    636:  *   -- what else ?
                    637:  */
                    638: int
                    639: rf_ValidateDAG(RF_DagHeader_t *dag_h)
                    640: {
                    641:        int i, nodecount;
                    642:        int *scount, *acount;   /* Per-node successor and antecedent counts. */
                    643:        RF_DagNode_t **nodes;   /* Array of ptrs to nodes in dag. */
                    644:        int retcode = 0;
                    645:        int unvisited;
                    646:        int commitNodeCount = 0;
                    647:
                    648:        if (rf_validateVisitedDebug)
                    649:                rf_ValidateVisitedBits(dag_h);
                    650:
                    651:        if (dag_h->numNodesCompleted != 0) {
                    652:                printf("INVALID DAG: num nodes completed is %d, should be 0.\n",
                    653:                    dag_h->numNodesCompleted);
                    654:                retcode = 1;
                    655:                goto validate_dag_bad;
                    656:        }
                    657:        if (dag_h->status != rf_enable) {
                    658:                printf("INVALID DAG: not enabled.\n");
                    659:                retcode = 1;
                    660:                goto validate_dag_bad;
                    661:        }
                    662:        if (dag_h->numCommits != 0) {
                    663:                printf("INVALID DAG: numCommits != 0 (%d)\n",
                    664:                    dag_h->numCommits);
                    665:                retcode = 1;
                    666:                goto validate_dag_bad;
                    667:        }
                    668:        if (dag_h->numSuccedents != 1) {
                    669:                /* Currently, all dags must have only one succedent. */
                    670:                printf("INVALID DAG: numSuccedents != 1 (%d).\n",
                    671:                    dag_h->numSuccedents);
                    672:                retcode = 1;
                    673:                goto validate_dag_bad;
                    674:        }
                    675:        nodecount = rf_AssignNodeNums(dag_h);
                    676:
                    677:        unvisited = dag_h->succedents[0]->visited;
                    678:
                    679:        RF_Calloc(scount, nodecount, sizeof(int), (int *));
                    680:        RF_Calloc(acount, nodecount, sizeof(int), (int *));
                    681:        RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
                    682:        for (i = 0; i < dag_h->numSuccedents; i++) {
                    683:                if ((dag_h->succedents[i]->visited == unvisited)
                    684:                    && rf_ValidateBranch(dag_h->succedents[i], scount,
                    685:                        acount, nodes, unvisited)) {
                    686:                        retcode = 1;
                    687:                }
                    688:        }
                    689:        /* Start at 1 to skip the header node. */
                    690:        for (i = 1; i < nodecount; i++) {
                    691:                if (nodes[i]->commitNode)
                    692:                        commitNodeCount++;
                    693:                if (nodes[i]->doFunc == NULL) {
                    694:                        printf("INVALID DAG: node %s has an undefined"
                    695:                            " doFunc.\n", nodes[i]->name);
                    696:                        retcode = 1;
                    697:                        goto validate_dag_out;
                    698:                }
                    699:                if (nodes[i]->undoFunc == NULL) {
                    700:                        printf("INVALID DAG: node %s has an undefined"
                    701:                            " doFunc.\n", nodes[i]->name);
                    702:                        retcode = 1;
                    703:                        goto validate_dag_out;
                    704:                }
                    705:                if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
                    706:                        printf("INVALID DAG: node %s has %d antecedents but"
                    707:                            " appears as a succedent %d times.\n",
                    708:                            nodes[i]->name, nodes[i]->numAntecedents,
                    709:                            scount[nodes[i]->nodeNum]);
                    710:                        retcode = 1;
                    711:                        goto validate_dag_out;
                    712:                }
                    713:                if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
                    714:                        printf("INVALID DAG: node %s has %d succedents but"
                    715:                            " appears as an antecedent %d times.\n",
                    716:                            nodes[i]->name, nodes[i]->numSuccedents,
                    717:                            acount[nodes[i]->nodeNum]);
                    718:                        retcode = 1;
                    719:                        goto validate_dag_out;
                    720:                }
                    721:        }
                    722:
                    723:        if (dag_h->numCommitNodes != commitNodeCount) {
                    724:                printf("INVALID DAG: incorrect commit node count. "
                    725:                    "hdr->numCommitNodes (%d) found (%d) commit nodes"
                    726:                    " in graph.\n",
                    727:                    dag_h->numCommitNodes, commitNodeCount);
                    728:                retcode = 1;
                    729:                goto validate_dag_out;
                    730:        }
                    731:
                    732: validate_dag_out:
                    733:        RF_Free(scount, nodecount * sizeof(int));
                    734:        RF_Free(acount, nodecount * sizeof(int));
                    735:        RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
                    736:        if (retcode)
                    737:                rf_PrintDAGList(dag_h);
                    738:
                    739:        if (rf_validateVisitedDebug)
                    740:                rf_ValidateVisitedBits(dag_h);
                    741:
                    742:        return (retcode);
                    743:
                    744: validate_dag_bad:
                    745:        rf_PrintDAGList(dag_h);
                    746:        return (retcode);
                    747: }
                    748:
                    749:
                    750: /*****************************************************************************
                    751:  *
                    752:  * Misc construction routines.
                    753:  *
                    754:  *****************************************************************************/
                    755:
                    756: void
                    757: rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
                    758: {
                    759:        int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
                    760:        int row = asmap->physInfo->row;
                    761:        int fcol = raidPtr->reconControl[row]->fcol;
                    762:        int srow = raidPtr->reconControl[row]->spareRow;
                    763:        int scol = raidPtr->reconControl[row]->spareCol;
                    764:        RF_PhysDiskAddr_t *pda;
                    765:
                    766:        RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
                    767:        for (pda = asmap->physInfo; pda; pda = pda->next) {
                    768:                if (pda->col == fcol) {
                    769:                        if (rf_dagDebug) {
                    770:                                if (!rf_CheckRUReconstructed(
                    771:                                    raidPtr->reconControl[row]->reconMap,
                    772:                                    pda->startSector)) {
                    773:                                        RF_PANIC();
                    774:                                }
                    775:                        }
                    776:                        /*printf("Remapped data for large write\n");*/
                    777:                        if (ds) {
                    778:                                raidPtr->Layout.map->MapSector(raidPtr,
                    779:                                    pda->raidAddress, &pda->row, &pda->col,
                    780:                                    &pda->startSector, RF_REMAP);
                    781:                        } else {
                    782:                                pda->row = srow;
                    783:                                pda->col = scol;
                    784:                        }
                    785:                }
                    786:        }
                    787:        for (pda = asmap->parityInfo; pda; pda = pda->next) {
                    788:                if (pda->col == fcol) {
                    789:                        if (rf_dagDebug) {
                    790:                                if (!rf_CheckRUReconstructed(
                    791:                                    raidPtr->reconControl[row]->reconMap,
                    792:                                    pda->startSector)) {
                    793:                                        RF_PANIC();
                    794:                                }
                    795:                        }
                    796:                }
                    797:                if (ds) {
                    798:                        (raidPtr->Layout.map->MapParity) (raidPtr,
                    799:                            pda->raidAddress, &pda->row, &pda->col,
                    800:                            &pda->startSector, RF_REMAP);
                    801:                } else {
                    802:                        pda->row = srow;
                    803:                        pda->col = scol;
                    804:                }
                    805:        }
                    806: }
                    807:
                    808:
                    809: /*
                    810:  * This routine allocates read buffers and generates stripe maps for the
                    811:  * regions of the array from the start of the stripe to the start of the
                    812:  * access, and from the end of the access to the end of the stripe. It also
                    813:  * computes and returns the number of DAG nodes needed to read all this data.
                    814:  * Note that this routine does the wrong thing if the access is fully
                    815:  * contained within one stripe unit, so we RF_ASSERT against this case at the
                    816:  * start.
                    817:  */
                    818: void
                    819: rf_MapUnaccessedPortionOfStripe(
                    820:        RF_Raid_t                *raidPtr,
                    821:        RF_RaidLayout_t          *layoutPtr,    /* in: layout information */
                    822:        RF_AccessStripeMap_t     *asmap,        /* in: access stripe map */
                    823:        RF_DagHeader_t           *dag_h,        /* in: header of the dag */
                    824:                                                /*     to create */
                    825:        RF_AccessStripeMapHeader_t **new_asm_h, /* in: ptr to array of 2 */
                    826:                                                /*     headers, to be */
                    827:                                                /*     filled in */
                    828:        int                      *nRodNodes,    /* out: num nodes to be */
                    829:                                                /*      generated to read */
                    830:                                                /*      unaccessed data */
                    831:        char                    **sosBuffer,    /* out: pointers to newly */
                    832:                                                /*      allocated buffer */
                    833:        char                    **eosBuffer,
                    834:        RF_AllocListElem_t       *allocList
                    835: )
                    836: {
                    837:        RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
                    838:        RF_SectorNum_t sosNumSector, eosNumSector;
                    839:
                    840:        RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
                    841:        /*
                    842:         * Generate an access map for the region of the array from start of
                    843:         * stripe to start of access.
                    844:         */
                    845:        new_asm_h[0] = new_asm_h[1] = NULL;
                    846:        *nRodNodes = 0;
                    847:        if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
                    848:                sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
                    849:                    asmap->raidAddress);
                    850:                sosNumSector = asmap->raidAddress - sosRaidAddress;
                    851:                RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr,
                    852:                    sosNumSector), (char *), allocList);
                    853:                new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress,
                    854:                    sosNumSector, *sosBuffer, RF_DONT_REMAP);
                    855:                new_asm_h[0]->next = dag_h->asmList;
                    856:                dag_h->asmList = new_asm_h[0];
                    857:                *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
                    858:
                    859:                RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
                    860:                /* We're totally within one stripe here. */
                    861:                if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
                    862:                        rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
                    863:        }
                    864:        /*
                    865:         * Generate an access map for the region of the array from end of
                    866:         * access to end of stripe.
                    867:         */
                    868:        if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
                    869:                eosRaidAddress = asmap->endRaidAddress;
                    870:                eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr,
                    871:                    eosRaidAddress) - eosRaidAddress;
                    872:                RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr,
                    873:                    eosNumSector), (char *), allocList);
                    874:                new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress,
                    875:                    eosNumSector, *eosBuffer, RF_DONT_REMAP);
                    876:                new_asm_h[1]->next = dag_h->asmList;
                    877:                dag_h->asmList = new_asm_h[1];
                    878:                *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
                    879:
                    880:                RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
                    881:                /* We're totally within one stripe here. */
                    882:                if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
                    883:                        rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
                    884:        }
                    885: }
                    886:
                    887:
                    888: /* Returns non-zero if the indicated ranges of stripe unit offsets overlap. */
                    889: int
                    890: rf_PDAOverlap(RF_RaidLayout_t *layoutPtr, RF_PhysDiskAddr_t *src,
                    891:     RF_PhysDiskAddr_t *dest)
                    892: {
                    893:        RF_SectorNum_t soffs =
                    894:            rf_StripeUnitOffset(layoutPtr, src->startSector);
                    895:        RF_SectorNum_t doffs =
                    896:            rf_StripeUnitOffset(layoutPtr, dest->startSector);
                    897:        /* Use -1 to be sure we stay within SU. */
                    898:        RF_SectorNum_t send =
                    899:            rf_StripeUnitOffset(layoutPtr, src->startSector +
                    900:            src->numSector - 1);
                    901:        RF_SectorNum_t dend =
                    902:            rf_StripeUnitOffset(layoutPtr, dest->startSector +
                    903:            dest->numSector - 1);
                    904:
                    905:        return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
                    906: }
                    907:
                    908:
                    909: /*
                    910:  * GenerateFailedAccessASMs
                    911:  *
                    912:  * This routine figures out what portion of the stripe needs to be read
                    913:  * to effect the degraded read or write operation. It's primary function
                    914:  * is to identify everything required to recover the data, and then
                    915:  * eliminate anything that is already being accessed by the user.
                    916:  *
                    917:  * The main result is two new ASMs, one for the region from the start of the
                    918:  * stripe to the start of the access, and one for the region from the end of
                    919:  * the access to the end of the stripe. These ASMs describe everything that
                    920:  * needs to be read to effect the degraded access. Other results are:
                    921:  *    nXorBufs -- The total number of buffers that need to be XORed together
                    922:  *               to recover the lost data,
                    923:  *    rpBufPtr -- Ptr to a newly-allocated buffer to hold the parity. If NULL
                    924:  *                at entry, not allocated.
                    925:  *    overlappingPDAs --
                    926:  *                Describes which of the non-failed PDAs, in the user access,
                    927:  *                overlap data that needs to be read to effect recovery.
                    928:  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
                    929:  *                PDA, the i'th pda in the input asm overlaps data that needs
                    930:  *                to be read for recovery.
                    931:  */
                    932:  /* in: asmap - ASM for the actual access, one stripe only. */
                    933:  /* in: faildPDA - Which component of the access has failed. */
                    934:  /* in: dag_h - Header of the DAG we're going to create. */
                    935:  /* out: new_asm_h - The two new ASMs. */
                    936:  /* out: nXorBufs - The total number of xor bufs required. */
                    937:  /* out: rpBufPtr - A buffer for the parity read. */
                    938: void
                    939: rf_GenerateFailedAccessASMs(
                    940:        RF_Raid_t                *raidPtr,
                    941:        RF_AccessStripeMap_t     *asmap,
                    942:        RF_PhysDiskAddr_t        *failedPDA,
                    943:        RF_DagHeader_t           *dag_h,
                    944:        RF_AccessStripeMapHeader_t **new_asm_h,
                    945:        int                      *nXorBufs,
                    946:        char                    **rpBufPtr,
                    947:        char                     *overlappingPDAs,
                    948:        RF_AllocListElem_t       *allocList
                    949: )
                    950: {
                    951:        RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
                    952:
                    953:        /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
                    954:        RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
                    955:
                    956:        RF_SectorCount_t numSect[2], numParitySect;
                    957:        RF_PhysDiskAddr_t *pda;
                    958:        char *rdBuf, *bufP;
                    959:        int foundit, i;
                    960:
                    961:        bufP = NULL;
                    962:        foundit = 0;
                    963:        /*
                    964:         * First compute the following raid addresses:
                    965:         * - Start of stripe
                    966:         * - (sosAddr) MIN(start of access, start of failed SU)
                    967:         * - (sosEndAddr) MAX(end of access, end of failed SU)
                    968:         * - (eosStartAddr) end of stripe (i.e. start of next stripe)
                    969:         *   (eosAddr)
                    970:         */
                    971:        sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
                    972:            asmap->raidAddress);
                    973:        sosEndAddr = RF_MIN(asmap->raidAddress,
                    974:            rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr,
                    975:            failedPDA->raidAddress));
                    976:        eosStartAddr = RF_MAX(asmap->endRaidAddress,
                    977:            rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
                    978:            failedPDA->raidAddress));
                    979:        eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr,
                    980:            asmap->raidAddress);
                    981:
                    982:        /*
                    983:         * Now generate access stripe maps for each of the above regions of
                    984:         * the stripe. Use a dummy (NULL) buf ptr for now.
                    985:         */
                    986:
                    987:        new_asm_h[0] = (sosAddr != sosEndAddr) ?
                    988:            rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL,
                    989:            RF_DONT_REMAP) : NULL;
                    990:        new_asm_h[1] = (eosStartAddr != eosAddr) ?
                    991:            rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL,
                    992:            RF_DONT_REMAP) : NULL;
                    993:
                    994:        /*
                    995:         * Walk through the PDAs and range-restrict each SU to the region of
                    996:         * the SU touched on the failed PDA. Also compute total data buffer
                    997:         * space requirements in this step. Ignore the parity for now.
                    998:         */
                    999:
                   1000:        numSect[0] = numSect[1] = 0;
                   1001:        if (new_asm_h[0]) {
                   1002:                new_asm_h[0]->next = dag_h->asmList;
                   1003:                dag_h->asmList = new_asm_h[0];
                   1004:                for (pda = new_asm_h[0]->stripeMap->physInfo; pda;
                   1005:                     pda = pda->next) {
                   1006:                        rf_RangeRestrictPDA(raidPtr, failedPDA, pda,
                   1007:                            RF_RESTRICT_NOBUFFER, 0);
                   1008:                        numSect[0] += pda->numSector;
                   1009:                }
                   1010:        }
                   1011:        if (new_asm_h[1]) {
                   1012:                new_asm_h[1]->next = dag_h->asmList;
                   1013:                dag_h->asmList = new_asm_h[1];
                   1014:                for (pda = new_asm_h[1]->stripeMap->physInfo;
                   1015:                     pda; pda = pda->next) {
                   1016:                        rf_RangeRestrictPDA(raidPtr, failedPDA, pda,
                   1017:                            RF_RESTRICT_NOBUFFER, 0);
                   1018:                        numSect[1] += pda->numSector;
                   1019:                }
                   1020:        }
                   1021:        numParitySect = failedPDA->numSector;
                   1022:
                   1023:        /*
                   1024:         * Allocate buffer space for the data & parity we have to read to
                   1025:         * recover from the failure.
                   1026:         */
                   1027:
                   1028:        if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {
                   1029:                /* Don't allocate parity buf if not needed. */
                   1030:                RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr,
                   1031:                    numSect[0] + numSect[1] + numParitySect), (char *),
                   1032:                    allocList);
                   1033:                bufP = rdBuf;
                   1034:                if (rf_degDagDebug)
                   1035:                        printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
                   1036:                            (int) rf_RaidAddressToByte(raidPtr,
                   1037:                            numSect[0] + numSect[1] + numParitySect),
                   1038:                            (unsigned long) bufP);
                   1039:        }
                   1040:        /*
                   1041:         * Now walk through the pdas one last time and assign buffer pointers
                   1042:         * (ugh!). Again, ignore the parity. Also, count nodes to find out
                   1043:         * how many bufs need to be xored together.
                   1044:         */
                   1045:        (*nXorBufs) = 1;        /* In read case, 1 is for parity. */
                   1046:                                /* In write case, 1 is for failed data. */
                   1047:        if (new_asm_h[0]) {
                   1048:                for (pda = new_asm_h[0]->stripeMap->physInfo; pda;
                   1049:                     pda = pda->next) {
                   1050:                        pda->bufPtr = bufP;
                   1051:                        bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
                   1052:                }
                   1053:                *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
                   1054:        }
                   1055:        if (new_asm_h[1]) {
                   1056:                for (pda = new_asm_h[1]->stripeMap->physInfo; pda;
                   1057:                     pda = pda->next) {
                   1058:                        pda->bufPtr = bufP;
                   1059:                        bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
                   1060:                }
                   1061:                (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
                   1062:        }
                   1063:        if (rpBufPtr)
                   1064:                /* The rest of the buffer is for parity. */
                   1065:                *rpBufPtr = bufP;
                   1066:
                   1067:        /*
                   1068:         * The last step is to figure out how many more distinct buffers need
                   1069:         * to get xor'd to produce the missing unit. there's one for each
                   1070:         * user-data read node that overlaps the portion of the failed unit
                   1071:         * being accessed.
                   1072:         */
                   1073:
                   1074:        for (foundit = i = 0, pda = asmap->physInfo;
                   1075:             pda; i++, pda = pda->next) {
                   1076:                if (pda == failedPDA) {
                   1077:                        i--;
                   1078:                        foundit = 1;
                   1079:                        continue;
                   1080:                }
                   1081:                if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
                   1082:                        overlappingPDAs[i] = 1;
                   1083:                        (*nXorBufs)++;
                   1084:                }
                   1085:        }
                   1086:        if (!foundit) {
                   1087:                RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA"
                   1088:                    " in asm list.\n");
                   1089:                RF_ASSERT(0);
                   1090:        }
                   1091:        if (rf_degDagDebug) {
                   1092:                if (new_asm_h[0]) {
                   1093:                        printf("First asm:\n");
                   1094:                        rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
                   1095:                }
                   1096:                if (new_asm_h[1]) {
                   1097:                        printf("Second asm:\n");
                   1098:                        rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
                   1099:                }
                   1100:        }
                   1101: }
                   1102:
                   1103:
                   1104: /*
                   1105:  * Adjust the offset and number of sectors in the destination pda so that
                   1106:  * it covers at most the region of the SU covered by the source PDA. This
                   1107:  * is exclusively a restriction:  the number of sectors indicated by the
                   1108:  * target PDA can only shrink.
                   1109:  *
                   1110:  * For example:  s = sectors within SU indicated by source PDA
                   1111:  *               d = sectors within SU indicated by dest PDA
                   1112:  *               r = results, stored in dest PDA
                   1113:  *
                   1114:  * |--------------- one stripe unit ---------------------|
                   1115:  * |           sssssssssssssssssssssssssssssssss         |
                   1116:  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
                   1117:  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
                   1118:  *
                   1119:  * Another example:
                   1120:  *
                   1121:  * |--------------- one stripe unit ---------------------|
                   1122:  * |           sssssssssssssssssssssssssssssssss         |
                   1123:  * |    ddddddddddddddddddddddd                          |
                   1124:  * |           rrrrrrrrrrrrrrrr                          |
                   1125:  *
                   1126:  */
                   1127: void
                   1128: rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
                   1129:     RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
                   1130: {
                   1131:        RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
                   1132:        RF_SectorNum_t soffs =
                   1133:            rf_StripeUnitOffset(layoutPtr, src->startSector);
                   1134:        RF_SectorNum_t doffs =
                   1135:            rf_StripeUnitOffset(layoutPtr, dest->startSector);
                   1136:        RF_SectorNum_t send =
                   1137:            rf_StripeUnitOffset(layoutPtr, src->startSector +
                   1138:            src->numSector - 1); /* Use -1 to be sure we stay within SU. */
                   1139:        RF_SectorNum_t dend =
                   1140:            rf_StripeUnitOffset(layoutPtr, dest->startSector +
                   1141:            dest->numSector - 1);
                   1142:        RF_SectorNum_t subAddr =
                   1143:            rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr,
                   1144:            dest->startSector); /* Stripe unit boundary. */
                   1145:
                   1146:        dest->startSector = subAddr + RF_MAX(soffs, doffs);
                   1147:        dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
                   1148:
                   1149:        if (dobuffer)
                   1150:                dest->bufPtr += (soffs > doffs) ?
                   1151:                    rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
                   1152:        if (doraidaddr) {
                   1153:                dest->raidAddress =
                   1154:                    rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr,
                   1155:                    dest->raidAddress) +
                   1156:                    rf_StripeUnitOffset(layoutPtr, dest->startSector);
                   1157:        }
                   1158: }
                   1159:
                   1160: /*
                   1161:  * Want the highest of these primes to be the largest one
                   1162:  * less than the max expected number of columns (won't hurt
                   1163:  * to be too small or too large, but won't be optimal, either)
                   1164:  * --jimz
                   1165:  */
                   1166: #define        NLOWPRIMES      8
                   1167: static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
                   1168:
                   1169: /*****************************************************************************
                   1170:  * Compute the workload shift factor. (chained declustering)
                   1171:  *
                   1172:  * Return nonzero if access should shift to secondary, otherwise,
                   1173:  * access is to primary.
                   1174:  *****************************************************************************/
                   1175: int
                   1176: rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
                   1177: {
                   1178:        /*
                   1179:          * Variables:
                   1180:          *  d   = Column of disk containing primary.
                   1181:          *  f   = Column of failed disk.
                   1182:          *  n   = Number of disks in array.
                   1183:          *  sd  = "shift distance"
                   1184:         *        (number of columns that d is to the right of f).
                   1185:          *  row = Row of array the access is in.
                   1186:          *  v   = Numerator of redirection ratio.
                   1187:          *  k   = Denominator of redirection ratio.
                   1188:          */
                   1189:        RF_RowCol_t d, f, sd, row, n;
                   1190:        int k, v, ret, i;
                   1191:
                   1192:        row = pda->row;
                   1193:        n = raidPtr->numCol;
                   1194:
                   1195:        /* Assign column of primary copy to d. */
                   1196:        d = pda->col;
                   1197:
                   1198:        /* Assign column of dead disk to f. */
                   1199:        for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) &&
                   1200:             (f < n)); f++);
                   1201:
                   1202:        RF_ASSERT(f < n);
                   1203:        RF_ASSERT(f != d);
                   1204:
                   1205:        sd = (f > d) ? (n + d - f) : (d - f);
                   1206:        RF_ASSERT(sd < n);
                   1207:
                   1208:        /*
                   1209:          * v of every k accesses should be redirected.
                   1210:          *
                   1211:          * v/k := (n-1-sd)/(n-1)
                   1212:          */
                   1213:        v = (n - 1 - sd);
                   1214:        k = (n - 1);
                   1215:
                   1216: #if 1
                   1217:        /*
                   1218:          * XXX
                   1219:          * Is this worth it ?
                   1220:          *
                   1221:          * Now reduce the fraction, by repeatedly factoring
                   1222:          * out primes (just like they teach in elementary school !).
                   1223:          */
                   1224:        for (i = 0; i < NLOWPRIMES; i++) {
                   1225:                if (lowprimes[i] > v)
                   1226:                        break;
                   1227:                while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
                   1228:                        v /= lowprimes[i];
                   1229:                        k /= lowprimes[i];
                   1230:                }
                   1231:        }
                   1232: #endif
                   1233:
                   1234:        raidPtr->hist_diskreq[row][d]++;
                   1235:        if (raidPtr->hist_diskreq[row][d] > v) {
                   1236:                ret = 0;        /* Do not redirect. */
                   1237:        } else {
                   1238:                ret = 1;        /* Redirect. */
                   1239:        }
                   1240:
                   1241: #if 0
                   1242:        printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
                   1243:            raidPtr->hist_diskreq[row][d]);
                   1244: #endif
                   1245:
                   1246:        if (raidPtr->hist_diskreq[row][d] >= k) {
                   1247:                /* Reset counter. */
                   1248:                raidPtr->hist_diskreq[row][d] = 0;
                   1249:        }
                   1250:        return (ret);
                   1251: }
                   1252:
                   1253: /*
                   1254:  * Disk selection routines.
                   1255:  */
                   1256:
                   1257: /*
                   1258:  * Select the disk with the shortest queue from a mirror pair.
                   1259:  * Both the disk I/Os queued in RAIDframe as well as those at the physical
                   1260:  * disk are counted as members of the "queue".
                   1261:  */
                   1262: void
                   1263: rf_SelectMirrorDiskIdle(RF_DagNode_t *node)
                   1264: {
                   1265:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
                   1266:        RF_RowCol_t rowData, colData, rowMirror, colMirror;
                   1267:        int dataQueueLength, mirrorQueueLength, usemirror;
                   1268:        RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
                   1269:        RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
                   1270:        RF_PhysDiskAddr_t *tmp_pda;
                   1271:        RF_RaidDisk_t **disks = raidPtr->Disks;
                   1272:        RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
                   1273:
                   1274:        /* Return the [row col] of the disk with the shortest queue. */
                   1275:        rowData = data_pda->row;
                   1276:        colData = data_pda->col;
                   1277:        rowMirror = mirror_pda->row;
                   1278:        colMirror = mirror_pda->col;
                   1279:        dataQueue = &(dqs[rowData][colData]);
                   1280:        mirrorQueue = &(dqs[rowMirror][colMirror]);
                   1281:
                   1282: #ifdef RF_LOCK_QUEUES_TO_READ_LEN
                   1283:        RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
                   1284: #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
                   1285:        dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
                   1286: #ifdef RF_LOCK_QUEUES_TO_READ_LEN
                   1287:        RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
                   1288:        RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
                   1289: #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
                   1290:        mirrorQueueLength = mirrorQueue->queueLength +
                   1291:            mirrorQueue->numOutstanding;
                   1292: #ifdef RF_LOCK_QUEUES_TO_READ_LEN
                   1293:        RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
                   1294: #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
                   1295:
                   1296:        usemirror = 0;
                   1297:        if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
                   1298:                usemirror = 0;
                   1299:        } else
                   1300:                if (RF_DEAD_DISK(disks[rowData][colData].status)) {
                   1301:                        usemirror = 1;
                   1302:                } else
                   1303:                        if (raidPtr->parity_good == RF_RAID_DIRTY) {
                   1304:                                /* Trust only the main disk. */
                   1305:                                usemirror = 0;
                   1306:                        } else
                   1307:                        if (dataQueueLength < mirrorQueueLength) {
                   1308:                                usemirror = 0;
                   1309:                        } else
                   1310:                                if (mirrorQueueLength < dataQueueLength) {
                   1311:                                        usemirror = 1;
                   1312:                                } else {
                   1313:                                        /* Queues are equal length. */
                   1314:                                        /* Attempt cleverness. */
                   1315:                                        if (SNUM_DIFF(dataQueue
                   1316:                                            ->last_deq_sector, data_pda
                   1317:                                            ->startSector) <=
                   1318:                                            SNUM_DIFF(mirrorQueue
                   1319:                                            ->last_deq_sector, mirror_pda
                   1320:                                            ->startSector)) {
                   1321:                                                usemirror = 0;
                   1322:                                        } else {
                   1323:                                                usemirror = 1;
                   1324:                                        }
                   1325:                                }
                   1326:
                   1327:        if (usemirror) {
                   1328:                /* Use mirror (parity) disk, swap params 0 & 4. */
                   1329:                tmp_pda = data_pda;
                   1330:                node->params[0].p = mirror_pda;
                   1331:                node->params[4].p = tmp_pda;
                   1332:        } else {
                   1333:                /* Use data disk, leave param 0 unchanged. */
                   1334:        }
                   1335:        /*printf("dataQueueLength %d, mirrorQueueLength %d\n", dataQueueLength,
                   1336:            mirrorQueueLength);*/
                   1337: }
                   1338:
                   1339: /*
                   1340:  * Do simple partitioning. This assumes that
                   1341:  * the data and parity disks are laid out identically.
                   1342:  */
                   1343: void
                   1344: rf_SelectMirrorDiskPartition(RF_DagNode_t *node)
                   1345: {
                   1346:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
                   1347:        RF_RowCol_t rowData, colData, rowMirror, colMirror;
                   1348:        RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
                   1349:        RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
                   1350:        RF_PhysDiskAddr_t *tmp_pda;
                   1351:        RF_RaidDisk_t **disks = raidPtr->Disks;
                   1352:        RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
                   1353:        int usemirror;
                   1354:
                   1355:        /* Return the [row col] of the disk with the shortest queue. */
                   1356:        rowData = data_pda->row;
                   1357:        colData = data_pda->col;
                   1358:        rowMirror = mirror_pda->row;
                   1359:        colMirror = mirror_pda->col;
                   1360:        dataQueue = &(dqs[rowData][colData]);
                   1361:        mirrorQueue = &(dqs[rowMirror][colMirror]);
                   1362:
                   1363:        usemirror = 0;
                   1364:        if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
                   1365:                usemirror = 0;
                   1366:        } else
                   1367:                if (RF_DEAD_DISK(disks[rowData][colData].status)) {
                   1368:                        usemirror = 1;
                   1369:                } else
                   1370:                        if (raidPtr->parity_good == RF_RAID_DIRTY) {
                   1371:                                /* Trust only the main disk. */
                   1372:                                usemirror = 0;
                   1373:                } else
                   1374:                                if (data_pda->startSector <
                   1375:                                    (disks[rowData][colData].numBlocks / 2)) {
                   1376:                                usemirror = 0;
                   1377:                        } else {
                   1378:                                usemirror = 1;
                   1379:                        }
                   1380:
                   1381:        if (usemirror) {
                   1382:                /* Use mirror (parity) disk, swap params 0 & 4. */
                   1383:                tmp_pda = data_pda;
                   1384:                node->params[0].p = mirror_pda;
                   1385:                node->params[4].p = tmp_pda;
                   1386:        } else {
                   1387:                /* Use data disk, leave param 0 unchanged. */
                   1388:        }
                   1389: }

CVSweb