[BACK]Return to rf_dagutils.c CVS log [TXT][DIR] Up to [local] / sys / dev / raidframe

Annotation of sys/dev/raidframe/rf_dagutils.c, Revision 1.1

1.1     ! nbrk        1: /*     $OpenBSD: rf_dagutils.c,v 1.4 2002/12/16 07:01:03 tdeval Exp $  */
        !             2: /*     $NetBSD: rf_dagutils.c,v 1.6 1999/12/09 02:26:09 oster Exp $    */
        !             3:
        !             4: /*
        !             5:  * Copyright (c) 1995 Carnegie-Mellon University.
        !             6:  * All rights reserved.
        !             7:  *
        !             8:  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
        !             9:  *
        !            10:  * Permission to use, copy, modify and distribute this software and
        !            11:  * its documentation is hereby granted, provided that both the copyright
        !            12:  * notice and this permission notice appear in all copies of the
        !            13:  * software, derivative works or modified versions, and any portions
        !            14:  * thereof, and that both notices appear in supporting documentation.
        !            15:  *
        !            16:  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
        !            17:  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
        !            18:  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
        !            19:  *
        !            20:  * Carnegie Mellon requests users of this software to return to
        !            21:  *
        !            22:  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
        !            23:  *  School of Computer Science
        !            24:  *  Carnegie Mellon University
        !            25:  *  Pittsburgh PA 15213-3890
        !            26:  *
        !            27:  * any improvements or extensions that they make and grant Carnegie the
        !            28:  * rights to redistribute these changes.
        !            29:  */
        !            30:
        !            31: /*****************************************************************************
        !            32:  *
        !            33:  * rf_dagutils.c -- Utility routines for manipulating dags.
        !            34:  *
        !            35:  *****************************************************************************/
        !            36:
        !            37: #include "rf_archs.h"
        !            38: #include "rf_types.h"
        !            39: #include "rf_threadstuff.h"
        !            40: #include "rf_raid.h"
        !            41: #include "rf_dag.h"
        !            42: #include "rf_dagutils.h"
        !            43: #include "rf_dagfuncs.h"
        !            44: #include "rf_general.h"
        !            45: #include "rf_freelist.h"
        !            46: #include "rf_map.h"
        !            47: #include "rf_shutdown.h"
        !            48:
        !            49: #define        SNUM_DIFF(_a_,_b_)      (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
        !            50:
        !            51: RF_RedFuncs_t rf_xorFuncs = {
        !            52:        rf_RegularXorFunc, "Reg Xr", rf_SimpleXorFunc, "Simple Xr"
        !            53: };
        !            54:
        !            55: RF_RedFuncs_t rf_xorRecoveryFuncs = {
        !            56:        rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"
        !            57: };
        !            58:
        !            59: void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
        !            60: void rf_PrintDAG(RF_DagHeader_t *);
        !            61: int  rf_ValidateBranch(RF_DagNode_t *, int *, int *, RF_DagNode_t **, int);
        !            62: void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
        !            63: void rf_ValidateVisitedBits(RF_DagHeader_t *);
        !            64:
        !            65: /*****************************************************************************
        !            66:  *
        !            67:  * InitNode - Initialize a dag node.
        !            68:  *
        !            69:  * The size of the propList array is always the same as that of the
        !            70:  * successors array.
        !            71:  *
        !            72:  *****************************************************************************/
        !            73: void
        !            74: rf_InitNode(
        !            75:        RF_DagNode_t     *node,
        !            76:        RF_NodeStatus_t   initstatus,
        !            77:        int               commit,
        !            78:        int             (*doFunc) (RF_DagNode_t *),
        !            79:        int             (*undoFunc) (RF_DagNode_t *node),
        !            80:        int             (*wakeFunc) (RF_DagNode_t *node, int),
        !            81:        int               nSucc,
        !            82:        int               nAnte,
        !            83:        int               nParam,
        !            84:        int               nResult,
        !            85:        RF_DagHeader_t   *hdr,
        !            86:        char             *name,
        !            87:        RF_AllocListElem_t *alist
        !            88: )
        !            89: {
        !            90:        void **ptrs;
        !            91:        int nptrs;
        !            92:
        !            93:        if (nAnte > RF_MAX_ANTECEDENTS)
        !            94:                RF_PANIC();
        !            95:        node->status = initstatus;
        !            96:        node->commitNode = commit;
        !            97:        node->doFunc = doFunc;
        !            98:        node->undoFunc = undoFunc;
        !            99:        node->wakeFunc = wakeFunc;
        !           100:        node->numParams = nParam;
        !           101:        node->numResults = nResult;
        !           102:        node->numAntecedents = nAnte;
        !           103:        node->numAntDone = 0;
        !           104:        node->next = NULL;
        !           105:        node->numSuccedents = nSucc;
        !           106:        node->name = name;
        !           107:        node->dagHdr = hdr;
        !           108:        node->visited = 0;
        !           109:
        !           110:        /* Allocate all the pointers with one call to malloc. */
        !           111:        nptrs = nSucc + nAnte + nResult + nSucc;
        !           112:
        !           113:        if (nptrs <= RF_DAG_PTRCACHESIZE) {
        !           114:                /*
        !           115:                 * The dag_ptrs field of the node is basically some scribble
        !           116:                 * space to be used here. We could get rid of it, and always
        !           117:                 * allocate the range of pointers, but that's expensive. So,
        !           118:                 * we pick a "common case" size for the pointer cache.
        !           119:                 * Hopefully, we'll find that:
        !           120:                 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
        !           121:                 *     only a little bit (least efficient case).
        !           122:                 * (2) Generally, ntprs isn't a lot less than
        !           123:                 *     RF_DAG_PTRCACHESIZE (wasted memory).
        !           124:                 */
        !           125:                ptrs = (void **) node->dag_ptrs;
        !           126:        } else {
        !           127:                RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
        !           128:        }
        !           129:        node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
        !           130:        node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
        !           131:        node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
        !           132:        node->propList = (nSucc) ? (RF_PropHeader_t **)
        !           133:            (ptrs + nSucc + nAnte + nResult) : NULL;
        !           134:
        !           135:        if (nParam) {
        !           136:                if (nParam <= RF_DAG_PARAMCACHESIZE) {
        !           137:                        node->params = (RF_DagParam_t *) node->dag_params;
        !           138:                } else {
        !           139:                        RF_CallocAndAdd(node->params, nParam,
        !           140:                            sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
        !           141:                }
        !           142:        } else {
        !           143:                node->params = NULL;
        !           144:        }
        !           145: }
        !           146:
        !           147:
        !           148:
        !           149: /*****************************************************************************
        !           150:  *
        !           151:  * Allocation and deallocation routines.
        !           152:  *
        !           153:  *****************************************************************************/
        !           154:
        !           155: void
        !           156: rf_FreeDAG(RF_DagHeader_t *dag_h)
        !           157: {
        !           158:        RF_AccessStripeMapHeader_t *asmap, *t_asmap;
        !           159:        RF_DagHeader_t *nextDag;
        !           160:        int i;
        !           161:
        !           162:        while (dag_h) {
        !           163:                nextDag = dag_h->next;
        !           164:                for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
        !           165:                        /* Release mem chunks. */
        !           166:                        rf_ReleaseMemChunk(dag_h->memChunk[i]);
        !           167:                        dag_h->memChunk[i] = NULL;
        !           168:                }
        !           169:
        !           170:                RF_ASSERT(i == dag_h->chunkIndex);
        !           171:                if (dag_h->xtraChunkCnt > 0) {
        !           172:                        /* Free xtraMemChunks. */
        !           173:                        for (i = 0; dag_h->xtraMemChunk[i] &&
        !           174:                             i < dag_h->xtraChunkIndex; i++) {
        !           175:                                rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
        !           176:                                dag_h->xtraMemChunk[i] = NULL;
        !           177:                        }
        !           178:                        RF_ASSERT(i == dag_h->xtraChunkIndex);
        !           179:                        /* Free ptrs to xtraMemChunks. */
        !           180:                        RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt *
        !           181:                            sizeof(RF_ChunkDesc_t *));
        !           182:                }
        !           183:                rf_FreeAllocList(dag_h->allocList);
        !           184:                for (asmap = dag_h->asmList; asmap;) {
        !           185:                        t_asmap = asmap;
        !           186:                        asmap = asmap->next;
        !           187:                        rf_FreeAccessStripeMap(t_asmap);
        !           188:                }
        !           189:                rf_FreeDAGHeader(dag_h);
        !           190:                dag_h = nextDag;
        !           191:        }
        !           192: }
        !           193:
        !           194: RF_PropHeader_t *
        !           195: rf_MakePropListEntry(RF_DagHeader_t *dag_h, int resultNum, int paramNum,
        !           196:     RF_PropHeader_t *next, RF_AllocListElem_t *allocList)
        !           197: {
        !           198:        RF_PropHeader_t *p;
        !           199:
        !           200:        RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t), (RF_PropHeader_t *),
        !           201:            allocList);
        !           202:        p->resultNum = resultNum;
        !           203:        p->paramNum = paramNum;
        !           204:        p->next = next;
        !           205:        return (p);
        !           206: }
        !           207:
        !           208: static RF_FreeList_t *rf_dagh_freelist;
        !           209:
        !           210: #define        RF_MAX_FREE_DAGH        128
        !           211: #define        RF_DAGH_INC              16
        !           212: #define        RF_DAGH_INITIAL          32
        !           213:
        !           214: void rf_ShutdownDAGs(void *);
        !           215: void
        !           216: rf_ShutdownDAGs(void *ignored)
        !           217: {
        !           218:        RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
        !           219: }
        !           220:
        !           221: int
        !           222: rf_ConfigureDAGs(RF_ShutdownList_t **listp)
        !           223: {
        !           224:        int rc;
        !           225:
        !           226:        RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH, RF_DAGH_INC,
        !           227:            sizeof(RF_DagHeader_t));
        !           228:        if (rf_dagh_freelist == NULL)
        !           229:                return (ENOMEM);
        !           230:        rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
        !           231:        if (rc) {
        !           232:                RF_ERRORMSG3("Unable to add to shutdown list file %s line"
        !           233:                    " %d rc=%d\n", __FILE__, __LINE__, rc);
        !           234:                rf_ShutdownDAGs(NULL);
        !           235:                return (rc);
        !           236:        }
        !           237:        RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
        !           238:            (RF_DagHeader_t *));
        !           239:        return (0);
        !           240: }
        !           241:
        !           242: RF_DagHeader_t *
        !           243: rf_AllocDAGHeader(void)
        !           244: {
        !           245:        RF_DagHeader_t *dh;
        !           246:
        !           247:        RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
        !           248:        if (dh) {
        !           249:                bzero((char *) dh, sizeof(RF_DagHeader_t));
        !           250:        }
        !           251:        return (dh);
        !           252: }
        !           253:
        !           254: void
        !           255: rf_FreeDAGHeader(RF_DagHeader_t *dh)
        !           256: {
        !           257:        RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
        !           258: }
        !           259:
        !           260: /* Allocate a buffer big enough to hold the data described by pda. */
        !           261: void *
        !           262: rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
        !           263:     RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
        !           264: {
        !           265:        char *p;
        !           266:
        !           267:        RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
        !           268:            (char *), allocList);
        !           269:        return ((void *) p);
        !           270: }
        !           271:
        !           272:
        !           273: /*****************************************************************************
        !           274:  *
        !           275:  * Debug routines.
        !           276:  *
        !           277:  *****************************************************************************/
        !           278:
        !           279: char *
        !           280: rf_NodeStatusString(RF_DagNode_t *node)
        !           281: {
        !           282:        switch (node->status) {
        !           283:        case rf_wait:
        !           284:                return ("wait");
        !           285:        case rf_fired:
        !           286:                return ("fired");
        !           287:        case rf_good:
        !           288:                return ("good");
        !           289:        case rf_bad:
        !           290:                return ("bad");
        !           291:        default:
        !           292:                return ("?");
        !           293:        }
        !           294: }
        !           295:
        !           296: void
        !           297: rf_PrintNodeInfoString(RF_DagNode_t *node)
        !           298: {
        !           299:        RF_PhysDiskAddr_t *pda;
        !           300:        int (*df) (RF_DagNode_t *) = node->doFunc;
        !           301:        int i, lk, unlk;
        !           302:        void *bufPtr;
        !           303:
        !           304:        if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc) ||
        !           305:            (df == rf_DiskReadMirrorIdleFunc) ||
        !           306:            (df == rf_DiskReadMirrorPartitionFunc)) {
        !           307:                pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !           308:                bufPtr = (void *) node->params[1].p;
        !           309:                lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
        !           310:                unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
        !           311:                RF_ASSERT(!(lk && unlk));
        !           312:                printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row,
        !           313:                    pda->col, (long) pda->startSector, (int) pda->numSector,
        !           314:                    (long) bufPtr, (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
        !           315:                return;
        !           316:        }
        !           317:        if (df == rf_DiskUnlockFunc) {
        !           318:                pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !           319:                lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
        !           320:                unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
        !           321:                RF_ASSERT(!(lk && unlk));
        !           322:                printf("r %d c %d %s\n", pda->row, pda->col,
        !           323:                    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
        !           324:                return;
        !           325:        }
        !           326:        if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
        !           327:            || (df == rf_RecoveryXorFunc)) {
        !           328:                printf("result buf 0x%lx\n", (long) node->results[0]);
        !           329:                for (i = 0; i < node->numParams - 1; i += 2) {
        !           330:                        pda = (RF_PhysDiskAddr_t *) node->params[i].p;
        !           331:                        bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
        !           332:                        printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
        !           333:                            (long) bufPtr, pda->row, pda->col,
        !           334:                            (long) pda->startSector, (int) pda->numSector);
        !           335:                }
        !           336:                return;
        !           337:        }
        !           338: #if    RF_INCLUDE_PARITYLOGGING > 0
        !           339:        if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
        !           340:                for (i = 0; i < node->numParams - 1; i += 2) {
        !           341:                        pda = (RF_PhysDiskAddr_t *) node->params[i].p;
        !           342:                        bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
        !           343:                        printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
        !           344:                            pda->row, pda->col, (long) pda->startSector,
        !           345:                            (int) pda->numSector, (long) bufPtr);
        !           346:                }
        !           347:                return;
        !           348:        }
        !           349: #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
        !           350:
        !           351:        if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
        !           352:                printf("\n");
        !           353:                return;
        !           354:        }
        !           355:        printf("?\n");
        !           356: }
        !           357:
        !           358: void
        !           359: rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
        !           360: {
        !           361:        char *anttype;
        !           362:        int i;
        !           363:
        !           364:        node->visited = (unvisited) ? 0 : 1;
        !           365:        printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
        !           366:            node->nodeNum, node->commitNode, node->name,
        !           367:            rf_NodeStatusString(node), node->numSuccedents,
        !           368:            node->numSuccFired, node->numSuccDone,
        !           369:            node->numAntecedents, node->numAntDone,
        !           370:            node->numParams, node->numResults);
        !           371:        for (i = 0; i < node->numSuccedents; i++) {
        !           372:                printf("%d%s", node->succedents[i]->nodeNum,
        !           373:                    ((i == node->numSuccedents - 1) ? "\0" : " "));
        !           374:        }
        !           375:        printf("} A{");
        !           376:        for (i = 0; i < node->numAntecedents; i++) {
        !           377:                switch (node->antType[i]) {
        !           378:                case rf_trueData:
        !           379:                        anttype = "T";
        !           380:                        break;
        !           381:                case rf_antiData:
        !           382:                        anttype = "A";
        !           383:                        break;
        !           384:                case rf_outputData:
        !           385:                        anttype = "O";
        !           386:                        break;
        !           387:                case rf_control:
        !           388:                        anttype = "C";
        !           389:                        break;
        !           390:                default:
        !           391:                        anttype = "?";
        !           392:                        break;
        !           393:                }
        !           394:                printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype,
        !           395:                    (i == node->numAntecedents - 1) ? "\0" : " ");
        !           396:        }
        !           397:        printf("}; ");
        !           398:        rf_PrintNodeInfoString(node);
        !           399:        for (i = 0; i < node->numSuccedents; i++) {
        !           400:                if (node->succedents[i]->visited == unvisited)
        !           401:                        rf_RecurPrintDAG(node->succedents[i], depth + 1,
        !           402:                            unvisited);
        !           403:        }
        !           404: }
        !           405:
        !           406: void
        !           407: rf_PrintDAG(RF_DagHeader_t *dag_h)
        !           408: {
        !           409:        int unvisited, i;
        !           410:        char *status;
        !           411:
        !           412:        /* Set dag status. */
        !           413:        switch (dag_h->status) {
        !           414:        case rf_enable:
        !           415:                status = "enable";
        !           416:                break;
        !           417:        case rf_rollForward:
        !           418:                status = "rollForward";
        !           419:                break;
        !           420:        case rf_rollBackward:
        !           421:                status = "rollBackward";
        !           422:                break;
        !           423:        default:
        !           424:                status = "illegal !";
        !           425:                break;
        !           426:        }
        !           427:        /* Find out if visited bits are currently set or cleared. */
        !           428:        unvisited = dag_h->succedents[0]->visited;
        !           429:
        !           430:        printf("DAG type:  %s\n", dag_h->creator);
        !           431:        printf("format is (depth) num commit type: status,nSucc nSuccFired/n"
        !           432:            "SuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
        !           433:        printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
        !           434:            status, dag_h->numSuccedents, dag_h->numCommitNodes,
        !           435:            dag_h->numCommits);
        !           436:        for (i = 0; i < dag_h->numSuccedents; i++) {
        !           437:                printf("%d%s", dag_h->succedents[i]->nodeNum,
        !           438:                    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
        !           439:        }
        !           440:        printf("};\n");
        !           441:        for (i = 0; i < dag_h->numSuccedents; i++) {
        !           442:                if (dag_h->succedents[i]->visited == unvisited)
        !           443:                        rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
        !           444:        }
        !           445: }
        !           446:
        !           447: /* Assign node numbers. */
        !           448: int
        !           449: rf_AssignNodeNums(RF_DagHeader_t *dag_h)
        !           450: {
        !           451:        int unvisited, i, nnum;
        !           452:        RF_DagNode_t *node;
        !           453:
        !           454:        nnum = 0;
        !           455:        unvisited = dag_h->succedents[0]->visited;
        !           456:
        !           457:        dag_h->nodeNum = nnum++;
        !           458:        for (i = 0; i < dag_h->numSuccedents; i++) {
        !           459:                node = dag_h->succedents[i];
        !           460:                if (node->visited == unvisited) {
        !           461:                        nnum = rf_RecurAssignNodeNums(dag_h->succedents[i],
        !           462:                            nnum, unvisited);
        !           463:                }
        !           464:        }
        !           465:        return (nnum);
        !           466: }
        !           467:
        !           468: int
        !           469: rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
        !           470: {
        !           471:        int i;
        !           472:
        !           473:        node->visited = (unvisited) ? 0 : 1;
        !           474:
        !           475:        node->nodeNum = num++;
        !           476:        for (i = 0; i < node->numSuccedents; i++) {
        !           477:                if (node->succedents[i]->visited == unvisited) {
        !           478:                        num = rf_RecurAssignNodeNums(node->succedents[i],
        !           479:                            num, unvisited);
        !           480:                }
        !           481:        }
        !           482:        return (num);
        !           483: }
        !           484:
        !           485: /* Set the header pointers in each node to "newptr". */
        !           486: void
        !           487: rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
        !           488: {
        !           489:        int i;
        !           490:
        !           491:        for (i = 0; i < dag_h->numSuccedents; i++)
        !           492:                if (dag_h->succedents[i]->dagHdr != newptr)
        !           493:                        rf_RecurResetDAGHeaderPointers(dag_h->succedents[i],
        !           494:                            newptr);
        !           495: }
        !           496:
        !           497: void
        !           498: rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
        !           499: {
        !           500:        int i;
        !           501:
        !           502:        node->dagHdr = newptr;
        !           503:        for (i = 0; i < node->numSuccedents; i++)
        !           504:                if (node->succedents[i]->dagHdr != newptr)
        !           505:                        rf_RecurResetDAGHeaderPointers(node->succedents[i],
        !           506:                            newptr);
        !           507: }
        !           508:
        !           509: void
        !           510: rf_PrintDAGList(RF_DagHeader_t *dag_h)
        !           511: {
        !           512:        int i = 0;
        !           513:
        !           514:        for (; dag_h; dag_h = dag_h->next) {
        !           515:                rf_AssignNodeNums(dag_h);
        !           516:                printf("\n\nDAG %d IN LIST:\n", i++);
        !           517:                rf_PrintDAG(dag_h);
        !           518:        }
        !           519: }
        !           520:
        !           521: int
        !           522: rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
        !           523:     RF_DagNode_t **nodes, int unvisited)
        !           524: {
        !           525:        int i, retcode = 0;
        !           526:
        !           527:        /* Construct an array of node pointers indexed by node num. */
        !           528:        node->visited = (unvisited) ? 0 : 1;
        !           529:        nodes[node->nodeNum] = node;
        !           530:
        !           531:        if (node->next != NULL) {
        !           532:                printf("INVALID DAG: next pointer in node is not NULL.\n");
        !           533:                retcode = 1;
        !           534:        }
        !           535:        if (node->status != rf_wait) {
        !           536:                printf("INVALID DAG: Node status is not wait.\n");
        !           537:                retcode = 1;
        !           538:        }
        !           539:        if (node->numAntDone != 0) {
        !           540:                printf("INVALID DAG: numAntDone is not zero.\n");
        !           541:                retcode = 1;
        !           542:        }
        !           543:        if (node->doFunc == rf_TerminateFunc) {
        !           544:                if (node->numSuccedents != 0) {
        !           545:                        printf("INVALID DAG: Terminator node has"
        !           546:                            " succedents.\n");
        !           547:                        retcode = 1;
        !           548:                }
        !           549:        } else {
        !           550:                if (node->numSuccedents == 0) {
        !           551:                        printf("INVALID DAG: Non-terminator node has no"
        !           552:                            " succedents\n");
        !           553:                        retcode = 1;
        !           554:                }
        !           555:        }
        !           556:        for (i = 0; i < node->numSuccedents; i++) {
        !           557:                if (!node->succedents[i]) {
        !           558:                        printf("INVALID DAG: succedent %d of node %s"
        !           559:                            " is NULL.\n", i, node->name);
        !           560:                        retcode = 1;
        !           561:                }
        !           562:                scount[node->succedents[i]->nodeNum]++;
        !           563:        }
        !           564:        for (i = 0; i < node->numAntecedents; i++) {
        !           565:                if (!node->antecedents[i]) {
        !           566:                        printf("INVALID DAG: antecedent %d of node %s is"
        !           567:                            " NULL.\n", i, node->name);
        !           568:                        retcode = 1;
        !           569:                }
        !           570:                acount[node->antecedents[i]->nodeNum]++;
        !           571:        }
        !           572:        for (i = 0; i < node->numSuccedents; i++) {
        !           573:                if (node->succedents[i]->visited == unvisited) {
        !           574:                        if (rf_ValidateBranch(node->succedents[i], scount,
        !           575:                                acount, nodes, unvisited)) {
        !           576:                                retcode = 1;
        !           577:                        }
        !           578:                }
        !           579:        }
        !           580:        return (retcode);
        !           581: }
        !           582:
        !           583: void
        !           584: rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
        !           585: {
        !           586:        int i;
        !           587:
        !           588:        RF_ASSERT(node->visited == unvisited);
        !           589:        for (i = 0; i < node->numSuccedents; i++) {
        !           590:                if (node->succedents[i] == NULL) {
        !           591:                        printf("node=%lx node->succedents[%d] is NULL.\n",
        !           592:                            (long) node, i);
        !           593:                        RF_ASSERT(0);
        !           594:                }
        !           595:                rf_ValidateBranchVisitedBits(node->succedents[i],
        !           596:                    unvisited, rl + 1);
        !           597:        }
        !           598: }
        !           599:
        !           600: /*
        !           601:  * NOTE:  Never call this on a big dag, because it is exponential
        !           602:  * in execution time.
        !           603:  */
        !           604: void
        !           605: rf_ValidateVisitedBits(RF_DagHeader_t *dag)
        !           606: {
        !           607:        int i, unvisited;
        !           608:
        !           609:        unvisited = dag->succedents[0]->visited;
        !           610:
        !           611:        for (i = 0; i < dag->numSuccedents; i++) {
        !           612:                if (dag->succedents[i] == NULL) {
        !           613:                        printf("dag=%lx dag->succedents[%d] is NULL.\n",
        !           614:                            (long) dag, i);
        !           615:                        RF_ASSERT(0);
        !           616:                }
        !           617:                rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
        !           618:        }
        !           619: }
        !           620:
        !           621: /*
        !           622:  * Validate a DAG. _at entry_ verify that:
        !           623:  *   -- numNodesCompleted is zero
        !           624:  *   -- node queue is null
        !           625:  *   -- dag status is rf_enable
        !           626:  *   -- next pointer is null on every node
        !           627:  *   -- all nodes have status wait
        !           628:  *   -- numAntDone is zero in all nodes
        !           629:  *   -- terminator node has zero successors
        !           630:  *   -- no other node besides terminator has zero successors
        !           631:  *   -- no successor or antecedent pointer in a node is NULL
        !           632:  *   -- number of times that each node appears as a successor of another node
        !           633:  *      is equal to the antecedent count on that node
        !           634:  *   -- number of times that each node appears as an antecedent of another node
        !           635:  *      is equal to the succedent count on that node
        !           636:  *   -- what else ?
        !           637:  */
        !           638: int
        !           639: rf_ValidateDAG(RF_DagHeader_t *dag_h)
        !           640: {
        !           641:        int i, nodecount;
        !           642:        int *scount, *acount;   /* Per-node successor and antecedent counts. */
        !           643:        RF_DagNode_t **nodes;   /* Array of ptrs to nodes in dag. */
        !           644:        int retcode = 0;
        !           645:        int unvisited;
        !           646:        int commitNodeCount = 0;
        !           647:
        !           648:        if (rf_validateVisitedDebug)
        !           649:                rf_ValidateVisitedBits(dag_h);
        !           650:
        !           651:        if (dag_h->numNodesCompleted != 0) {
        !           652:                printf("INVALID DAG: num nodes completed is %d, should be 0.\n",
        !           653:                    dag_h->numNodesCompleted);
        !           654:                retcode = 1;
        !           655:                goto validate_dag_bad;
        !           656:        }
        !           657:        if (dag_h->status != rf_enable) {
        !           658:                printf("INVALID DAG: not enabled.\n");
        !           659:                retcode = 1;
        !           660:                goto validate_dag_bad;
        !           661:        }
        !           662:        if (dag_h->numCommits != 0) {
        !           663:                printf("INVALID DAG: numCommits != 0 (%d)\n",
        !           664:                    dag_h->numCommits);
        !           665:                retcode = 1;
        !           666:                goto validate_dag_bad;
        !           667:        }
        !           668:        if (dag_h->numSuccedents != 1) {
        !           669:                /* Currently, all dags must have only one succedent. */
        !           670:                printf("INVALID DAG: numSuccedents != 1 (%d).\n",
        !           671:                    dag_h->numSuccedents);
        !           672:                retcode = 1;
        !           673:                goto validate_dag_bad;
        !           674:        }
        !           675:        nodecount = rf_AssignNodeNums(dag_h);
        !           676:
        !           677:        unvisited = dag_h->succedents[0]->visited;
        !           678:
        !           679:        RF_Calloc(scount, nodecount, sizeof(int), (int *));
        !           680:        RF_Calloc(acount, nodecount, sizeof(int), (int *));
        !           681:        RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
        !           682:        for (i = 0; i < dag_h->numSuccedents; i++) {
        !           683:                if ((dag_h->succedents[i]->visited == unvisited)
        !           684:                    && rf_ValidateBranch(dag_h->succedents[i], scount,
        !           685:                        acount, nodes, unvisited)) {
        !           686:                        retcode = 1;
        !           687:                }
        !           688:        }
        !           689:        /* Start at 1 to skip the header node. */
        !           690:        for (i = 1; i < nodecount; i++) {
        !           691:                if (nodes[i]->commitNode)
        !           692:                        commitNodeCount++;
        !           693:                if (nodes[i]->doFunc == NULL) {
        !           694:                        printf("INVALID DAG: node %s has an undefined"
        !           695:                            " doFunc.\n", nodes[i]->name);
        !           696:                        retcode = 1;
        !           697:                        goto validate_dag_out;
        !           698:                }
        !           699:                if (nodes[i]->undoFunc == NULL) {
        !           700:                        printf("INVALID DAG: node %s has an undefined"
        !           701:                            " doFunc.\n", nodes[i]->name);
        !           702:                        retcode = 1;
        !           703:                        goto validate_dag_out;
        !           704:                }
        !           705:                if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
        !           706:                        printf("INVALID DAG: node %s has %d antecedents but"
        !           707:                            " appears as a succedent %d times.\n",
        !           708:                            nodes[i]->name, nodes[i]->numAntecedents,
        !           709:                            scount[nodes[i]->nodeNum]);
        !           710:                        retcode = 1;
        !           711:                        goto validate_dag_out;
        !           712:                }
        !           713:                if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
        !           714:                        printf("INVALID DAG: node %s has %d succedents but"
        !           715:                            " appears as an antecedent %d times.\n",
        !           716:                            nodes[i]->name, nodes[i]->numSuccedents,
        !           717:                            acount[nodes[i]->nodeNum]);
        !           718:                        retcode = 1;
        !           719:                        goto validate_dag_out;
        !           720:                }
        !           721:        }
        !           722:
        !           723:        if (dag_h->numCommitNodes != commitNodeCount) {
        !           724:                printf("INVALID DAG: incorrect commit node count. "
        !           725:                    "hdr->numCommitNodes (%d) found (%d) commit nodes"
        !           726:                    " in graph.\n",
        !           727:                    dag_h->numCommitNodes, commitNodeCount);
        !           728:                retcode = 1;
        !           729:                goto validate_dag_out;
        !           730:        }
        !           731:
        !           732: validate_dag_out:
        !           733:        RF_Free(scount, nodecount * sizeof(int));
        !           734:        RF_Free(acount, nodecount * sizeof(int));
        !           735:        RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
        !           736:        if (retcode)
        !           737:                rf_PrintDAGList(dag_h);
        !           738:
        !           739:        if (rf_validateVisitedDebug)
        !           740:                rf_ValidateVisitedBits(dag_h);
        !           741:
        !           742:        return (retcode);
        !           743:
        !           744: validate_dag_bad:
        !           745:        rf_PrintDAGList(dag_h);
        !           746:        return (retcode);
        !           747: }
        !           748:
        !           749:
        !           750: /*****************************************************************************
        !           751:  *
        !           752:  * Misc construction routines.
        !           753:  *
        !           754:  *****************************************************************************/
        !           755:
        !           756: void
        !           757: rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
        !           758: {
        !           759:        int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
        !           760:        int row = asmap->physInfo->row;
        !           761:        int fcol = raidPtr->reconControl[row]->fcol;
        !           762:        int srow = raidPtr->reconControl[row]->spareRow;
        !           763:        int scol = raidPtr->reconControl[row]->spareCol;
        !           764:        RF_PhysDiskAddr_t *pda;
        !           765:
        !           766:        RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
        !           767:        for (pda = asmap->physInfo; pda; pda = pda->next) {
        !           768:                if (pda->col == fcol) {
        !           769:                        if (rf_dagDebug) {
        !           770:                                if (!rf_CheckRUReconstructed(
        !           771:                                    raidPtr->reconControl[row]->reconMap,
        !           772:                                    pda->startSector)) {
        !           773:                                        RF_PANIC();
        !           774:                                }
        !           775:                        }
        !           776:                        /*printf("Remapped data for large write\n");*/
        !           777:                        if (ds) {
        !           778:                                raidPtr->Layout.map->MapSector(raidPtr,
        !           779:                                    pda->raidAddress, &pda->row, &pda->col,
        !           780:                                    &pda->startSector, RF_REMAP);
        !           781:                        } else {
        !           782:                                pda->row = srow;
        !           783:                                pda->col = scol;
        !           784:                        }
        !           785:                }
        !           786:        }
        !           787:        for (pda = asmap->parityInfo; pda; pda = pda->next) {
        !           788:                if (pda->col == fcol) {
        !           789:                        if (rf_dagDebug) {
        !           790:                                if (!rf_CheckRUReconstructed(
        !           791:                                    raidPtr->reconControl[row]->reconMap,
        !           792:                                    pda->startSector)) {
        !           793:                                        RF_PANIC();
        !           794:                                }
        !           795:                        }
        !           796:                }
        !           797:                if (ds) {
        !           798:                        (raidPtr->Layout.map->MapParity) (raidPtr,
        !           799:                            pda->raidAddress, &pda->row, &pda->col,
        !           800:                            &pda->startSector, RF_REMAP);
        !           801:                } else {
        !           802:                        pda->row = srow;
        !           803:                        pda->col = scol;
        !           804:                }
        !           805:        }
        !           806: }
        !           807:
        !           808:
        !           809: /*
        !           810:  * This routine allocates read buffers and generates stripe maps for the
        !           811:  * regions of the array from the start of the stripe to the start of the
        !           812:  * access, and from the end of the access to the end of the stripe. It also
        !           813:  * computes and returns the number of DAG nodes needed to read all this data.
        !           814:  * Note that this routine does the wrong thing if the access is fully
        !           815:  * contained within one stripe unit, so we RF_ASSERT against this case at the
        !           816:  * start.
        !           817:  */
        !           818: void
        !           819: rf_MapUnaccessedPortionOfStripe(
        !           820:        RF_Raid_t                *raidPtr,
        !           821:        RF_RaidLayout_t          *layoutPtr,    /* in: layout information */
        !           822:        RF_AccessStripeMap_t     *asmap,        /* in: access stripe map */
        !           823:        RF_DagHeader_t           *dag_h,        /* in: header of the dag */
        !           824:                                                /*     to create */
        !           825:        RF_AccessStripeMapHeader_t **new_asm_h, /* in: ptr to array of 2 */
        !           826:                                                /*     headers, to be */
        !           827:                                                /*     filled in */
        !           828:        int                      *nRodNodes,    /* out: num nodes to be */
        !           829:                                                /*      generated to read */
        !           830:                                                /*      unaccessed data */
        !           831:        char                    **sosBuffer,    /* out: pointers to newly */
        !           832:                                                /*      allocated buffer */
        !           833:        char                    **eosBuffer,
        !           834:        RF_AllocListElem_t       *allocList
        !           835: )
        !           836: {
        !           837:        RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
        !           838:        RF_SectorNum_t sosNumSector, eosNumSector;
        !           839:
        !           840:        RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
        !           841:        /*
        !           842:         * Generate an access map for the region of the array from start of
        !           843:         * stripe to start of access.
        !           844:         */
        !           845:        new_asm_h[0] = new_asm_h[1] = NULL;
        !           846:        *nRodNodes = 0;
        !           847:        if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
        !           848:                sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
        !           849:                    asmap->raidAddress);
        !           850:                sosNumSector = asmap->raidAddress - sosRaidAddress;
        !           851:                RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr,
        !           852:                    sosNumSector), (char *), allocList);
        !           853:                new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress,
        !           854:                    sosNumSector, *sosBuffer, RF_DONT_REMAP);
        !           855:                new_asm_h[0]->next = dag_h->asmList;
        !           856:                dag_h->asmList = new_asm_h[0];
        !           857:                *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
        !           858:
        !           859:                RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
        !           860:                /* We're totally within one stripe here. */
        !           861:                if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
        !           862:                        rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
        !           863:        }
        !           864:        /*
        !           865:         * Generate an access map for the region of the array from end of
        !           866:         * access to end of stripe.
        !           867:         */
        !           868:        if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
        !           869:                eosRaidAddress = asmap->endRaidAddress;
        !           870:                eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr,
        !           871:                    eosRaidAddress) - eosRaidAddress;
        !           872:                RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr,
        !           873:                    eosNumSector), (char *), allocList);
        !           874:                new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress,
        !           875:                    eosNumSector, *eosBuffer, RF_DONT_REMAP);
        !           876:                new_asm_h[1]->next = dag_h->asmList;
        !           877:                dag_h->asmList = new_asm_h[1];
        !           878:                *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
        !           879:
        !           880:                RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
        !           881:                /* We're totally within one stripe here. */
        !           882:                if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
        !           883:                        rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
        !           884:        }
        !           885: }
        !           886:
        !           887:
        !           888: /* Returns non-zero if the indicated ranges of stripe unit offsets overlap. */
        !           889: int
        !           890: rf_PDAOverlap(RF_RaidLayout_t *layoutPtr, RF_PhysDiskAddr_t *src,
        !           891:     RF_PhysDiskAddr_t *dest)
        !           892: {
        !           893:        RF_SectorNum_t soffs =
        !           894:            rf_StripeUnitOffset(layoutPtr, src->startSector);
        !           895:        RF_SectorNum_t doffs =
        !           896:            rf_StripeUnitOffset(layoutPtr, dest->startSector);
        !           897:        /* Use -1 to be sure we stay within SU. */
        !           898:        RF_SectorNum_t send =
        !           899:            rf_StripeUnitOffset(layoutPtr, src->startSector +
        !           900:            src->numSector - 1);
        !           901:        RF_SectorNum_t dend =
        !           902:            rf_StripeUnitOffset(layoutPtr, dest->startSector +
        !           903:            dest->numSector - 1);
        !           904:
        !           905:        return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
        !           906: }
        !           907:
        !           908:
        !           909: /*
        !           910:  * GenerateFailedAccessASMs
        !           911:  *
        !           912:  * This routine figures out what portion of the stripe needs to be read
        !           913:  * to effect the degraded read or write operation. It's primary function
        !           914:  * is to identify everything required to recover the data, and then
        !           915:  * eliminate anything that is already being accessed by the user.
        !           916:  *
        !           917:  * The main result is two new ASMs, one for the region from the start of the
        !           918:  * stripe to the start of the access, and one for the region from the end of
        !           919:  * the access to the end of the stripe. These ASMs describe everything that
        !           920:  * needs to be read to effect the degraded access. Other results are:
        !           921:  *    nXorBufs -- The total number of buffers that need to be XORed together
        !           922:  *               to recover the lost data,
        !           923:  *    rpBufPtr -- Ptr to a newly-allocated buffer to hold the parity. If NULL
        !           924:  *                at entry, not allocated.
        !           925:  *    overlappingPDAs --
        !           926:  *                Describes which of the non-failed PDAs, in the user access,
        !           927:  *                overlap data that needs to be read to effect recovery.
        !           928:  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
        !           929:  *                PDA, the i'th pda in the input asm overlaps data that needs
        !           930:  *                to be read for recovery.
        !           931:  */
        !           932:  /* in: asmap - ASM for the actual access, one stripe only. */
        !           933:  /* in: faildPDA - Which component of the access has failed. */
        !           934:  /* in: dag_h - Header of the DAG we're going to create. */
        !           935:  /* out: new_asm_h - The two new ASMs. */
        !           936:  /* out: nXorBufs - The total number of xor bufs required. */
        !           937:  /* out: rpBufPtr - A buffer for the parity read. */
        !           938: void
        !           939: rf_GenerateFailedAccessASMs(
        !           940:        RF_Raid_t                *raidPtr,
        !           941:        RF_AccessStripeMap_t     *asmap,
        !           942:        RF_PhysDiskAddr_t        *failedPDA,
        !           943:        RF_DagHeader_t           *dag_h,
        !           944:        RF_AccessStripeMapHeader_t **new_asm_h,
        !           945:        int                      *nXorBufs,
        !           946:        char                    **rpBufPtr,
        !           947:        char                     *overlappingPDAs,
        !           948:        RF_AllocListElem_t       *allocList
        !           949: )
        !           950: {
        !           951:        RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
        !           952:
        !           953:        /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
        !           954:        RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
        !           955:
        !           956:        RF_SectorCount_t numSect[2], numParitySect;
        !           957:        RF_PhysDiskAddr_t *pda;
        !           958:        char *rdBuf, *bufP;
        !           959:        int foundit, i;
        !           960:
        !           961:        bufP = NULL;
        !           962:        foundit = 0;
        !           963:        /*
        !           964:         * First compute the following raid addresses:
        !           965:         * - Start of stripe
        !           966:         * - (sosAddr) MIN(start of access, start of failed SU)
        !           967:         * - (sosEndAddr) MAX(end of access, end of failed SU)
        !           968:         * - (eosStartAddr) end of stripe (i.e. start of next stripe)
        !           969:         *   (eosAddr)
        !           970:         */
        !           971:        sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
        !           972:            asmap->raidAddress);
        !           973:        sosEndAddr = RF_MIN(asmap->raidAddress,
        !           974:            rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr,
        !           975:            failedPDA->raidAddress));
        !           976:        eosStartAddr = RF_MAX(asmap->endRaidAddress,
        !           977:            rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
        !           978:            failedPDA->raidAddress));
        !           979:        eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr,
        !           980:            asmap->raidAddress);
        !           981:
        !           982:        /*
        !           983:         * Now generate access stripe maps for each of the above regions of
        !           984:         * the stripe. Use a dummy (NULL) buf ptr for now.
        !           985:         */
        !           986:
        !           987:        new_asm_h[0] = (sosAddr != sosEndAddr) ?
        !           988:            rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL,
        !           989:            RF_DONT_REMAP) : NULL;
        !           990:        new_asm_h[1] = (eosStartAddr != eosAddr) ?
        !           991:            rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL,
        !           992:            RF_DONT_REMAP) : NULL;
        !           993:
        !           994:        /*
        !           995:         * Walk through the PDAs and range-restrict each SU to the region of
        !           996:         * the SU touched on the failed PDA. Also compute total data buffer
        !           997:         * space requirements in this step. Ignore the parity for now.
        !           998:         */
        !           999:
        !          1000:        numSect[0] = numSect[1] = 0;
        !          1001:        if (new_asm_h[0]) {
        !          1002:                new_asm_h[0]->next = dag_h->asmList;
        !          1003:                dag_h->asmList = new_asm_h[0];
        !          1004:                for (pda = new_asm_h[0]->stripeMap->physInfo; pda;
        !          1005:                     pda = pda->next) {
        !          1006:                        rf_RangeRestrictPDA(raidPtr, failedPDA, pda,
        !          1007:                            RF_RESTRICT_NOBUFFER, 0);
        !          1008:                        numSect[0] += pda->numSector;
        !          1009:                }
        !          1010:        }
        !          1011:        if (new_asm_h[1]) {
        !          1012:                new_asm_h[1]->next = dag_h->asmList;
        !          1013:                dag_h->asmList = new_asm_h[1];
        !          1014:                for (pda = new_asm_h[1]->stripeMap->physInfo;
        !          1015:                     pda; pda = pda->next) {
        !          1016:                        rf_RangeRestrictPDA(raidPtr, failedPDA, pda,
        !          1017:                            RF_RESTRICT_NOBUFFER, 0);
        !          1018:                        numSect[1] += pda->numSector;
        !          1019:                }
        !          1020:        }
        !          1021:        numParitySect = failedPDA->numSector;
        !          1022:
        !          1023:        /*
        !          1024:         * Allocate buffer space for the data & parity we have to read to
        !          1025:         * recover from the failure.
        !          1026:         */
        !          1027:
        !          1028:        if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {
        !          1029:                /* Don't allocate parity buf if not needed. */
        !          1030:                RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr,
        !          1031:                    numSect[0] + numSect[1] + numParitySect), (char *),
        !          1032:                    allocList);
        !          1033:                bufP = rdBuf;
        !          1034:                if (rf_degDagDebug)
        !          1035:                        printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
        !          1036:                            (int) rf_RaidAddressToByte(raidPtr,
        !          1037:                            numSect[0] + numSect[1] + numParitySect),
        !          1038:                            (unsigned long) bufP);
        !          1039:        }
        !          1040:        /*
        !          1041:         * Now walk through the pdas one last time and assign buffer pointers
        !          1042:         * (ugh!). Again, ignore the parity. Also, count nodes to find out
        !          1043:         * how many bufs need to be xored together.
        !          1044:         */
        !          1045:        (*nXorBufs) = 1;        /* In read case, 1 is for parity. */
        !          1046:                                /* In write case, 1 is for failed data. */
        !          1047:        if (new_asm_h[0]) {
        !          1048:                for (pda = new_asm_h[0]->stripeMap->physInfo; pda;
        !          1049:                     pda = pda->next) {
        !          1050:                        pda->bufPtr = bufP;
        !          1051:                        bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
        !          1052:                }
        !          1053:                *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
        !          1054:        }
        !          1055:        if (new_asm_h[1]) {
        !          1056:                for (pda = new_asm_h[1]->stripeMap->physInfo; pda;
        !          1057:                     pda = pda->next) {
        !          1058:                        pda->bufPtr = bufP;
        !          1059:                        bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
        !          1060:                }
        !          1061:                (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
        !          1062:        }
        !          1063:        if (rpBufPtr)
        !          1064:                /* The rest of the buffer is for parity. */
        !          1065:                *rpBufPtr = bufP;
        !          1066:
        !          1067:        /*
        !          1068:         * The last step is to figure out how many more distinct buffers need
        !          1069:         * to get xor'd to produce the missing unit. there's one for each
        !          1070:         * user-data read node that overlaps the portion of the failed unit
        !          1071:         * being accessed.
        !          1072:         */
        !          1073:
        !          1074:        for (foundit = i = 0, pda = asmap->physInfo;
        !          1075:             pda; i++, pda = pda->next) {
        !          1076:                if (pda == failedPDA) {
        !          1077:                        i--;
        !          1078:                        foundit = 1;
        !          1079:                        continue;
        !          1080:                }
        !          1081:                if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
        !          1082:                        overlappingPDAs[i] = 1;
        !          1083:                        (*nXorBufs)++;
        !          1084:                }
        !          1085:        }
        !          1086:        if (!foundit) {
        !          1087:                RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA"
        !          1088:                    " in asm list.\n");
        !          1089:                RF_ASSERT(0);
        !          1090:        }
        !          1091:        if (rf_degDagDebug) {
        !          1092:                if (new_asm_h[0]) {
        !          1093:                        printf("First asm:\n");
        !          1094:                        rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
        !          1095:                }
        !          1096:                if (new_asm_h[1]) {
        !          1097:                        printf("Second asm:\n");
        !          1098:                        rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
        !          1099:                }
        !          1100:        }
        !          1101: }
        !          1102:
        !          1103:
        !          1104: /*
        !          1105:  * Adjust the offset and number of sectors in the destination pda so that
        !          1106:  * it covers at most the region of the SU covered by the source PDA. This
        !          1107:  * is exclusively a restriction:  the number of sectors indicated by the
        !          1108:  * target PDA can only shrink.
        !          1109:  *
        !          1110:  * For example:  s = sectors within SU indicated by source PDA
        !          1111:  *               d = sectors within SU indicated by dest PDA
        !          1112:  *               r = results, stored in dest PDA
        !          1113:  *
        !          1114:  * |--------------- one stripe unit ---------------------|
        !          1115:  * |           sssssssssssssssssssssssssssssssss         |
        !          1116:  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
        !          1117:  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
        !          1118:  *
        !          1119:  * Another example:
        !          1120:  *
        !          1121:  * |--------------- one stripe unit ---------------------|
        !          1122:  * |           sssssssssssssssssssssssssssssssss         |
        !          1123:  * |    ddddddddddddddddddddddd                          |
        !          1124:  * |           rrrrrrrrrrrrrrrr                          |
        !          1125:  *
        !          1126:  */
        !          1127: void
        !          1128: rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
        !          1129:     RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
        !          1130: {
        !          1131:        RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
        !          1132:        RF_SectorNum_t soffs =
        !          1133:            rf_StripeUnitOffset(layoutPtr, src->startSector);
        !          1134:        RF_SectorNum_t doffs =
        !          1135:            rf_StripeUnitOffset(layoutPtr, dest->startSector);
        !          1136:        RF_SectorNum_t send =
        !          1137:            rf_StripeUnitOffset(layoutPtr, src->startSector +
        !          1138:            src->numSector - 1); /* Use -1 to be sure we stay within SU. */
        !          1139:        RF_SectorNum_t dend =
        !          1140:            rf_StripeUnitOffset(layoutPtr, dest->startSector +
        !          1141:            dest->numSector - 1);
        !          1142:        RF_SectorNum_t subAddr =
        !          1143:            rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr,
        !          1144:            dest->startSector); /* Stripe unit boundary. */
        !          1145:
        !          1146:        dest->startSector = subAddr + RF_MAX(soffs, doffs);
        !          1147:        dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
        !          1148:
        !          1149:        if (dobuffer)
        !          1150:                dest->bufPtr += (soffs > doffs) ?
        !          1151:                    rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
        !          1152:        if (doraidaddr) {
        !          1153:                dest->raidAddress =
        !          1154:                    rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr,
        !          1155:                    dest->raidAddress) +
        !          1156:                    rf_StripeUnitOffset(layoutPtr, dest->startSector);
        !          1157:        }
        !          1158: }
        !          1159:
        !          1160: /*
        !          1161:  * Want the highest of these primes to be the largest one
        !          1162:  * less than the max expected number of columns (won't hurt
        !          1163:  * to be too small or too large, but won't be optimal, either)
        !          1164:  * --jimz
        !          1165:  */
        !          1166: #define        NLOWPRIMES      8
        !          1167: static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
        !          1168:
        !          1169: /*****************************************************************************
        !          1170:  * Compute the workload shift factor. (chained declustering)
        !          1171:  *
        !          1172:  * Return nonzero if access should shift to secondary, otherwise,
        !          1173:  * access is to primary.
        !          1174:  *****************************************************************************/
        !          1175: int
        !          1176: rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
        !          1177: {
        !          1178:        /*
        !          1179:          * Variables:
        !          1180:          *  d   = Column of disk containing primary.
        !          1181:          *  f   = Column of failed disk.
        !          1182:          *  n   = Number of disks in array.
        !          1183:          *  sd  = "shift distance"
        !          1184:         *        (number of columns that d is to the right of f).
        !          1185:          *  row = Row of array the access is in.
        !          1186:          *  v   = Numerator of redirection ratio.
        !          1187:          *  k   = Denominator of redirection ratio.
        !          1188:          */
        !          1189:        RF_RowCol_t d, f, sd, row, n;
        !          1190:        int k, v, ret, i;
        !          1191:
        !          1192:        row = pda->row;
        !          1193:        n = raidPtr->numCol;
        !          1194:
        !          1195:        /* Assign column of primary copy to d. */
        !          1196:        d = pda->col;
        !          1197:
        !          1198:        /* Assign column of dead disk to f. */
        !          1199:        for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) &&
        !          1200:             (f < n)); f++);
        !          1201:
        !          1202:        RF_ASSERT(f < n);
        !          1203:        RF_ASSERT(f != d);
        !          1204:
        !          1205:        sd = (f > d) ? (n + d - f) : (d - f);
        !          1206:        RF_ASSERT(sd < n);
        !          1207:
        !          1208:        /*
        !          1209:          * v of every k accesses should be redirected.
        !          1210:          *
        !          1211:          * v/k := (n-1-sd)/(n-1)
        !          1212:          */
        !          1213:        v = (n - 1 - sd);
        !          1214:        k = (n - 1);
        !          1215:
        !          1216: #if 1
        !          1217:        /*
        !          1218:          * XXX
        !          1219:          * Is this worth it ?
        !          1220:          *
        !          1221:          * Now reduce the fraction, by repeatedly factoring
        !          1222:          * out primes (just like they teach in elementary school !).
        !          1223:          */
        !          1224:        for (i = 0; i < NLOWPRIMES; i++) {
        !          1225:                if (lowprimes[i] > v)
        !          1226:                        break;
        !          1227:                while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
        !          1228:                        v /= lowprimes[i];
        !          1229:                        k /= lowprimes[i];
        !          1230:                }
        !          1231:        }
        !          1232: #endif
        !          1233:
        !          1234:        raidPtr->hist_diskreq[row][d]++;
        !          1235:        if (raidPtr->hist_diskreq[row][d] > v) {
        !          1236:                ret = 0;        /* Do not redirect. */
        !          1237:        } else {
        !          1238:                ret = 1;        /* Redirect. */
        !          1239:        }
        !          1240:
        !          1241: #if 0
        !          1242:        printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
        !          1243:            raidPtr->hist_diskreq[row][d]);
        !          1244: #endif
        !          1245:
        !          1246:        if (raidPtr->hist_diskreq[row][d] >= k) {
        !          1247:                /* Reset counter. */
        !          1248:                raidPtr->hist_diskreq[row][d] = 0;
        !          1249:        }
        !          1250:        return (ret);
        !          1251: }
        !          1252:
        !          1253: /*
        !          1254:  * Disk selection routines.
        !          1255:  */
        !          1256:
        !          1257: /*
        !          1258:  * Select the disk with the shortest queue from a mirror pair.
        !          1259:  * Both the disk I/Os queued in RAIDframe as well as those at the physical
        !          1260:  * disk are counted as members of the "queue".
        !          1261:  */
        !          1262: void
        !          1263: rf_SelectMirrorDiskIdle(RF_DagNode_t *node)
        !          1264: {
        !          1265:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
        !          1266:        RF_RowCol_t rowData, colData, rowMirror, colMirror;
        !          1267:        int dataQueueLength, mirrorQueueLength, usemirror;
        !          1268:        RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !          1269:        RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
        !          1270:        RF_PhysDiskAddr_t *tmp_pda;
        !          1271:        RF_RaidDisk_t **disks = raidPtr->Disks;
        !          1272:        RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
        !          1273:
        !          1274:        /* Return the [row col] of the disk with the shortest queue. */
        !          1275:        rowData = data_pda->row;
        !          1276:        colData = data_pda->col;
        !          1277:        rowMirror = mirror_pda->row;
        !          1278:        colMirror = mirror_pda->col;
        !          1279:        dataQueue = &(dqs[rowData][colData]);
        !          1280:        mirrorQueue = &(dqs[rowMirror][colMirror]);
        !          1281:
        !          1282: #ifdef RF_LOCK_QUEUES_TO_READ_LEN
        !          1283:        RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
        !          1284: #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
        !          1285:        dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
        !          1286: #ifdef RF_LOCK_QUEUES_TO_READ_LEN
        !          1287:        RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
        !          1288:        RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
        !          1289: #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
        !          1290:        mirrorQueueLength = mirrorQueue->queueLength +
        !          1291:            mirrorQueue->numOutstanding;
        !          1292: #ifdef RF_LOCK_QUEUES_TO_READ_LEN
        !          1293:        RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
        !          1294: #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
        !          1295:
        !          1296:        usemirror = 0;
        !          1297:        if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
        !          1298:                usemirror = 0;
        !          1299:        } else
        !          1300:                if (RF_DEAD_DISK(disks[rowData][colData].status)) {
        !          1301:                        usemirror = 1;
        !          1302:                } else
        !          1303:                        if (raidPtr->parity_good == RF_RAID_DIRTY) {
        !          1304:                                /* Trust only the main disk. */
        !          1305:                                usemirror = 0;
        !          1306:                        } else
        !          1307:                        if (dataQueueLength < mirrorQueueLength) {
        !          1308:                                usemirror = 0;
        !          1309:                        } else
        !          1310:                                if (mirrorQueueLength < dataQueueLength) {
        !          1311:                                        usemirror = 1;
        !          1312:                                } else {
        !          1313:                                        /* Queues are equal length. */
        !          1314:                                        /* Attempt cleverness. */
        !          1315:                                        if (SNUM_DIFF(dataQueue
        !          1316:                                            ->last_deq_sector, data_pda
        !          1317:                                            ->startSector) <=
        !          1318:                                            SNUM_DIFF(mirrorQueue
        !          1319:                                            ->last_deq_sector, mirror_pda
        !          1320:                                            ->startSector)) {
        !          1321:                                                usemirror = 0;
        !          1322:                                        } else {
        !          1323:                                                usemirror = 1;
        !          1324:                                        }
        !          1325:                                }
        !          1326:
        !          1327:        if (usemirror) {
        !          1328:                /* Use mirror (parity) disk, swap params 0 & 4. */
        !          1329:                tmp_pda = data_pda;
        !          1330:                node->params[0].p = mirror_pda;
        !          1331:                node->params[4].p = tmp_pda;
        !          1332:        } else {
        !          1333:                /* Use data disk, leave param 0 unchanged. */
        !          1334:        }
        !          1335:        /*printf("dataQueueLength %d, mirrorQueueLength %d\n", dataQueueLength,
        !          1336:            mirrorQueueLength);*/
        !          1337: }
        !          1338:
        !          1339: /*
        !          1340:  * Do simple partitioning. This assumes that
        !          1341:  * the data and parity disks are laid out identically.
        !          1342:  */
        !          1343: void
        !          1344: rf_SelectMirrorDiskPartition(RF_DagNode_t *node)
        !          1345: {
        !          1346:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
        !          1347:        RF_RowCol_t rowData, colData, rowMirror, colMirror;
        !          1348:        RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !          1349:        RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
        !          1350:        RF_PhysDiskAddr_t *tmp_pda;
        !          1351:        RF_RaidDisk_t **disks = raidPtr->Disks;
        !          1352:        RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
        !          1353:        int usemirror;
        !          1354:
        !          1355:        /* Return the [row col] of the disk with the shortest queue. */
        !          1356:        rowData = data_pda->row;
        !          1357:        colData = data_pda->col;
        !          1358:        rowMirror = mirror_pda->row;
        !          1359:        colMirror = mirror_pda->col;
        !          1360:        dataQueue = &(dqs[rowData][colData]);
        !          1361:        mirrorQueue = &(dqs[rowMirror][colMirror]);
        !          1362:
        !          1363:        usemirror = 0;
        !          1364:        if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
        !          1365:                usemirror = 0;
        !          1366:        } else
        !          1367:                if (RF_DEAD_DISK(disks[rowData][colData].status)) {
        !          1368:                        usemirror = 1;
        !          1369:                } else
        !          1370:                        if (raidPtr->parity_good == RF_RAID_DIRTY) {
        !          1371:                                /* Trust only the main disk. */
        !          1372:                                usemirror = 0;
        !          1373:                } else
        !          1374:                                if (data_pda->startSector <
        !          1375:                                    (disks[rowData][colData].numBlocks / 2)) {
        !          1376:                                usemirror = 0;
        !          1377:                        } else {
        !          1378:                                usemirror = 1;
        !          1379:                        }
        !          1380:
        !          1381:        if (usemirror) {
        !          1382:                /* Use mirror (parity) disk, swap params 0 & 4. */
        !          1383:                tmp_pda = data_pda;
        !          1384:                node->params[0].p = mirror_pda;
        !          1385:                node->params[4].p = tmp_pda;
        !          1386:        } else {
        !          1387:                /* Use data disk, leave param 0 unchanged. */
        !          1388:        }
        !          1389: }

CVSweb