[BACK]Return to rf_dagfuncs.c CVS log [TXT][DIR] Up to [local] / sys / dev / raidframe

Annotation of sys/dev/raidframe/rf_dagfuncs.c, Revision 1.1

1.1     ! nbrk        1: /*     $OpenBSD: rf_dagfuncs.c,v 1.7 2004/09/20 17:51:07 miod Exp $    */
        !             2: /*     $NetBSD: rf_dagfuncs.c,v 1.6 2000/03/30 12:45:40 augustss Exp $ */
        !             3:
        !             4: /*
        !             5:  * Copyright (c) 1995 Carnegie-Mellon University.
        !             6:  * All rights reserved.
        !             7:  *
        !             8:  * Author: Mark Holland, William V. Courtright II
        !             9:  *
        !            10:  * Permission to use, copy, modify and distribute this software and
        !            11:  * its documentation is hereby granted, provided that both the copyright
        !            12:  * notice and this permission notice appear in all copies of the
        !            13:  * software, derivative works or modified versions, and any portions
        !            14:  * thereof, and that both notices appear in supporting documentation.
        !            15:  *
        !            16:  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
        !            17:  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
        !            18:  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
        !            19:  *
        !            20:  * Carnegie Mellon requests users of this software to return to
        !            21:  *
        !            22:  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
        !            23:  *  School of Computer Science
        !            24:  *  Carnegie Mellon University
        !            25:  *  Pittsburgh PA 15213-3890
        !            26:  *
        !            27:  * any improvements or extensions that they make and grant Carnegie the
        !            28:  * rights to redistribute these changes.
        !            29:  */
        !            30:
        !            31: /*
        !            32:  * dagfuncs.c -- DAG node execution routines.
        !            33:  *
        !            34:  * Rules:
        !            35:  * 1. Every DAG execution function must eventually cause node->status to
        !            36:  *    get set to "good" or "bad", and "FinishNode" to be called. In the
        !            37:  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
        !            38:  *    the node execution function can do these two things directly. In
        !            39:  *    the case of nodes that have to wait for some event (a disk read to
        !            40:  *    complete, a lock to be released, etc) to occur before they can
        !            41:  *    complete, this is typically achieved by having whatever module
        !            42:  *    is doing the operation call GenericWakeupFunc upon completion.
        !            43:  * 2. DAG execution functions should check the status in the DAG header
        !            44:  *    and NOP out their operations if the status is not "enable". However,
        !            45:  *    execution functions that release resources must be sure to release
        !            46:  *    them even when they NOP out the function that would use them.
        !            47:  *    Functions that acquire resources should go ahead and acquire them
        !            48:  *    even when they NOP, so that a downstream release node will not have
        !            49:  *    to check to find out whether or not the acquire was suppressed.
        !            50:  */
        !            51:
        !            52: #include <sys/ioctl.h>
        !            53: #include <sys/param.h>
        !            54:
        !            55: #include "rf_archs.h"
        !            56: #include "rf_raid.h"
        !            57: #include "rf_dag.h"
        !            58: #include "rf_layout.h"
        !            59: #include "rf_etimer.h"
        !            60: #include "rf_acctrace.h"
        !            61: #include "rf_diskqueue.h"
        !            62: #include "rf_dagfuncs.h"
        !            63: #include "rf_general.h"
        !            64: #include "rf_engine.h"
        !            65: #include "rf_dagutils.h"
        !            66:
        !            67: #include "rf_kintf.h"
        !            68:
        !            69: #if    RF_INCLUDE_PARITYLOGGING > 0
        !            70: #include "rf_paritylog.h"
        !            71: #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
        !            72:
        !            73: int    (*rf_DiskReadFunc) (RF_DagNode_t *);
        !            74: int    (*rf_DiskWriteFunc) (RF_DagNode_t *);
        !            75: int    (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
        !            76: int    (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
        !            77: int    (*rf_DiskUnlockFunc) (RF_DagNode_t *);
        !            78: int    (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
        !            79: int    (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
        !            80: int    (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
        !            81: int    (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
        !            82:
        !            83: /*****************************************************************************
        !            84:  * Main (only) configuration routine for this module.
        !            85:  *****************************************************************************/
        !            86: int
        !            87: rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
        !            88: {
        !            89:        RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
        !            90:            ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
        !            91:        rf_DiskReadFunc = rf_DiskReadFuncForThreads;
        !            92:        rf_DiskReadUndoFunc = rf_DiskUndoFunc;
        !            93:        rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
        !            94:        rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
        !            95:        rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
        !            96:        rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
        !            97:        rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
        !            98:        rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
        !            99:        rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
        !           100:        return (0);
        !           101: }
        !           102:
        !           103:
        !           104: /*****************************************************************************
        !           105:  * The execution function associated with a terminate node.
        !           106:  *****************************************************************************/
        !           107: int
        !           108: rf_TerminateFunc(RF_DagNode_t *node)
        !           109: {
        !           110:        RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
        !           111:        node->status = rf_good;
        !           112:        return (rf_FinishNode(node, RF_THREAD_CONTEXT));
        !           113: }
        !           114:
        !           115: int
        !           116: rf_TerminateUndoFunc(RF_DagNode_t *node)
        !           117: {
        !           118:        return (0);
        !           119: }
        !           120:
        !           121:
        !           122: /*****************************************************************************
        !           123:  * Execution functions associated with a mirror node.
        !           124:  *
        !           125:  * parameters:
        !           126:  *
        !           127:  * 0 - Physical disk address of data.
        !           128:  * 1 - Buffer for holding read data.
        !           129:  * 2 - Parity stripe ID.
        !           130:  * 3 - Flags.
        !           131:  * 4 - Physical disk address of mirror (parity).
        !           132:  *
        !           133:  *****************************************************************************/
        !           134:
        !           135: int
        !           136: rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
        !           137: {
        !           138:        /*
        !           139:         * Select the mirror copy with the shortest queue and fill in node
        !           140:         * parameters with physical disk address.
        !           141:         */
        !           142:
        !           143:        rf_SelectMirrorDiskIdle(node);
        !           144:        return (rf_DiskReadFunc(node));
        !           145: }
        !           146:
        !           147: int
        !           148: rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
        !           149: {
        !           150:        /*
        !           151:         * Select the mirror copy with the shortest queue and fill in node
        !           152:         * parameters with physical disk address.
        !           153:         */
        !           154:
        !           155:        rf_SelectMirrorDiskPartition(node);
        !           156:        return (rf_DiskReadFunc(node));
        !           157: }
        !           158:
        !           159: int
        !           160: rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
        !           161: {
        !           162:        return (0);
        !           163: }
        !           164:
        !           165:
        !           166:
        !           167: #if    RF_INCLUDE_PARITYLOGGING > 0
        !           168: /*****************************************************************************
        !           169:  * The execution function associated with a parity log update node.
        !           170:  *****************************************************************************/
        !           171: int
        !           172: rf_ParityLogUpdateFunc(RF_DagNode_t *node)
        !           173: {
        !           174:        RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !           175:        caddr_t buf = (caddr_t) node->params[1].p;
        !           176:        RF_ParityLogData_t *logData;
        !           177:        RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
        !           178:        RF_Etimer_t timer;
        !           179:
        !           180:        if (node->dagHdr->status == rf_enable) {
        !           181:                RF_ETIMER_START(timer);
        !           182:                logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
        !           183:                    (RF_Raid_t *) (node->dagHdr->raidPtr),
        !           184:                    node->wakeFunc, (void *) node,
        !           185:                    node->dagHdr->tracerec, timer);
        !           186:                if (logData)
        !           187:                        rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
        !           188:                else {
        !           189:                        RF_ETIMER_STOP(timer);
        !           190:                        RF_ETIMER_EVAL(timer);
        !           191:                        tracerec->plog_us += RF_ETIMER_VAL_US(timer);
        !           192:                        (node->wakeFunc) (node, ENOMEM);
        !           193:                }
        !           194:        }
        !           195:        return (0);
        !           196: }
        !           197:
        !           198:
        !           199: /*****************************************************************************
        !           200:  * The execution function associated with a parity log overwrite node.
        !           201:  *****************************************************************************/
        !           202: int
        !           203: rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
        !           204: {
        !           205:        RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !           206:        caddr_t buf = (caddr_t) node->params[1].p;
        !           207:        RF_ParityLogData_t *logData;
        !           208:        RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
        !           209:        RF_Etimer_t timer;
        !           210:
        !           211:        if (node->dagHdr->status == rf_enable) {
        !           212:                RF_ETIMER_START(timer);
        !           213:                logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
        !           214:                    (RF_Raid_t *) (node->dagHdr->raidPtr), node->wakeFunc,
        !           215:                    (void *) node, node->dagHdr->tracerec, timer);
        !           216:                if (logData)
        !           217:                        rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
        !           218:                else {
        !           219:                        RF_ETIMER_STOP(timer);
        !           220:                        RF_ETIMER_EVAL(timer);
        !           221:                        tracerec->plog_us += RF_ETIMER_VAL_US(timer);
        !           222:                        (node->wakeFunc) (node, ENOMEM);
        !           223:                }
        !           224:        }
        !           225:        return (0);
        !           226: }
        !           227: #else  /* RF_INCLUDE_PARITYLOGGING > 0 */
        !           228:
        !           229: int
        !           230: rf_ParityLogUpdateFunc(RF_DagNode_t *node)
        !           231: {
        !           232:        return (0);
        !           233: }
        !           234:
        !           235: int
        !           236: rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
        !           237: {
        !           238:        return (0);
        !           239: }
        !           240: #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
        !           241:
        !           242: int
        !           243: rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
        !           244: {
        !           245:        return (0);
        !           246: }
        !           247:
        !           248: int
        !           249: rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
        !           250: {
        !           251:        return (0);
        !           252: }
        !           253:
        !           254: /*****************************************************************************
        !           255:  * The execution function associated with a NOP node.
        !           256:  *****************************************************************************/
        !           257: int
        !           258: rf_NullNodeFunc(RF_DagNode_t *node)
        !           259: {
        !           260:        node->status = rf_good;
        !           261:        return (rf_FinishNode(node, RF_THREAD_CONTEXT));
        !           262: }
        !           263:
        !           264: int
        !           265: rf_NullNodeUndoFunc(RF_DagNode_t *node)
        !           266: {
        !           267:        node->status = rf_undone;
        !           268:        return (rf_FinishNode(node, RF_THREAD_CONTEXT));
        !           269: }
        !           270:
        !           271:
        !           272: /*****************************************************************************
        !           273:  * The execution function associated with a disk-read node.
        !           274:  *****************************************************************************/
        !           275: int
        !           276: rf_DiskReadFuncForThreads(RF_DagNode_t *node)
        !           277: {
        !           278:        RF_DiskQueueData_t *req;
        !           279:        RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !           280:        caddr_t buf = (caddr_t) node->params[1].p;
        !           281:        RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
        !           282:        unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
        !           283:        unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
        !           284:        unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
        !           285:        unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
        !           286:        RF_DiskQueueDataFlags_t flags = 0;
        !           287:        RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ?
        !           288:            RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
        !           289:        RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
        !           290:        void *b_proc = NULL;
        !           291:
        !           292:        if (node->dagHdr->bp)
        !           293:                b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
        !           294:
        !           295:        RF_ASSERT(!(lock && unlock));
        !           296:        flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
        !           297:        flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
        !           298:
        !           299:        req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
        !           300:            buf, parityStripeID, which_ru,
        !           301:            (int (*) (void *, int)) node->wakeFunc,
        !           302:            node, NULL, node->dagHdr->tracerec,
        !           303:            (void *) (node->dagHdr->raidPtr), flags, b_proc);
        !           304:        if (!req) {
        !           305:                (node->wakeFunc) (node, ENOMEM);
        !           306:        } else {
        !           307:                node->dagFuncData = (void *) req;
        !           308:                rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
        !           309:        }
        !           310:        return (0);
        !           311: }
        !           312:
        !           313:
        !           314: /*****************************************************************************
        !           315:  * the execution function associated with a disk-write node
        !           316:  *****************************************************************************/
        !           317: int
        !           318: rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
        !           319: {
        !           320:        RF_DiskQueueData_t *req;
        !           321:        RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !           322:        caddr_t buf = (caddr_t) node->params[1].p;
        !           323:        RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
        !           324:        unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
        !           325:        unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
        !           326:        unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
        !           327:        unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
        !           328:        RF_DiskQueueDataFlags_t flags = 0;
        !           329:        RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ?
        !           330:            RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
        !           331:        RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
        !           332:        void *b_proc = NULL;
        !           333:
        !           334:        if (node->dagHdr->bp)
        !           335:                b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
        !           336:
        !           337:        /* Normal processing (rollaway or forward recovery) begins here. */
        !           338:        RF_ASSERT(!(lock && unlock));
        !           339:        flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
        !           340:        flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
        !           341:        req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
        !           342:            buf, parityStripeID, which_ru,
        !           343:            (int (*) (void *, int)) node->wakeFunc, (void *) node, NULL,
        !           344:            node->dagHdr->tracerec, (void *) (node->dagHdr->raidPtr),
        !           345:            flags, b_proc);
        !           346:
        !           347:        if (!req) {
        !           348:                (node->wakeFunc) (node, ENOMEM);
        !           349:        } else {
        !           350:                node->dagFuncData = (void *) req;
        !           351:                rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
        !           352:        }
        !           353:
        !           354:        return (0);
        !           355: }
        !           356: /*****************************************************************************
        !           357:  * The undo function for disk nodes.
        !           358:  * Note:  This is not a proper undo of a write node, only locks are released.
        !           359:  *       old data is not restored to disk !
        !           360:  *****************************************************************************/
        !           361: int
        !           362: rf_DiskUndoFunc(RF_DagNode_t *node)
        !           363: {
        !           364:        RF_DiskQueueData_t *req;
        !           365:        RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !           366:        RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
        !           367:
        !           368:        req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, 0L, 0, NULL, 0L, 0,
        !           369:            (int (*) (void *, int)) node->wakeFunc, (void *) node,
        !           370:            NULL, node->dagHdr->tracerec, (void *) (node->dagHdr->raidPtr),
        !           371:            RF_UNLOCK_DISK_QUEUE, NULL);
        !           372:        if (!req)
        !           373:                (node->wakeFunc) (node, ENOMEM);
        !           374:        else {
        !           375:                node->dagFuncData = (void *) req;
        !           376:                rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req,
        !           377:                    RF_IO_NORMAL_PRIORITY);
        !           378:        }
        !           379:
        !           380:        return (0);
        !           381: }
        !           382:
        !           383: /*****************************************************************************
        !           384:  * The execution function associated with an "unlock disk queue" node.
        !           385:  *****************************************************************************/
        !           386: int
        !           387: rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
        !           388: {
        !           389:        RF_DiskQueueData_t *req;
        !           390:        RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
        !           391:        RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
        !           392:
        !           393:        req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, 0L, 0, NULL, 0L, 0,
        !           394:            (int (*) (void *, int)) node->wakeFunc, (void *) node,
        !           395:            NULL, node->dagHdr->tracerec, (void *) (node->dagHdr->raidPtr),
        !           396:            RF_UNLOCK_DISK_QUEUE, NULL);
        !           397:        if (!req)
        !           398:                (node->wakeFunc) (node, ENOMEM);
        !           399:        else {
        !           400:                node->dagFuncData = (void *) req;
        !           401:                rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req,
        !           402:                    RF_IO_NORMAL_PRIORITY);
        !           403:        }
        !           404:
        !           405:        return (0);
        !           406: }
        !           407:
        !           408: /*****************************************************************************
        !           409:  * Callback routine for DiskRead and DiskWrite nodes. When the disk op
        !           410:  * completes, the routine is called to set the node status and inform
        !           411:  * the execution engine that the node has fired.
        !           412:  *****************************************************************************/
        !           413: int
        !           414: rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
        !           415: {
        !           416:        switch (node->status) {
        !           417:        case rf_bwd1:
        !           418:                node->status = rf_bwd2;
        !           419:                if (node->dagFuncData)
        !           420:                        rf_FreeDiskQueueData((RF_DiskQueueData_t *)
        !           421:                            node->dagFuncData);
        !           422:                return (rf_DiskWriteFuncForThreads(node));
        !           423:                break;
        !           424:        case rf_fired:
        !           425:                if (status)
        !           426:                        node->status = rf_bad;
        !           427:                else
        !           428:                        node->status = rf_good;
        !           429:                break;
        !           430:        case rf_recover:
        !           431:                /* Probably should never reach this case. */
        !           432:                if (status)
        !           433:                        node->status = rf_panic;
        !           434:                else
        !           435:                        node->status = rf_undone;
        !           436:                break;
        !           437:        default:
        !           438:                printf("rf_GenericWakeupFunc:");
        !           439:                printf("node->status is %d,", node->status);
        !           440:                printf("status is %d \n", status);
        !           441:                RF_PANIC();
        !           442:                break;
        !           443:        }
        !           444:        if (node->dagFuncData)
        !           445:                rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
        !           446:        return (rf_FinishNode(node, RF_INTR_CONTEXT));
        !           447: }
        !           448:
        !           449:
        !           450: /*****************************************************************************
        !           451:  * There are three distinct types of xor nodes.
        !           452:  *
        !           453:  * A "regular xor" is used in the fault-free case where the access spans
        !           454:  * a complete stripe unit. It assumes that the result buffer is one full
        !           455:  * stripe unit in size, and uses the stripe-unit-offset values that it
        !           456:  * computes from the PDAs to determine where within the stripe unit to
        !           457:  * XOR each argument buffer.
        !           458:  *
        !           459:  * A "simple xor" is used in the fault-free case where the access touches
        !           460:  * only a portion of one (or two, in some cases) stripe unit(s). It assumes
        !           461:  * that all the argument buffers are of the same size and have the same
        !           462:  * stripe unit offset.
        !           463:  *
        !           464:  * A "recovery xor" is used in the degraded-mode case. It's similar to
        !           465:  * the regular xor function except that it takes the failed PDA as an
        !           466:  * additional parameter, and uses it to determine what portions of the
        !           467:  * argument buffers need to be xor'd into the result buffer, and where
        !           468:  * in the result buffer they should go.
        !           469:  *****************************************************************************/
        !           470:
        !           471: /*
        !           472:  * Xor the params together and store the result in the result field.
        !           473:  * Assume the result field points to a buffer that is the size of one SU,
        !           474:  * and use the pda params to determine where within the buffer to XOR
        !           475:  * the input buffers.
        !           476:  */
        !           477: int
        !           478: rf_RegularXorFunc(RF_DagNode_t *node)
        !           479: {
        !           480:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
        !           481:        RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
        !           482:        RF_Etimer_t timer;
        !           483:        int i, retcode;
        !           484:
        !           485:        retcode = 0;
        !           486:        if (node->dagHdr->status == rf_enable) {
        !           487:                /* Don't do the XOR if the input is the same as the output. */
        !           488:                RF_ETIMER_START(timer);
        !           489:                for (i = 0; i < node->numParams - 1; i += 2)
        !           490:                        if (node->params[i + 1].p != node->results[0]) {
        !           491:                                retcode = rf_XorIntoBuffer(raidPtr,
        !           492:                                    (RF_PhysDiskAddr_t *) node->params[i].p,
        !           493:                                    (char *) node->params[i + 1].p,
        !           494:                                    (char *) node->results[0],
        !           495:                                    node->dagHdr->bp);
        !           496:                        }
        !           497:                RF_ETIMER_STOP(timer);
        !           498:                RF_ETIMER_EVAL(timer);
        !           499:                tracerec->xor_us += RF_ETIMER_VAL_US(timer);
        !           500:        }
        !           501:        /* Call wake func explicitly since no I/O in this node. */
        !           502:        return (rf_GenericWakeupFunc(node, retcode));
        !           503: }
        !           504:
        !           505: /* Xor the inputs into the result buffer, ignoring placement issues. */
        !           506: int
        !           507: rf_SimpleXorFunc(RF_DagNode_t *node)
        !           508: {
        !           509:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
        !           510:        int i, retcode = 0;
        !           511:        RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
        !           512:        RF_Etimer_t timer;
        !           513:
        !           514:        if (node->dagHdr->status == rf_enable) {
        !           515:                RF_ETIMER_START(timer);
        !           516:                /* Don't do the XOR if the input is the same as the output. */
        !           517:                for (i = 0; i < node->numParams - 1; i += 2)
        !           518:                        if (node->params[i + 1].p != node->results[0]) {
        !           519:                                retcode = rf_bxor((char *)
        !           520:                                    node->params[i + 1].p,
        !           521:                                    (char *) node->results[0],
        !           522:                                    rf_RaidAddressToByte(raidPtr,
        !           523:                                    ((RF_PhysDiskAddr_t *)
        !           524:                                    node->params[i].p)->numSector),
        !           525:                                    (struct buf *) node->dagHdr->bp);
        !           526:                        }
        !           527:                RF_ETIMER_STOP(timer);
        !           528:                RF_ETIMER_EVAL(timer);
        !           529:                tracerec->xor_us += RF_ETIMER_VAL_US(timer);
        !           530:        }
        !           531:        /* Call wake func explicitly since no I/O in this node. */
        !           532:        return (rf_GenericWakeupFunc(node, retcode));
        !           533: }
        !           534:
        !           535: /*
        !           536:  * This xor is used by the degraded-mode dag functions to recover lost data.
        !           537:  * The second-to-last parameter is the PDA for the failed portion of the access.
        !           538:  * The code here looks at this PDA and assumes that the xor target buffer is
        !           539:  * equal in size to the number of sectors in the failed PDA. It then uses
        !           540:  * the other PDAs in the parameter list to determine where within the target
        !           541:  * buffer the corresponding data should be xored.
        !           542:  */
        !           543: int
        !           544: rf_RecoveryXorFunc(RF_DagNode_t *node)
        !           545: {
        !           546:        RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
        !           547:        RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
        !           548:        RF_PhysDiskAddr_t *failedPDA =
        !           549:            (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
        !           550:        int i, retcode = 0;
        !           551:        RF_PhysDiskAddr_t *pda;
        !           552:        int suoffset, failedSUOffset =
        !           553:            rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
        !           554:        char *srcbuf, *destbuf;
        !           555:        RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
        !           556:        RF_Etimer_t timer;
        !           557:
        !           558:        if (node->dagHdr->status == rf_enable) {
        !           559:                RF_ETIMER_START(timer);
        !           560:                for (i = 0; i < node->numParams - 2; i += 2)
        !           561:                        if (node->params[i + 1].p != node->results[0]) {
        !           562:                                pda = (RF_PhysDiskAddr_t *) node->params[i].p;
        !           563:                                srcbuf = (char *) node->params[i + 1].p;
        !           564:                                suoffset = rf_StripeUnitOffset(layoutPtr,
        !           565:                                    pda->startSector);
        !           566:                                destbuf = ((char *) node->results[0]) +
        !           567:                                    rf_RaidAddressToByte(raidPtr,
        !           568:                                    suoffset - failedSUOffset);
        !           569:                                retcode = rf_bxor(srcbuf, destbuf,
        !           570:                                    rf_RaidAddressToByte(raidPtr,
        !           571:                                    pda->numSector), node->dagHdr->bp);
        !           572:                        }
        !           573:                RF_ETIMER_STOP(timer);
        !           574:                RF_ETIMER_EVAL(timer);
        !           575:                tracerec->xor_us += RF_ETIMER_VAL_US(timer);
        !           576:        }
        !           577:        return (rf_GenericWakeupFunc(node, retcode));
        !           578: }
        !           579:
        !           580:
        !           581: /*****************************************************************************
        !           582:  * The next three functions are utilities used by the above xor-execution
        !           583:  * functions.
        !           584:  *****************************************************************************/
        !           585:
        !           586: /*
        !           587:  * This is just a glorified buffer xor. Targbuf points to a buffer that is
        !           588:  * one full stripe unit in size. srcbuf points to a buffer that may be less
        !           589:  * than 1 SU, but never more. When the access described by pda is one SU in
        !           590:  * size (which by implication means it's SU-aligned), all that happens is
        !           591:  * (targbuf) <- (srcbuf ^ targbuf). When the access is less than one SU in
        !           592:  * size the XOR occurs on only the portion of targbuf identified in the pda.
        !           593:  */
        !           594:
        !           595: int
        !           596: rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, char *srcbuf,
        !           597:     char *targbuf, void *bp)
        !           598: {
        !           599:        char *targptr;
        !           600:        int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
        !           601:        int SUOffset = pda->startSector % sectPerSU;
        !           602:        int length, retcode = 0;
        !           603:
        !           604:        RF_ASSERT(pda->numSector <= sectPerSU);
        !           605:
        !           606:        targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
        !           607:        length = rf_RaidAddressToByte(raidPtr, pda->numSector);
        !           608:        retcode = rf_bxor(srcbuf, targptr, length, bp);
        !           609:        return (retcode);
        !           610: }
        !           611:
        !           612: /*
        !           613:  * It really should be the case that the buffer pointers (returned by malloc)
        !           614:  * are aligned to the natural word size of the machine, so this is the only
        !           615:  * case we optimize for. The length should always be a multiple of the sector
        !           616:  * size, so there should be no problem with leftover bytes at the end.
        !           617:  */
        !           618: int
        !           619: rf_bxor(char *src, char *dest, int len, void *bp)
        !           620: {
        !           621:        unsigned mask = sizeof(long) - 1, retcode = 0;
        !           622:
        !           623:        if (!(((unsigned long) src) & mask) &&
        !           624:            !(((unsigned long) dest) & mask) && !(len & mask)) {
        !           625:                retcode = rf_longword_bxor((unsigned long *) src,
        !           626:                    (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
        !           627:        } else {
        !           628:                RF_ASSERT(0);
        !           629:        }
        !           630:        return (retcode);
        !           631: }
        !           632:
        !           633: /* Map a user buffer into kernel space, if necessary. */
        !           634: #define        REMAP_VA(_bp,x,y)       (y) = (x)
        !           635:
        !           636: /*
        !           637:  * When XORing in kernel mode, we need to map each user page to kernel
        !           638:  * space before we can access it.
        !           639:  * We don't want to assume anything about which input buffers are in
        !           640:  * kernel/user space, nor about their alignment, so in each loop we
        !           641:  * compute the maximum number of bytes that we can xor without crossing
        !           642:  * any page boundaries, and do only this many bytes before the next remap.
        !           643:  */
        !           644: int
        !           645: rf_longword_bxor(unsigned long *src, unsigned long *dest, int len, void *bp)
        !           646: {
        !           647:        unsigned long *end = src + len; /* len in longwords. */
        !           648:        unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
        !           649:        unsigned long *pg_src, *pg_dest; /* Per-page source/dest pointers. */
        !           650:        int longs_this_time; /* # longwords to xor in the current iteration. */
        !           651:
        !           652:        REMAP_VA(bp, src, pg_src);
        !           653:        REMAP_VA(bp, dest, pg_dest);
        !           654:        if (!pg_src || !pg_dest)
        !           655:                return (EFAULT);
        !           656:
        !           657:        while (len >= 4) {
        !           658:                longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src),
        !           659:                    RF_BLIP(pg_dest)) >> RF_LONGSHIFT);
        !           660:                src += longs_this_time;
        !           661:                dest += longs_this_time;
        !           662:                len -= longs_this_time;
        !           663:                while (longs_this_time >= 4) {
        !           664:                        d0 = pg_dest[0];
        !           665:                        d1 = pg_dest[1];
        !           666:                        d2 = pg_dest[2];
        !           667:                        d3 = pg_dest[3];
        !           668:                        s0 = pg_src[0];
        !           669:                        s1 = pg_src[1];
        !           670:                        s2 = pg_src[2];
        !           671:                        s3 = pg_src[3];
        !           672:                        pg_dest[0] = d0 ^ s0;
        !           673:                        pg_dest[1] = d1 ^ s1;
        !           674:                        pg_dest[2] = d2 ^ s2;
        !           675:                        pg_dest[3] = d3 ^ s3;
        !           676:                        pg_src += 4;
        !           677:                        pg_dest += 4;
        !           678:                        longs_this_time -= 4;
        !           679:                }
        !           680:                while (longs_this_time > 0) {
        !           681:                        /* Cannot cross any page boundaries here. */
        !           682:                        *pg_dest++ ^= *pg_src++;
        !           683:                        longs_this_time--;
        !           684:                }
        !           685:
        !           686:                /*
        !           687:                 * Either we're done, or we've reached a page boundary on one
        !           688:                 * (or possibly both) of the pointers.
        !           689:                 */
        !           690:                if (len) {
        !           691:                        if (RF_PAGE_ALIGNED(src))
        !           692:                                REMAP_VA(bp, src, pg_src);
        !           693:                        if (RF_PAGE_ALIGNED(dest))
        !           694:                                REMAP_VA(bp, dest, pg_dest);
        !           695:                        if (!pg_src || !pg_dest)
        !           696:                                return (EFAULT);
        !           697:                }
        !           698:        }
        !           699:        while (src < end) {
        !           700:                *pg_dest++ ^= *pg_src++;
        !           701:                src++;
        !           702:                dest++;
        !           703:                len--;
        !           704:                if (RF_PAGE_ALIGNED(src))
        !           705:                        REMAP_VA(bp, src, pg_src);
        !           706:                if (RF_PAGE_ALIGNED(dest))
        !           707:                        REMAP_VA(bp, dest, pg_dest);
        !           708:        }
        !           709:        RF_ASSERT(len == 0);
        !           710:        return (0);
        !           711: }
        !           712:
        !           713:
        !           714: /*
        !           715:  * dst = a ^ b ^ c;
        !           716:  * a may equal dst
        !           717:  * see comment above longword_bxor
        !           718:  */
        !           719: int
        !           720: rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
        !           721:     unsigned long *c, int len, void *bp)
        !           722: {
        !           723:        unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
        !           724:        /* Per-page source/dest pointers. */
        !           725:        unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;
        !           726:        int longs_this_time;    /* # longs to xor in the current iteration */
        !           727:        char dst_is_a = 0;
        !           728:
        !           729:        /* Note: The length (len) is in longwords. */
        !           730:
        !           731:        REMAP_VA(bp, a, pg_a);
        !           732:        REMAP_VA(bp, b, pg_b);
        !           733:        REMAP_VA(bp, c, pg_c);
        !           734:        if (a == dst) {
        !           735:                pg_dst = pg_a;
        !           736:                dst_is_a = 1;
        !           737:        } else {
        !           738:                REMAP_VA(bp, dst, pg_dst);
        !           739:        }
        !           740:
        !           741:        /* Align dest to cache line. Can't cross a pg boundary on dst here. */
        !           742:        while ((((unsigned long) pg_dst) & 0x1f)) {
        !           743:                *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
        !           744:                dst++;
        !           745:                a++;
        !           746:                b++;
        !           747:                c++;
        !           748:                if (RF_PAGE_ALIGNED(a)) {
        !           749:                        REMAP_VA(bp, a, pg_a);
        !           750:                        if (!pg_a)
        !           751:                                return (EFAULT);
        !           752:                }
        !           753:                if (RF_PAGE_ALIGNED(b)) {
        !           754:                        REMAP_VA(bp, a, pg_b);
        !           755:                        if (!pg_b)
        !           756:                                return (EFAULT);
        !           757:                }
        !           758:                if (RF_PAGE_ALIGNED(c)) {
        !           759:                        REMAP_VA(bp, a, pg_c);
        !           760:                        if (!pg_c)
        !           761:                                return (EFAULT);
        !           762:                }
        !           763:                len--;
        !           764:        }
        !           765:
        !           766:        while (len > 4) {
        !           767:                longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a),
        !           768:                    RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >>
        !           769:                    RF_LONGSHIFT);
        !           770:                a += longs_this_time;
        !           771:                b += longs_this_time;
        !           772:                c += longs_this_time;
        !           773:                dst += longs_this_time;
        !           774:                len -= longs_this_time;
        !           775:                while (longs_this_time >= 4) {
        !           776:                        a0 = pg_a[0];
        !           777:                        longs_this_time -= 4;
        !           778:
        !           779:                        a1 = pg_a[1];
        !           780:                        a2 = pg_a[2];
        !           781:
        !           782:                        a3 = pg_a[3];
        !           783:                        pg_a += 4;
        !           784:
        !           785:                        b0 = pg_b[0];
        !           786:                        b1 = pg_b[1];
        !           787:
        !           788:                        b2 = pg_b[2];
        !           789:                        b3 = pg_b[3];
        !           790:                        /* Start dual issue. */
        !           791:                        a0 ^= b0;
        !           792:                        b0 = pg_c[0];
        !           793:
        !           794:                        pg_b += 4;
        !           795:                        a1 ^= b1;
        !           796:
        !           797:                        a2 ^= b2;
        !           798:                        a3 ^= b3;
        !           799:
        !           800:                        b1 = pg_c[1];
        !           801:                        a0 ^= b0;
        !           802:
        !           803:                        b2 = pg_c[2];
        !           804:                        a1 ^= b1;
        !           805:
        !           806:                        b3 = pg_c[3];
        !           807:                        a2 ^= b2;
        !           808:
        !           809:                        pg_dst[0] = a0;
        !           810:                        a3 ^= b3;
        !           811:                        pg_dst[1] = a1;
        !           812:                        pg_c += 4;
        !           813:                        pg_dst[2] = a2;
        !           814:                        pg_dst[3] = a3;
        !           815:                        pg_dst += 4;
        !           816:                }
        !           817:                while (longs_this_time > 0) {
        !           818:                        /* Cannot cross any page boundaries here. */
        !           819:                        *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
        !           820:                        longs_this_time--;
        !           821:                }
        !           822:
        !           823:                if (len) {
        !           824:                        if (RF_PAGE_ALIGNED(a)) {
        !           825:                                REMAP_VA(bp, a, pg_a);
        !           826:                                if (!pg_a)
        !           827:                                        return (EFAULT);
        !           828:                                if (dst_is_a)
        !           829:                                        pg_dst = pg_a;
        !           830:                        }
        !           831:                        if (RF_PAGE_ALIGNED(b)) {
        !           832:                                REMAP_VA(bp, b, pg_b);
        !           833:                                if (!pg_b)
        !           834:                                        return (EFAULT);
        !           835:                        }
        !           836:                        if (RF_PAGE_ALIGNED(c)) {
        !           837:                                REMAP_VA(bp, c, pg_c);
        !           838:                                if (!pg_c)
        !           839:                                        return (EFAULT);
        !           840:                        }
        !           841:                        if (!dst_is_a)
        !           842:                                if (RF_PAGE_ALIGNED(dst)) {
        !           843:                                        REMAP_VA(bp, dst, pg_dst);
        !           844:                                        if (!pg_dst)
        !           845:                                                return (EFAULT);
        !           846:                                }
        !           847:                }
        !           848:        }
        !           849:        while (len) {
        !           850:                *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
        !           851:                dst++;
        !           852:                a++;
        !           853:                b++;
        !           854:                c++;
        !           855:                if (RF_PAGE_ALIGNED(a)) {
        !           856:                        REMAP_VA(bp, a, pg_a);
        !           857:                        if (!pg_a)
        !           858:                                return (EFAULT);
        !           859:                        if (dst_is_a)
        !           860:                                pg_dst = pg_a;
        !           861:                }
        !           862:                if (RF_PAGE_ALIGNED(b)) {
        !           863:                        REMAP_VA(bp, b, pg_b);
        !           864:                        if (!pg_b)
        !           865:                                return (EFAULT);
        !           866:                }
        !           867:                if (RF_PAGE_ALIGNED(c)) {
        !           868:                        REMAP_VA(bp, c, pg_c);
        !           869:                        if (!pg_c)
        !           870:                                return (EFAULT);
        !           871:                }
        !           872:                if (!dst_is_a)
        !           873:                        if (RF_PAGE_ALIGNED(dst)) {
        !           874:                                REMAP_VA(bp, dst, pg_dst);
        !           875:                                if (!pg_dst)
        !           876:                                        return (EFAULT);
        !           877:                        }
        !           878:                len--;
        !           879:        }
        !           880:        return (0);
        !           881: }
        !           882:
        !           883: int
        !           884: rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
        !           885:     unsigned char *c, unsigned long len, void *bp)
        !           886: {
        !           887:        RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7)
        !           888:            == 0);
        !           889:
        !           890:        return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
        !           891:                (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT,
        !           892:                 bp));
        !           893: }

CVSweb