[BACK]Return to if_em_hw.c CVS log [TXT][DIR] Up to [local] / sys / dev / pci

Annotation of sys/dev/pci/if_em_hw.c, Revision 1.1.1.1

1.1       nbrk        1: /*******************************************************************************
                      2:
                      3:   Copyright (c) 2001-2005, Intel Corporation
                      4:   All rights reserved.
                      5:
                      6:   Redistribution and use in source and binary forms, with or without
                      7:   modification, are permitted provided that the following conditions are met:
                      8:
                      9:    1. Redistributions of source code must retain the above copyright notice,
                     10:       this list of conditions and the following disclaimer.
                     11:
                     12:    2. Redistributions in binary form must reproduce the above copyright
                     13:       notice, this list of conditions and the following disclaimer in the
                     14:       documentation and/or other materials provided with the distribution.
                     15:
                     16:    3. Neither the name of the Intel Corporation nor the names of its
                     17:       contributors may be used to endorse or promote products derived from
                     18:       this software without specific prior written permission.
                     19:
                     20:   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
                     21:   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     22:   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     23:   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
                     24:   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
                     25:   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
                     26:   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
                     27:   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
                     28:   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
                     29:   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
                     30:   POSSIBILITY OF SUCH DAMAGE.
                     31:
                     32: *******************************************************************************/
                     33:
                     34: /* $OpenBSD: if_em_hw.c,v 1.26 2007/05/09 18:02:46 deraadt Exp $ */
                     35:
                     36: /* if_em_hw.c
                     37:  * Shared functions for accessing and configuring the MAC
                     38:  */
                     39:
                     40: #if 0
                     41: #include <sys/cdefs.h>
                     42: __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
                     43: #endif
                     44:
                     45: #include <sys/param.h>
                     46: #include <sys/systm.h>
                     47: #include <sys/sockio.h>
                     48: #include <sys/mbuf.h>
                     49: #include <sys/malloc.h>
                     50: #include <sys/kernel.h>
                     51: #include <sys/device.h>
                     52: #include <sys/socket.h>
                     53:
                     54: #include <net/if.h>
                     55: #include <net/if_dl.h>
                     56: #include <net/if_media.h>
                     57:
                     58: #ifdef INET
                     59: #include <netinet/in.h>
                     60: #include <netinet/in_systm.h>
                     61: #include <netinet/in_var.h>
                     62: #include <netinet/ip.h>
                     63: #include <netinet/if_ether.h>
                     64: #endif
                     65:
                     66: #include <uvm/uvm_extern.h>
                     67:
                     68: #include <dev/pci/pcireg.h>
                     69: #include <dev/pci/pcivar.h>
                     70: #include <dev/pci/pcidevs.h>
                     71:
                     72: #include <dev/pci/if_em_hw.h>
                     73:
                     74: #define STATIC
                     75:
                     76: static int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask);
                     77: static void em_swfw_sync_release(struct em_hw *hw, uint16_t mask);
                     78: static int32_t em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data);
                     79: static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
                     80: static int32_t em_get_software_semaphore(struct em_hw *hw);
                     81: static void em_release_software_semaphore(struct em_hw *hw);
                     82:
                     83: static int32_t em_check_downshift(struct em_hw *hw);
                     84: static void em_clear_vfta(struct em_hw *hw);
                     85: static int32_t em_commit_shadow_ram(struct em_hw *hw);
                     86: static int32_t em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up);
                     87: static int32_t em_config_fc_after_link_up(struct em_hw *hw);
                     88: static int32_t em_detect_gig_phy(struct em_hw *hw);
                     89: static int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank);
                     90: static int32_t em_get_auto_rd_done(struct em_hw *hw);
                     91: static int32_t em_get_cable_length(struct em_hw *hw, uint16_t *min_length, uint16_t *max_length);
                     92: static int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw);
                     93: static int32_t em_get_phy_cfg_done(struct em_hw *hw);
                     94: static int32_t em_get_software_flag(struct em_hw *hw);
                     95: static int32_t em_ich8_cycle_init(struct em_hw *hw);
                     96: static int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout);
                     97: static int32_t em_id_led_init(struct em_hw *hw);
                     98: static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
                     99: static int32_t em_init_lcd_from_nvm(struct em_hw *hw);
                    100: static void em_init_rx_addrs(struct em_hw *hw);
                    101: static void em_initialize_hardware_bits(struct em_hw *hw);
                    102: static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw);
                    103: static int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw);
                    104: static int32_t em_mng_enable_host_if(struct em_hw *hw);
                    105: static int32_t em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
                    106: static int32_t em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
                    107: static int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd);
                    108: static void em_put_hw_eeprom_semaphore(struct em_hw *hw);
                    109: static int32_t em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data);
                    110: static int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte);
                    111: static int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte);
                    112: static int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data);
                    113: static int32_t em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
                    114: static int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t data);
                    115: static int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
                    116: static int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
                    117: static void em_release_software_flag(struct em_hw *hw);
                    118: static int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active);
                    119: static int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active);
                    120: static int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
                    121: static void em_set_pci_express_master_disable(struct em_hw *hw);
                    122: static int32_t em_wait_autoneg(struct em_hw *hw);
                    123: static void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value);
                    124: static int32_t em_set_phy_type(struct em_hw *hw);
                    125: static void em_phy_init_script(struct em_hw *hw);
                    126: static int32_t em_setup_copper_link(struct em_hw *hw);
                    127: static int32_t em_setup_fiber_serdes_link(struct em_hw *hw);
                    128: static int32_t em_adjust_serdes_amplitude(struct em_hw *hw);
                    129: static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
                    130: static int32_t em_config_mac_to_phy(struct em_hw *hw);
                    131: static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
                    132: static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
                    133: static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data,
                    134:                                      uint16_t count);
                    135: static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
                    136: static int32_t em_phy_reset_dsp(struct em_hw *hw);
                    137: static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset,
                    138:                                       uint16_t words, uint16_t *data);
                    139: static int32_t em_write_eeprom_microwire(struct em_hw *hw,
                    140:                                             uint16_t offset, uint16_t words,
                    141:                                             uint16_t *data);
                    142: static int32_t em_spi_eeprom_ready(struct em_hw *hw);
                    143: static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
                    144: static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
                    145: static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data,
                    146:                                     uint16_t count);
                    147: static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
                    148:                                       uint16_t phy_data);
                    149: static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr,
                    150:                                      uint16_t *phy_data);
                    151: static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count);
                    152: static int32_t em_acquire_eeprom(struct em_hw *hw);
                    153: static void em_release_eeprom(struct em_hw *hw);
                    154: static void em_standby_eeprom(struct em_hw *hw);
                    155: static int32_t em_set_vco_speed(struct em_hw *hw);
                    156: static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
                    157: static int32_t em_set_phy_mode(struct em_hw *hw);
                    158: static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
                    159: static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
                    160: static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw,
                    161:                                                uint16_t duplex);
                    162: static int32_t em_configure_kmrn_for_1000(struct em_hw *hw);
                    163:
                    164: /* IGP cable length table */
                    165: static const
                    166: uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
                    167:     { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
                    168:       5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
                    169:       25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
                    170:       40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
                    171:       60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
                    172:       90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
                    173:       100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
                    174:       110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
                    175:
                    176: static const
                    177: uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
                    178:     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
                    179:       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
                    180:       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
                    181:       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
                    182:       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
                    183:       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
                    184:       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
                    185:       104, 109, 114, 118, 121, 124};
                    186:
                    187: /******************************************************************************
                    188:  * Set the phy type member in the hw struct.
                    189:  *
                    190:  * hw - Struct containing variables accessed by shared code
                    191:  *****************************************************************************/
                    192: STATIC int32_t
                    193: em_set_phy_type(struct em_hw *hw)
                    194: {
                    195:     DEBUGFUNC("em_set_phy_type");
                    196:
                    197:     if (hw->mac_type == em_undefined)
                    198:         return -E1000_ERR_PHY_TYPE;
                    199:
                    200:     switch (hw->phy_id) {
                    201:     case M88E1000_E_PHY_ID:
                    202:     case M88E1000_I_PHY_ID:
                    203:     case M88E1011_I_PHY_ID:
                    204:     case M88E1111_I_PHY_ID:
                    205:         hw->phy_type = em_phy_m88;
                    206:         break;
                    207:     case IGP01E1000_I_PHY_ID:
                    208:         if (hw->mac_type == em_82541 ||
                    209:             hw->mac_type == em_82541_rev_2 ||
                    210:             hw->mac_type == em_82547 ||
                    211:             hw->mac_type == em_82547_rev_2) {
                    212:             hw->phy_type = em_phy_igp;
                    213:             break;
                    214:         }
                    215:     case IGP03E1000_E_PHY_ID:
                    216:         hw->phy_type = em_phy_igp_3;
                    217:         break;
                    218:     case IFE_E_PHY_ID:
                    219:     case IFE_PLUS_E_PHY_ID:
                    220:     case IFE_C_E_PHY_ID:
                    221:         hw->phy_type = em_phy_ife;
                    222:         break;
                    223:     case GG82563_E_PHY_ID:
                    224:         if (hw->mac_type == em_80003es2lan) {
                    225:             hw->phy_type = em_phy_gg82563;
                    226:             break;
                    227:         }
                    228:         /* FALLTHROUGH */
                    229:     default:
                    230:         /* Should never have loaded on this device */
                    231:         hw->phy_type = em_phy_undefined;
                    232:         return -E1000_ERR_PHY_TYPE;
                    233:     }
                    234:
                    235:     return E1000_SUCCESS;
                    236: }
                    237:
                    238: /******************************************************************************
                    239:  * IGP phy init script - initializes the GbE PHY
                    240:  *
                    241:  * hw - Struct containing variables accessed by shared code
                    242:  *****************************************************************************/
                    243: static void
                    244: em_phy_init_script(struct em_hw *hw)
                    245: {
                    246:     uint32_t ret_val;
                    247:     uint16_t phy_saved_data;
                    248:
                    249:     DEBUGFUNC("em_phy_init_script");
                    250:
                    251:     if (hw->phy_init_script) {
                    252:         msec_delay(20);
                    253:
                    254:         /* Save off the current value of register 0x2F5B to be restored at
                    255:          * the end of this routine. */
                    256:         ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
                    257:
                    258:         /* Disabled the PHY transmitter */
                    259:         em_write_phy_reg(hw, 0x2F5B, 0x0003);
                    260:
                    261:         msec_delay(20);
                    262:
                    263:         em_write_phy_reg(hw,0x0000,0x0140);
                    264:
                    265:         msec_delay(5);
                    266:
                    267:         switch (hw->mac_type) {
                    268:         case em_82541:
                    269:         case em_82547:
                    270:             em_write_phy_reg(hw, 0x1F95, 0x0001);
                    271:
                    272:             em_write_phy_reg(hw, 0x1F71, 0xBD21);
                    273:
                    274:             em_write_phy_reg(hw, 0x1F79, 0x0018);
                    275:
                    276:             em_write_phy_reg(hw, 0x1F30, 0x1600);
                    277:
                    278:             em_write_phy_reg(hw, 0x1F31, 0x0014);
                    279:
                    280:             em_write_phy_reg(hw, 0x1F32, 0x161C);
                    281:
                    282:             em_write_phy_reg(hw, 0x1F94, 0x0003);
                    283:
                    284:             em_write_phy_reg(hw, 0x1F96, 0x003F);
                    285:
                    286:             em_write_phy_reg(hw, 0x2010, 0x0008);
                    287:             break;
                    288:
                    289:         case em_82541_rev_2:
                    290:         case em_82547_rev_2:
                    291:             em_write_phy_reg(hw, 0x1F73, 0x0099);
                    292:             break;
                    293:         default:
                    294:             break;
                    295:         }
                    296:
                    297:         em_write_phy_reg(hw, 0x0000, 0x3300);
                    298:
                    299:         msec_delay(20);
                    300:
                    301:         /* Now enable the transmitter */
                    302:         em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
                    303:
                    304:         if (hw->mac_type == em_82547) {
                    305:             uint16_t fused, fine, coarse;
                    306:
                    307:             /* Move to analog registers page */
                    308:             em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
                    309:
                    310:             if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
                    311:                 em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
                    312:
                    313:                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
                    314:                 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
                    315:
                    316:                 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
                    317:                     coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
                    318:                     fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
                    319:                 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
                    320:                     fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
                    321:
                    322:                 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
                    323:                         (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
                    324:                         (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
                    325:
                    326:                 em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
                    327:                 em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
                    328:                                     IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
                    329:             }
                    330:         }
                    331:     }
                    332: }
                    333:
                    334: /******************************************************************************
                    335:  * Set the mac type member in the hw struct.
                    336:  *
                    337:  * hw - Struct containing variables accessed by shared code
                    338:  *****************************************************************************/
                    339: int32_t
                    340: em_set_mac_type(struct em_hw *hw)
                    341: {
                    342:     DEBUGFUNC("em_set_mac_type");
                    343:
                    344:     switch (hw->device_id) {
                    345:     case E1000_DEV_ID_82542:
                    346:         switch (hw->revision_id) {
                    347:         case E1000_82542_2_0_REV_ID:
                    348:             hw->mac_type = em_82542_rev2_0;
                    349:             break;
                    350:         case E1000_82542_2_1_REV_ID:
                    351:             hw->mac_type = em_82542_rev2_1;
                    352:             break;
                    353:         default:
                    354:             /* Invalid 82542 revision ID */
                    355:             return -E1000_ERR_MAC_TYPE;
                    356:         }
                    357:         break;
                    358:     case E1000_DEV_ID_82543GC_FIBER:
                    359:     case E1000_DEV_ID_82543GC_COPPER:
                    360:         hw->mac_type = em_82543;
                    361:         break;
                    362:     case E1000_DEV_ID_82544EI_COPPER:
                    363:     case E1000_DEV_ID_82544EI_FIBER:
                    364:     case E1000_DEV_ID_82544GC_COPPER:
                    365:     case E1000_DEV_ID_82544GC_LOM:
                    366:         hw->mac_type = em_82544;
                    367:         break;
                    368:     case E1000_DEV_ID_82540EM:
                    369:     case E1000_DEV_ID_82540EM_LOM:
                    370:     case E1000_DEV_ID_82540EP:
                    371:     case E1000_DEV_ID_82540EP_LOM:
                    372:     case E1000_DEV_ID_82540EP_LP:
                    373:         hw->mac_type = em_82540;
                    374:         break;
                    375:     case E1000_DEV_ID_82545EM_COPPER:
                    376:     case E1000_DEV_ID_82545EM_FIBER:
                    377:         hw->mac_type = em_82545;
                    378:         break;
                    379:     case E1000_DEV_ID_82545GM_COPPER:
                    380:     case E1000_DEV_ID_82545GM_FIBER:
                    381:     case E1000_DEV_ID_82545GM_SERDES:
                    382:         hw->mac_type = em_82545_rev_3;
                    383:         break;
                    384:     case E1000_DEV_ID_82546EB_COPPER:
                    385:     case E1000_DEV_ID_82546EB_FIBER:
                    386:     case E1000_DEV_ID_82546EB_QUAD_COPPER:
                    387:         hw->mac_type = em_82546;
                    388:         break;
                    389:     case E1000_DEV_ID_82546GB_COPPER:
                    390:     case E1000_DEV_ID_82546GB_FIBER:
                    391:     case E1000_DEV_ID_82546GB_SERDES:
                    392:     case E1000_DEV_ID_82546GB_PCIE:
                    393:     case E1000_DEV_ID_82546GB_QUAD_COPPER:
                    394:     case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
                    395:     case E1000_DEV_ID_82546GB_2:
                    396:         hw->mac_type = em_82546_rev_3;
                    397:         break;
                    398:     case E1000_DEV_ID_82541EI:
                    399:     case E1000_DEV_ID_82541EI_MOBILE:
                    400:     case E1000_DEV_ID_82541ER_LOM:
                    401:         hw->mac_type = em_82541;
                    402:         break;
                    403:     case E1000_DEV_ID_82541ER:
                    404:     case E1000_DEV_ID_82541GI:
                    405:     case E1000_DEV_ID_82541GI_LF:
                    406:     case E1000_DEV_ID_82541GI_MOBILE:
                    407:         hw->mac_type = em_82541_rev_2;
                    408:         break;
                    409:     case E1000_DEV_ID_82547EI:
                    410:     case E1000_DEV_ID_82547EI_MOBILE:
                    411:         hw->mac_type = em_82547;
                    412:         break;
                    413:     case E1000_DEV_ID_82547GI:
                    414:         hw->mac_type = em_82547_rev_2;
                    415:         break;
                    416:     case E1000_DEV_ID_82571EB_AF:
                    417:     case E1000_DEV_ID_82571EB_AT:
                    418:     case E1000_DEV_ID_82571EB_COPPER:
                    419:     case E1000_DEV_ID_82571EB_FIBER:
                    420:     case E1000_DEV_ID_82571EB_SERDES:
                    421:     case E1000_DEV_ID_82571EB_QUAD_COPPER:
                    422:     case E1000_DEV_ID_82571EB_QUAD_FIBER:
                    423:     case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
                    424:             hw->mac_type = em_82571;
                    425:         break;
                    426:     case E1000_DEV_ID_82572EI_COPPER:
                    427:     case E1000_DEV_ID_82572EI_FIBER:
                    428:     case E1000_DEV_ID_82572EI_SERDES:
                    429:     case E1000_DEV_ID_82572EI:
                    430:         hw->mac_type = em_82572;
                    431:         break;
                    432:     case E1000_DEV_ID_82573E:
                    433:     case E1000_DEV_ID_82573E_IAMT:
                    434:     case E1000_DEV_ID_82573E_PM:
                    435:     case E1000_DEV_ID_82573L:
                    436:     case E1000_DEV_ID_82573L_PL_1:
                    437:     case E1000_DEV_ID_82573L_PL_2:
                    438:     case E1000_DEV_ID_82573V_PM:
                    439:         hw->mac_type = em_82573;
                    440:         break;
                    441:     case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
                    442:     case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
                    443:     case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
                    444:     case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
                    445:         hw->mac_type = em_80003es2lan;
                    446:         break;
                    447:     case E1000_DEV_ID_ICH8_IGP_M_AMT:
                    448:     case E1000_DEV_ID_ICH8_IGP_AMT:
                    449:     case E1000_DEV_ID_ICH8_IGP_C:
                    450:     case E1000_DEV_ID_ICH8_IFE:
                    451:     case E1000_DEV_ID_ICH8_IFE_GT:
                    452:     case E1000_DEV_ID_ICH8_IFE_G:
                    453:     case E1000_DEV_ID_ICH8_IGP_M:
                    454:         hw->mac_type = em_ich8lan;
                    455:         break;
                    456:     default:
                    457:         /* Should never have loaded on this device */
                    458:         return -E1000_ERR_MAC_TYPE;
                    459:     }
                    460:
                    461:     switch (hw->mac_type) {
                    462:     case em_ich8lan:
                    463:         hw->swfwhw_semaphore_present = TRUE;
                    464:         hw->asf_firmware_present = TRUE;
                    465:         break;
                    466:     case em_80003es2lan:
                    467:         hw->swfw_sync_present = TRUE;
                    468:         /* FALLTHROUGH */
                    469:     case em_82571:
                    470:     case em_82572:
                    471:     case em_82573:
                    472:         hw->eeprom_semaphore_present = TRUE;
                    473:         /* FALLTHROUGH */
                    474:     case em_82541:
                    475:     case em_82547:
                    476:     case em_82541_rev_2:
                    477:     case em_82547_rev_2:
                    478:         hw->asf_firmware_present = TRUE;
                    479:         break;
                    480:     default:
                    481:         break;
                    482:     }
                    483:
                    484:     return E1000_SUCCESS;
                    485: }
                    486:
                    487: /*****************************************************************************
                    488:  * Set media type and TBI compatibility.
                    489:  *
                    490:  * hw - Struct containing variables accessed by shared code
                    491:  * **************************************************************************/
                    492: void
                    493: em_set_media_type(struct em_hw *hw)
                    494: {
                    495:     uint32_t status;
                    496:
                    497:     DEBUGFUNC("em_set_media_type");
                    498:
                    499:     if (hw->mac_type != em_82543) {
                    500:         /* tbi_compatibility is only valid on 82543 */
                    501:         hw->tbi_compatibility_en = FALSE;
                    502:     }
                    503:
                    504:     switch (hw->device_id) {
                    505:     case E1000_DEV_ID_82545GM_SERDES:
                    506:     case E1000_DEV_ID_82546GB_SERDES:
                    507:     case E1000_DEV_ID_82571EB_SERDES:
                    508:     case E1000_DEV_ID_82572EI_SERDES:
                    509:     case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
                    510:         hw->media_type = em_media_type_internal_serdes;
                    511:         break;
                    512:     default:
                    513:         switch (hw->mac_type) {
                    514:         case em_82542_rev2_0:
                    515:         case em_82542_rev2_1:
                    516:             hw->media_type = em_media_type_fiber;
                    517:             break;
                    518:         case em_ich8lan:
                    519:         case em_82573:
                    520:             /* The STATUS_TBIMODE bit is reserved or reused for the this
                    521:              * device.
                    522:              */
                    523:             hw->media_type = em_media_type_copper;
                    524:             break;
                    525:         default:
                    526:             status = E1000_READ_REG(hw, STATUS);
                    527:             if (status & E1000_STATUS_TBIMODE) {
                    528:                 hw->media_type = em_media_type_fiber;
                    529:                 /* tbi_compatibility not valid on fiber */
                    530:                 hw->tbi_compatibility_en = FALSE;
                    531:             } else {
                    532:                 hw->media_type = em_media_type_copper;
                    533:             }
                    534:             break;
                    535:         }
                    536:     }
                    537: }
                    538:
                    539: /******************************************************************************
                    540:  * Reset the transmit and receive units; mask and clear all interrupts.
                    541:  *
                    542:  * hw - Struct containing variables accessed by shared code
                    543:  *****************************************************************************/
                    544: int32_t
                    545: em_reset_hw(struct em_hw *hw)
                    546: {
                    547:     uint32_t ctrl;
                    548:     uint32_t ctrl_ext;
                    549:     uint32_t icr;
                    550:     uint32_t manc;
                    551:     uint32_t led_ctrl;
                    552:     uint32_t timeout;
                    553:     uint32_t extcnf_ctrl;
                    554:     int32_t ret_val;
                    555:
                    556:     DEBUGFUNC("em_reset_hw");
                    557:
                    558:     /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
                    559:     if (hw->mac_type == em_82542_rev2_0) {
                    560:         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
                    561:         em_pci_clear_mwi(hw);
                    562:     }
                    563:
                    564:     if (hw->bus_type == em_bus_type_pci_express) {
                    565:         /* Prevent the PCI-E bus from sticking if there is no TLP connection
                    566:          * on the last TLP read/write transaction when MAC is reset.
                    567:          */
                    568:         if (em_disable_pciex_master(hw) != E1000_SUCCESS) {
                    569:             DEBUGOUT("PCI-E Master disable polling has failed.\n");
                    570:         }
                    571:     }
                    572:
                    573:     /* Clear interrupt mask to stop board from generating interrupts */
                    574:     DEBUGOUT("Masking off all interrupts\n");
                    575:     E1000_WRITE_REG(hw, IMC, 0xffffffff);
                    576:
                    577:     /* Disable the Transmit and Receive units.  Then delay to allow
                    578:      * any pending transactions to complete before we hit the MAC with
                    579:      * the global reset.
                    580:      */
                    581:     E1000_WRITE_REG(hw, RCTL, 0);
                    582:     E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
                    583:     E1000_WRITE_FLUSH(hw);
                    584:
                    585:     /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
                    586:     hw->tbi_compatibility_on = FALSE;
                    587:
                    588:     /* Delay to allow any outstanding PCI transactions to complete before
                    589:      * resetting the device
                    590:      */
                    591:     msec_delay(10);
                    592:
                    593:     ctrl = E1000_READ_REG(hw, CTRL);
                    594:
                    595:     /* Must reset the PHY before resetting the MAC */
                    596:     if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
                    597:         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
                    598:         msec_delay(5);
                    599:     }
                    600:
                    601:     /* Must acquire the MDIO ownership before MAC reset.
                    602:      * Ownership defaults to firmware after a reset. */
                    603:     if (hw->mac_type == em_82573) {
                    604:         timeout = 10;
                    605:
                    606:         extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
                    607:         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
                    608:
                    609:         do {
                    610:             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
                    611:             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
                    612:
                    613:             if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
                    614:                 break;
                    615:             else
                    616:                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
                    617:
                    618:             msec_delay(2);
                    619:             timeout--;
                    620:         } while (timeout);
                    621:     }
                    622:
                    623:     /* Workaround for ICH8 bit corruption issue in FIFO memory */
                    624:     if (hw->mac_type == em_ich8lan) {
                    625:         /* Set Tx and Rx buffer allocation to 8k apiece. */
                    626:         E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
                    627:         /* Set Packet Buffer Size to 16k. */
                    628:         E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
                    629:     }
                    630:
                    631:     /* Issue a global reset to the MAC.  This will reset the chip's
                    632:      * transmit, receive, DMA, and link units.  It will not effect
                    633:      * the current PCI configuration.  The global reset bit is self-
                    634:      * clearing, and should clear within a microsecond.
                    635:      */
                    636:     DEBUGOUT("Issuing a global reset to MAC\n");
                    637:
                    638:     switch (hw->mac_type) {
                    639:         case em_82544:
                    640:         case em_82540:
                    641:         case em_82545:
                    642:         case em_82546:
                    643:         case em_82541:
                    644:         case em_82541_rev_2:
                    645:             /* These controllers can't ack the 64-bit write when issuing the
                    646:              * reset, so use IO-mapping as a workaround to issue the reset */
                    647:             E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
                    648:             break;
                    649:         case em_82545_rev_3:
                    650:         case em_82546_rev_3:
                    651:             /* Reset is performed on a shadow of the control register */
                    652:             E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
                    653:             break;
                    654:         case em_ich8lan:
                    655:             if (!hw->phy_reset_disable &&
                    656:                 em_check_phy_reset_block(hw) == E1000_SUCCESS) {
                    657:                 /* em_ich8lan PHY HW reset requires MAC CORE reset
                    658:                  * at the same time to make sure the interface between
                    659:                  * MAC and the external PHY is reset.
                    660:                  */
                    661:                 ctrl |= E1000_CTRL_PHY_RST;
                    662:             }
                    663:
                    664:             em_get_software_flag(hw);
                    665:             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
                    666:             msec_delay(5);
                    667:             break;
                    668:         default:
                    669:             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
                    670:             break;
                    671:     }
                    672:
                    673:     /* After MAC reset, force reload of EEPROM to restore power-on settings to
                    674:      * device.  Later controllers reload the EEPROM automatically, so just wait
                    675:      * for reload to complete.
                    676:      */
                    677:     switch (hw->mac_type) {
                    678:         case em_82542_rev2_0:
                    679:         case em_82542_rev2_1:
                    680:         case em_82543:
                    681:         case em_82544:
                    682:             /* Wait for reset to complete */
                    683:             usec_delay(10);
                    684:             ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                    685:             ctrl_ext |= E1000_CTRL_EXT_EE_RST;
                    686:             E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                    687:             E1000_WRITE_FLUSH(hw);
                    688:             /* Wait for EEPROM reload */
                    689:             msec_delay(2);
                    690:             break;
                    691:         case em_82541:
                    692:         case em_82541_rev_2:
                    693:         case em_82547:
                    694:         case em_82547_rev_2:
                    695:             /* Wait for EEPROM reload */
                    696:             msec_delay(20);
                    697:             break;
                    698:         case em_82573:
                    699:             if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
                    700:                 usec_delay(10);
                    701:                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                    702:                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
                    703:                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                    704:                 E1000_WRITE_FLUSH(hw);
                    705:             }
                    706:             /* FALLTHROUGH */
                    707:         default:
                    708:             /* Auto read done will delay 5ms or poll based on mac type */
                    709:             ret_val = em_get_auto_rd_done(hw);
                    710:             if (ret_val)
                    711:                 return ret_val;
                    712:             break;
                    713:     }
                    714:
                    715:     /* Disable HW ARPs on ASF enabled adapters */
                    716:     if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
                    717:         manc = E1000_READ_REG(hw, MANC);
                    718:         manc &= ~(E1000_MANC_ARP_EN);
                    719:         E1000_WRITE_REG(hw, MANC, manc);
                    720:     }
                    721:
                    722:     if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
                    723:         em_phy_init_script(hw);
                    724:
                    725:         /* Configure activity LED after PHY reset */
                    726:         led_ctrl = E1000_READ_REG(hw, LEDCTL);
                    727:         led_ctrl &= IGP_ACTIVITY_LED_MASK;
                    728:         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
                    729:         E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
                    730:     }
                    731:
                    732:     /* Clear interrupt mask to stop board from generating interrupts */
                    733:     DEBUGOUT("Masking off all interrupts\n");
                    734:     E1000_WRITE_REG(hw, IMC, 0xffffffff);
                    735:
                    736:     /* Clear any pending interrupt events. */
                    737:     icr = E1000_READ_REG(hw, ICR);
                    738:
                    739:     /* If MWI was previously enabled, reenable it. */
                    740:     if (hw->mac_type == em_82542_rev2_0) {
                    741:         if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
                    742:             em_pci_set_mwi(hw);
                    743:     }
                    744:
                    745:     if (hw->mac_type == em_ich8lan) {
                    746:         uint32_t kab = E1000_READ_REG(hw, KABGTXD);
                    747:         kab |= E1000_KABGTXD_BGSQLBIAS;
                    748:         E1000_WRITE_REG(hw, KABGTXD, kab);
                    749:     }
                    750:
                    751:     return E1000_SUCCESS;
                    752: }
                    753:
                    754: /******************************************************************************
                    755:  *
                    756:  * Initialize a number of hardware-dependent bits
                    757:  *
                    758:  * hw: Struct containing variables accessed by shared code
                    759:  *
                    760:  *****************************************************************************/
                    761: STATIC void
                    762: em_initialize_hardware_bits(struct em_hw *hw)
                    763: {
                    764:     if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) {
                    765:         /* Settings common to all silicon */
                    766:         uint32_t reg_ctrl, reg_ctrl_ext;
                    767:         uint32_t reg_tarc0, reg_tarc1;
                    768:         uint32_t reg_tctl;
                    769:         uint32_t reg_txdctl, reg_txdctl1;
                    770:
                    771:         reg_tarc0 = E1000_READ_REG(hw, TARC0);
                    772:         reg_tarc0 &= ~0x78000000;           /* Clear bits 30, 29, 28, and 27 */
                    773:
                    774:         reg_txdctl = E1000_READ_REG(hw, TXDCTL);
                    775:         reg_txdctl |= E1000_TXDCTL_COUNT_DESC;       /* Set bit 22 */
                    776:         E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
                    777:
                    778:         reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
                    779:         reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;      /* Set bit 22 */
                    780:         E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
                    781:
                    782:         switch (hw->mac_type) {
                    783:             case em_82571:
                    784:             case em_82572:
                    785:                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
                    786:                 reg_tctl = E1000_READ_REG(hw, TCTL);
                    787:
                    788:                 /* Set the phy Tx compatible mode bits */
                    789:                 reg_tarc1 &= ~0x60000000;   /* Clear bits 30 and 29 */
                    790:
                    791:                 reg_tarc0 |= 0x07800000;    /* Set TARC0 bits 23-26 */
                    792:                 reg_tarc1 |= 0x07000000;    /* Set TARC1 bits 24-26 */
                    793:
                    794:                 if (reg_tctl & E1000_TCTL_MULR)
                    795:                     reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
                    796:                 else
                    797:                     reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
                    798:
                    799:                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
                    800:                 break;
                    801:             case em_82573:
                    802:                 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                    803:                 reg_ctrl = E1000_READ_REG(hw, CTRL);
                    804:
                    805:                 reg_ctrl_ext &= ~0x00800000;    /* Clear bit 23 */
                    806:                 reg_ctrl_ext |= 0x00400000;     /* Set bit 22 */
                    807:                 reg_ctrl &= ~0x20000000;        /* Clear bit 29 */
                    808:
                    809:                 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
                    810:                 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
                    811:                 break;
                    812:             case em_80003es2lan:
                    813:                 if ((hw->media_type == em_media_type_fiber) ||
                    814:                     (hw->media_type == em_media_type_internal_serdes)) {
                    815:                     reg_tarc0 &= ~0x00100000;   /* Clear bit 20 */
                    816:                 }
                    817:
                    818:                 reg_tctl = E1000_READ_REG(hw, TCTL);
                    819:                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
                    820:                 if (reg_tctl & E1000_TCTL_MULR)
                    821:                     reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
                    822:                 else
                    823:                     reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
                    824:
                    825:                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
                    826:                 break;
                    827:             case em_ich8lan:
                    828:                 if ((hw->revision_id < 3) ||
                    829:                     ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
                    830:                      (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
                    831:                     reg_tarc0 |= 0x30000000;    /* Set TARC0 bits 29 and 28 */
                    832:                 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                    833:                 reg_ctrl_ext |= 0x00400000;     /* Set bit 22 */
                    834:                 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
                    835:
                    836:                 reg_tarc0 |= 0x0d800000;    /* Set TARC0 bits 23, 24, 26, 27 */
                    837:
                    838:                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
                    839:                 reg_tctl = E1000_READ_REG(hw, TCTL);
                    840:
                    841:                 if (reg_tctl & E1000_TCTL_MULR)
                    842:                     reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
                    843:                 else
                    844:                     reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
                    845:
                    846:                 reg_tarc1 |= 0x45000000;        /* Set bit 24, 26 and 30 */
                    847:
                    848:                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
                    849:                 break;
                    850:             default:
                    851:                 break;
                    852:         }
                    853:
                    854:         E1000_WRITE_REG(hw, TARC0, reg_tarc0);
                    855:     }
                    856: }
                    857:
                    858: /******************************************************************************
                    859:  * Performs basic configuration of the adapter.
                    860:  *
                    861:  * hw - Struct containing variables accessed by shared code
                    862:  *
                    863:  * Assumes that the controller has previously been reset and is in a
                    864:  * post-reset uninitialized state. Initializes the receive address registers,
                    865:  * multicast table, and VLAN filter table. Calls routines to setup link
                    866:  * configuration and flow control settings. Clears all on-chip counters. Leaves
                    867:  * the transmit and receive units disabled and uninitialized.
                    868:  *****************************************************************************/
                    869: int32_t
                    870: em_init_hw(struct em_hw *hw)
                    871: {
                    872:     uint32_t ctrl;
                    873:     uint32_t i;
                    874:     int32_t ret_val;
                    875:     uint16_t pcix_cmd_word;
                    876:     uint16_t pcix_stat_hi_word;
                    877:     uint16_t cmd_mmrbc;
                    878:     uint16_t stat_mmrbc;
                    879:     uint32_t mta_size;
                    880:     uint32_t reg_data;
                    881:     uint32_t ctrl_ext;
                    882:
                    883:     DEBUGFUNC("em_init_hw");
                    884:
                    885:     /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
                    886:     if ((hw->mac_type == em_ich8lan) &&
                    887:         ((hw->revision_id < 3) ||
                    888:          ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
                    889:           (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
                    890:             reg_data = E1000_READ_REG(hw, STATUS);
                    891:             reg_data &= ~0x80000000;
                    892:             E1000_WRITE_REG(hw, STATUS, reg_data);
                    893:     }
                    894:
                    895:     /* Initialize Identification LED */
                    896:     ret_val = em_id_led_init(hw);
                    897:     if (ret_val) {
                    898:         DEBUGOUT("Error Initializing Identification LED\n");
                    899:         return ret_val;
                    900:     }
                    901:
                    902:     /* Set the media type and TBI compatibility */
                    903:     em_set_media_type(hw);
                    904:
                    905:     /* Must be called after em_set_media_type because media_type is used */
                    906:     em_initialize_hardware_bits(hw);
                    907:
                    908:     /* Disabling VLAN filtering. */
                    909:     DEBUGOUT("Initializing the IEEE VLAN\n");
                    910:     /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
                    911:     if (hw->mac_type != em_ich8lan) {
                    912:         if (hw->mac_type < em_82545_rev_3)
                    913:             E1000_WRITE_REG(hw, VET, 0);
                    914:         em_clear_vfta(hw);
                    915:     }
                    916:
                    917:     /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
                    918:     if (hw->mac_type == em_82542_rev2_0) {
                    919:         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
                    920:         em_pci_clear_mwi(hw);
                    921:         E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
                    922:         E1000_WRITE_FLUSH(hw);
                    923:         msec_delay(5);
                    924:     }
                    925:
                    926:     /* Setup the receive address. This involves initializing all of the Receive
                    927:      * Address Registers (RARs 0 - 15).
                    928:      */
                    929:     em_init_rx_addrs(hw);
                    930:
                    931:     /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
                    932:     if (hw->mac_type == em_82542_rev2_0) {
                    933:         E1000_WRITE_REG(hw, RCTL, 0);
                    934:         E1000_WRITE_FLUSH(hw);
                    935:         msec_delay(1);
                    936:         if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
                    937:             em_pci_set_mwi(hw);
                    938:     }
                    939:
                    940:     /* Zero out the Multicast HASH table */
                    941:     DEBUGOUT("Zeroing the MTA\n");
                    942:     mta_size = E1000_MC_TBL_SIZE;
                    943:     if (hw->mac_type == em_ich8lan)
                    944:         mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
                    945:     for (i = 0; i < mta_size; i++) {
                    946:         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
                    947:         /* use write flush to prevent Memory Write Block (MWB) from
                    948:          * occuring when accessing our register space */
                    949:         E1000_WRITE_FLUSH(hw);
                    950:     }
                    951:
                    952:     /* Set the PCI priority bit correctly in the CTRL register.  This
                    953:      * determines if the adapter gives priority to receives, or if it
                    954:      * gives equal priority to transmits and receives.  Valid only on
                    955:      * 82542 and 82543 silicon.
                    956:      */
                    957:     if (hw->dma_fairness && hw->mac_type <= em_82543) {
                    958:         ctrl = E1000_READ_REG(hw, CTRL);
                    959:         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
                    960:     }
                    961:
                    962:     switch (hw->mac_type) {
                    963:     case em_82545_rev_3:
                    964:     case em_82546_rev_3:
                    965:         break;
                    966:     default:
                    967:         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
                    968:         if (hw->bus_type == em_bus_type_pcix) {
                    969:             em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
                    970:             em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
                    971:                 &pcix_stat_hi_word);
                    972:             cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
                    973:                 PCIX_COMMAND_MMRBC_SHIFT;
                    974:             stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
                    975:                 PCIX_STATUS_HI_MMRBC_SHIFT;
                    976:             if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
                    977:                 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
                    978:             if (cmd_mmrbc > stat_mmrbc) {
                    979:                 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
                    980:                 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
                    981:                 em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
                    982:                     &pcix_cmd_word);
                    983:             }
                    984:         }
                    985:         break;
                    986:     }
                    987:
                    988:     /* More time needed for PHY to initialize */
                    989:     if (hw->mac_type == em_ich8lan)
                    990:         msec_delay(15);
                    991:
                    992:     /* Call a subroutine to configure the link and setup flow control. */
                    993:     ret_val = em_setup_link(hw);
                    994:
                    995:     /* Set the transmit descriptor write-back policy */
                    996:     if (hw->mac_type > em_82544) {
                    997:         ctrl = E1000_READ_REG(hw, TXDCTL);
                    998:         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
                    999:         E1000_WRITE_REG(hw, TXDCTL, ctrl);
                   1000:     }
                   1001:
                   1002:     if (hw->mac_type == em_82573) {
                   1003:         em_enable_tx_pkt_filtering(hw);
                   1004:     }
                   1005:
                   1006:     switch (hw->mac_type) {
                   1007:     default:
                   1008:         break;
                   1009:     case em_80003es2lan:
                   1010:         /* Enable retransmit on late collisions */
                   1011:         reg_data = E1000_READ_REG(hw, TCTL);
                   1012:         reg_data |= E1000_TCTL_RTLC;
                   1013:         E1000_WRITE_REG(hw, TCTL, reg_data);
                   1014:
                   1015:         /* Configure Gigabit Carry Extend Padding */
                   1016:         reg_data = E1000_READ_REG(hw, TCTL_EXT);
                   1017:         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
                   1018:         reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
                   1019:         E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
                   1020:
                   1021:         /* Configure Transmit Inter-Packet Gap */
                   1022:         reg_data = E1000_READ_REG(hw, TIPG);
                   1023:         reg_data &= ~E1000_TIPG_IPGT_MASK;
                   1024:         reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
                   1025:         E1000_WRITE_REG(hw, TIPG, reg_data);
                   1026:
                   1027:         reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
                   1028:         reg_data &= ~0x00100000;
                   1029:         E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
                   1030:         /* FALLTHROUGH */
                   1031:     case em_82571:
                   1032:     case em_82572:
                   1033:     case em_ich8lan:
                   1034:         ctrl = E1000_READ_REG(hw, TXDCTL1);
                   1035:         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
                   1036:         E1000_WRITE_REG(hw, TXDCTL1, ctrl);
                   1037:         break;
                   1038:     }
                   1039:
                   1040:     if (hw->mac_type == em_82573) {
                   1041:         uint32_t gcr = E1000_READ_REG(hw, GCR);
                   1042:         gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
                   1043:         E1000_WRITE_REG(hw, GCR, gcr);
                   1044:     }
                   1045:
                   1046:     /* Clear all of the statistics registers (clear on read).  It is
                   1047:      * important that we do this after we have tried to establish link
                   1048:      * because the symbol error count will increment wildly if there
                   1049:      * is no link.
                   1050:      */
                   1051:     em_clear_hw_cntrs(hw);
                   1052:
                   1053:     /* ICH8 No-snoop bits are opposite polarity.
                   1054:      * Set to snoop by default after reset. */
                   1055:     if (hw->mac_type == em_ich8lan)
                   1056:         em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
                   1057:
                   1058:     if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
                   1059:         hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
                   1060:         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                   1061:         /* Relaxed ordering must be disabled to avoid a parity
                   1062:          * error crash in a PCI slot. */
                   1063:         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
                   1064:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                   1065:     }
                   1066:
                   1067:     return ret_val;
                   1068: }
                   1069:
                   1070: /******************************************************************************
                   1071:  * Adjust SERDES output amplitude based on EEPROM setting.
                   1072:  *
                   1073:  * hw - Struct containing variables accessed by shared code.
                   1074:  *****************************************************************************/
                   1075: static int32_t
                   1076: em_adjust_serdes_amplitude(struct em_hw *hw)
                   1077: {
                   1078:     uint16_t eeprom_data;
                   1079:     int32_t  ret_val;
                   1080:
                   1081:     DEBUGFUNC("em_adjust_serdes_amplitude");
                   1082:
                   1083:     if (hw->media_type != em_media_type_internal_serdes)
                   1084:         return E1000_SUCCESS;
                   1085:
                   1086:     switch (hw->mac_type) {
                   1087:     case em_82545_rev_3:
                   1088:     case em_82546_rev_3:
                   1089:         break;
                   1090:     default:
                   1091:         return E1000_SUCCESS;
                   1092:     }
                   1093:
                   1094:     ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
                   1095:     if (ret_val) {
                   1096:         return ret_val;
                   1097:     }
                   1098:
                   1099:     if (eeprom_data != EEPROM_RESERVED_WORD) {
                   1100:         /* Adjust SERDES output amplitude only. */
                   1101:         eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
                   1102:         ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
                   1103:         if (ret_val)
                   1104:             return ret_val;
                   1105:     }
                   1106:
                   1107:     return E1000_SUCCESS;
                   1108: }
                   1109:
                   1110: /******************************************************************************
                   1111:  * Configures flow control and link settings.
                   1112:  *
                   1113:  * hw - Struct containing variables accessed by shared code
                   1114:  *
                   1115:  * Determines which flow control settings to use. Calls the appropriate media-
                   1116:  * specific link configuration function. Configures the flow control settings.
                   1117:  * Assuming the adapter has a valid link partner, a valid link should be
                   1118:  * established. Assumes the hardware has previously been reset and the
                   1119:  * transmitter and receiver are not enabled.
                   1120:  *****************************************************************************/
                   1121: int32_t
                   1122: em_setup_link(struct em_hw *hw)
                   1123: {
                   1124:     uint32_t ctrl_ext;
                   1125:     int32_t ret_val;
                   1126:     uint16_t eeprom_data;
                   1127:
                   1128:     DEBUGFUNC("em_setup_link");
                   1129:
                   1130:     /* In the case of the phy reset being blocked, we already have a link.
                   1131:      * We do not have to set it up again. */
                   1132:     if (em_check_phy_reset_block(hw))
                   1133:         return E1000_SUCCESS;
                   1134:
                   1135:     /* Read and store word 0x0F of the EEPROM. This word contains bits
                   1136:      * that determine the hardware's default PAUSE (flow control) mode,
                   1137:      * a bit that determines whether the HW defaults to enabling or
                   1138:      * disabling auto-negotiation, and the direction of the
                   1139:      * SW defined pins. If there is no SW over-ride of the flow
                   1140:      * control setting, then the variable hw->fc will
                   1141:      * be initialized based on a value in the EEPROM.
                   1142:      */
                   1143:     if (hw->fc == E1000_FC_DEFAULT) {
                   1144:         switch (hw->mac_type) {
                   1145:         case em_ich8lan:
                   1146:         case em_82573:
                   1147:             hw->fc = E1000_FC_FULL;
                   1148:             break;
                   1149:         default:
                   1150:             ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
                   1151:                                         1, &eeprom_data);
                   1152:             if (ret_val) {
                   1153:                 DEBUGOUT("EEPROM Read Error\n");
                   1154:                 return -E1000_ERR_EEPROM;
                   1155:             }
                   1156:             if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
                   1157:                 hw->fc = E1000_FC_NONE;
                   1158:             else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
                   1159:                     EEPROM_WORD0F_ASM_DIR)
                   1160:                 hw->fc = E1000_FC_TX_PAUSE;
                   1161:             else
                   1162:                 hw->fc = E1000_FC_FULL;
                   1163:             break;
                   1164:         }
                   1165:     }
                   1166:
                   1167:     /* We want to save off the original Flow Control configuration just
                   1168:      * in case we get disconnected and then reconnected into a different
                   1169:      * hub or switch with different Flow Control capabilities.
                   1170:      */
                   1171:     if (hw->mac_type == em_82542_rev2_0)
                   1172:         hw->fc &= (~E1000_FC_TX_PAUSE);
                   1173:
                   1174:     if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
                   1175:         hw->fc &= (~E1000_FC_RX_PAUSE);
                   1176:
                   1177:     hw->original_fc = hw->fc;
                   1178:
                   1179:     DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
                   1180:
                   1181:     /* Take the 4 bits from EEPROM word 0x0F that determine the initial
                   1182:      * polarity value for the SW controlled pins, and setup the
                   1183:      * Extended Device Control reg with that info.
                   1184:      * This is needed because one of the SW controlled pins is used for
                   1185:      * signal detection.  So this should be done before em_setup_pcs_link()
                   1186:      * or em_phy_setup() is called.
                   1187:      */
                   1188:     if (hw->mac_type == em_82543) {
                   1189:         ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
                   1190:                                     1, &eeprom_data);
                   1191:         if (ret_val) {
                   1192:             DEBUGOUT("EEPROM Read Error\n");
                   1193:             return -E1000_ERR_EEPROM;
                   1194:         }
                   1195:         ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
                   1196:                     SWDPIO__EXT_SHIFT);
                   1197:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                   1198:     }
                   1199:
                   1200:     /* Call the necessary subroutine to configure the link. */
                   1201:     ret_val = (hw->media_type == em_media_type_copper) ?
                   1202:               em_setup_copper_link(hw) :
                   1203:               em_setup_fiber_serdes_link(hw);
                   1204:
                   1205:     /* Initialize the flow control address, type, and PAUSE timer
                   1206:      * registers to their default values.  This is done even if flow
                   1207:      * control is disabled, because it does not hurt anything to
                   1208:      * initialize these registers.
                   1209:      */
                   1210:     DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
                   1211:
                   1212:     /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */
                   1213:     if (hw->mac_type != em_ich8lan) {
                   1214:         E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
                   1215:         E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
                   1216:         E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
                   1217:     }
                   1218:
                   1219:     E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
                   1220:
                   1221:     /* Set the flow control receive threshold registers.  Normally,
                   1222:      * these registers will be set to a default threshold that may be
                   1223:      * adjusted later by the driver's runtime code.  However, if the
                   1224:      * ability to transmit pause frames in not enabled, then these
                   1225:      * registers will be set to 0.
                   1226:      */
                   1227:     if (!(hw->fc & E1000_FC_TX_PAUSE)) {
                   1228:         E1000_WRITE_REG(hw, FCRTL, 0);
                   1229:         E1000_WRITE_REG(hw, FCRTH, 0);
                   1230:     } else {
                   1231:         /* We need to set up the Receive Threshold high and low water marks
                   1232:          * as well as (optionally) enabling the transmission of XON frames.
                   1233:          */
                   1234:         if (hw->fc_send_xon) {
                   1235:             E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
                   1236:             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
                   1237:         } else {
                   1238:             E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
                   1239:             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
                   1240:         }
                   1241:     }
                   1242:     return ret_val;
                   1243: }
                   1244:
                   1245: /******************************************************************************
                   1246:  * Sets up link for a fiber based or serdes based adapter
                   1247:  *
                   1248:  * hw - Struct containing variables accessed by shared code
                   1249:  *
                   1250:  * Manipulates Physical Coding Sublayer functions in order to configure
                   1251:  * link. Assumes the hardware has been previously reset and the transmitter
                   1252:  * and receiver are not enabled.
                   1253:  *****************************************************************************/
                   1254: static int32_t
                   1255: em_setup_fiber_serdes_link(struct em_hw *hw)
                   1256: {
                   1257:     uint32_t ctrl;
                   1258:     uint32_t status;
                   1259:     uint32_t txcw = 0;
                   1260:     uint32_t i;
                   1261:     uint32_t signal = 0;
                   1262:     int32_t ret_val;
                   1263:
                   1264:     DEBUGFUNC("em_setup_fiber_serdes_link");
                   1265:
                   1266:     /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
                   1267:      * until explicitly turned off or a power cycle is performed.  A read to
                   1268:      * the register does not indicate its status.  Therefore, we ensure
                   1269:      * loopback mode is disabled during initialization.
                   1270:      */
                   1271:     if (hw->mac_type == em_82571 || hw->mac_type == em_82572)
                   1272:         E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
                   1273:
                   1274:     /* On adapters with a MAC newer than 82544, SWDP 1 will be
                   1275:      * set when the optics detect a signal. On older adapters, it will be
                   1276:      * cleared when there is a signal.  This applies to fiber media only.
                   1277:      * If we're on serdes media, adjust the output amplitude to value
                   1278:      * set in the EEPROM.
                   1279:      */
                   1280:     ctrl = E1000_READ_REG(hw, CTRL);
                   1281:     if (hw->media_type == em_media_type_fiber)
                   1282:         signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
                   1283:
                   1284:     ret_val = em_adjust_serdes_amplitude(hw);
                   1285:     if (ret_val)
                   1286:         return ret_val;
                   1287:
                   1288:     /* Take the link out of reset */
                   1289:     ctrl &= ~(E1000_CTRL_LRST);
                   1290:
                   1291:     /* Adjust VCO speed to improve BER performance */
                   1292:     ret_val = em_set_vco_speed(hw);
                   1293:     if (ret_val)
                   1294:         return ret_val;
                   1295:
                   1296:     em_config_collision_dist(hw);
                   1297:
                   1298:     /* Check for a software override of the flow control settings, and setup
                   1299:      * the device accordingly.  If auto-negotiation is enabled, then software
                   1300:      * will have to set the "PAUSE" bits to the correct value in the Tranmsit
                   1301:      * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
                   1302:      * auto-negotiation is disabled, then software will have to manually
                   1303:      * configure the two flow control enable bits in the CTRL register.
                   1304:      *
                   1305:      * The possible values of the "fc" parameter are:
                   1306:      *      0:  Flow control is completely disabled
                   1307:      *      1:  Rx flow control is enabled (we can receive pause frames, but
                   1308:      *          not send pause frames).
                   1309:      *      2:  Tx flow control is enabled (we can send pause frames but we do
                   1310:      *          not support receiving pause frames).
                   1311:      *      3:  Both Rx and TX flow control (symmetric) are enabled.
                   1312:      */
                   1313:     switch (hw->fc) {
                   1314:     case E1000_FC_NONE:
                   1315:         /* Flow control is completely disabled by a software over-ride. */
                   1316:         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
                   1317:         break;
                   1318:     case E1000_FC_RX_PAUSE:
                   1319:         /* RX Flow control is enabled and TX Flow control is disabled by a
                   1320:          * software over-ride. Since there really isn't a way to advertise
                   1321:          * that we are capable of RX Pause ONLY, we will advertise that we
                   1322:          * support both symmetric and asymmetric RX PAUSE. Later, we will
                   1323:          *  disable the adapter's ability to send PAUSE frames.
                   1324:          */
                   1325:         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
                   1326:         break;
                   1327:     case E1000_FC_TX_PAUSE:
                   1328:         /* TX Flow control is enabled, and RX Flow control is disabled, by a
                   1329:          * software over-ride.
                   1330:          */
                   1331:         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
                   1332:         break;
                   1333:     case E1000_FC_FULL:
                   1334:         /* Flow control (both RX and TX) is enabled by a software over-ride. */
                   1335:         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
                   1336:         break;
                   1337:     default:
                   1338:         DEBUGOUT("Flow control param set incorrectly\n");
                   1339:         return -E1000_ERR_CONFIG;
                   1340:         break;
                   1341:     }
                   1342:
                   1343:     /* Since auto-negotiation is enabled, take the link out of reset (the link
                   1344:      * will be in reset, because we previously reset the chip). This will
                   1345:      * restart auto-negotiation.  If auto-neogtiation is successful then the
                   1346:      * link-up status bit will be set and the flow control enable bits (RFCE
                   1347:      * and TFCE) will be set according to their negotiated value.
                   1348:      */
                   1349:     DEBUGOUT("Auto-negotiation enabled\n");
                   1350:
                   1351:     E1000_WRITE_REG(hw, TXCW, txcw);
                   1352:     E1000_WRITE_REG(hw, CTRL, ctrl);
                   1353:     E1000_WRITE_FLUSH(hw);
                   1354:
                   1355:     hw->txcw = txcw;
                   1356:     msec_delay(1);
                   1357:
                   1358:     /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
                   1359:      * indication in the Device Status Register.  Time-out if a link isn't
                   1360:      * seen in 500 milliseconds seconds (Auto-negotiation should complete in
                   1361:      * less than 500 milliseconds even if the other end is doing it in SW).
                   1362:      * For internal serdes, we just assume a signal is present, then poll.
                   1363:      */
                   1364:     if (hw->media_type == em_media_type_internal_serdes ||
                   1365:        (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
                   1366:         DEBUGOUT("Looking for Link\n");
                   1367:         for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
                   1368:             msec_delay(10);
                   1369:             status = E1000_READ_REG(hw, STATUS);
                   1370:             if (status & E1000_STATUS_LU) break;
                   1371:         }
                   1372:         if (i == (LINK_UP_TIMEOUT / 10)) {
                   1373:             DEBUGOUT("Never got a valid link from auto-neg!!!\n");
                   1374:             hw->autoneg_failed = 1;
                   1375:             /* AutoNeg failed to achieve a link, so we'll call
                   1376:              * em_check_for_link. This routine will force the link up if
                   1377:              * we detect a signal. This will allow us to communicate with
                   1378:              * non-autonegotiating link partners.
                   1379:              */
                   1380:             ret_val = em_check_for_link(hw);
                   1381:             if (ret_val) {
                   1382:                 DEBUGOUT("Error while checking for link\n");
                   1383:                 return ret_val;
                   1384:             }
                   1385:             hw->autoneg_failed = 0;
                   1386:         } else {
                   1387:             hw->autoneg_failed = 0;
                   1388:             DEBUGOUT("Valid Link Found\n");
                   1389:         }
                   1390:     } else {
                   1391:         DEBUGOUT("No Signal Detected\n");
                   1392:     }
                   1393:     return E1000_SUCCESS;
                   1394: }
                   1395:
                   1396: /******************************************************************************
                   1397: * Make sure we have a valid PHY and change PHY mode before link setup.
                   1398: *
                   1399: * hw - Struct containing variables accessed by shared code
                   1400: ******************************************************************************/
                   1401: static int32_t
                   1402: em_copper_link_preconfig(struct em_hw *hw)
                   1403: {
                   1404:     uint32_t ctrl;
                   1405:     int32_t ret_val;
                   1406:     uint16_t phy_data;
                   1407:
                   1408:     DEBUGFUNC("em_copper_link_preconfig");
                   1409:
                   1410:     ctrl = E1000_READ_REG(hw, CTRL);
                   1411:     /* With 82543, we need to force speed and duplex on the MAC equal to what
                   1412:      * the PHY speed and duplex configuration is. In addition, we need to
                   1413:      * perform a hardware reset on the PHY to take it out of reset.
                   1414:      */
                   1415:     if (hw->mac_type > em_82543) {
                   1416:         ctrl |= E1000_CTRL_SLU;
                   1417:         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
                   1418:         E1000_WRITE_REG(hw, CTRL, ctrl);
                   1419:     } else {
                   1420:         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
                   1421:         E1000_WRITE_REG(hw, CTRL, ctrl);
                   1422:         ret_val = em_phy_hw_reset(hw);
                   1423:         if (ret_val)
                   1424:             return ret_val;
                   1425:     }
                   1426:
                   1427:     /* Make sure we have a valid PHY */
                   1428:     ret_val = em_detect_gig_phy(hw);
                   1429:     if (ret_val) {
                   1430:         DEBUGOUT("Error, did not detect valid phy.\n");
                   1431:         return ret_val;
                   1432:     }
                   1433:     DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
                   1434:
                   1435:     /* Set PHY to class A mode (if necessary) */
                   1436:     ret_val = em_set_phy_mode(hw);
                   1437:     if (ret_val)
                   1438:         return ret_val;
                   1439:
                   1440:     if ((hw->mac_type == em_82545_rev_3) ||
                   1441:        (hw->mac_type == em_82546_rev_3)) {
                   1442:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
                   1443:         phy_data |= 0x00000008;
                   1444:         ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
                   1445:     }
                   1446:
                   1447:     if (hw->mac_type <= em_82543 ||
                   1448:         hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
                   1449:         hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
                   1450:         hw->phy_reset_disable = FALSE;
                   1451:
                   1452:    return E1000_SUCCESS;
                   1453: }
                   1454:
                   1455:
                   1456: /********************************************************************
                   1457: * Copper link setup for em_phy_igp series.
                   1458: *
                   1459: * hw - Struct containing variables accessed by shared code
                   1460: *********************************************************************/
                   1461: static int32_t
                   1462: em_copper_link_igp_setup(struct em_hw *hw)
                   1463: {
                   1464:     uint32_t led_ctrl;
                   1465:     int32_t ret_val;
                   1466:     uint16_t phy_data;
                   1467:
                   1468:     DEBUGFUNC("em_copper_link_igp_setup");
                   1469:
                   1470:     if (hw->phy_reset_disable)
                   1471:         return E1000_SUCCESS;
                   1472:
                   1473:     ret_val = em_phy_reset(hw);
                   1474:     if (ret_val) {
                   1475:         DEBUGOUT("Error Resetting the PHY\n");
                   1476:         return ret_val;
                   1477:     }
                   1478:
                   1479:     /* Wait 15ms for MAC to configure PHY from eeprom settings */
                   1480:     msec_delay(15);
                   1481:     if (hw->mac_type != em_ich8lan) {
                   1482:     /* Configure activity LED after PHY reset */
                   1483:     led_ctrl = E1000_READ_REG(hw, LEDCTL);
                   1484:     led_ctrl &= IGP_ACTIVITY_LED_MASK;
                   1485:     led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
                   1486:     E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
                   1487:     }
                   1488:
                   1489:     /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
                   1490:     if (hw->phy_type == em_phy_igp) {
                   1491:         /* disable lplu d3 during driver init */
                   1492:         ret_val = em_set_d3_lplu_state(hw, FALSE);
                   1493:         if (ret_val) {
                   1494:             DEBUGOUT("Error Disabling LPLU D3\n");
                   1495:             return ret_val;
                   1496:         }
                   1497:     }
                   1498:
                   1499:     /* disable lplu d0 during driver init */
                   1500:     ret_val = em_set_d0_lplu_state(hw, FALSE);
                   1501:     if (ret_val) {
                   1502:         DEBUGOUT("Error Disabling LPLU D0\n");
                   1503:         return ret_val;
                   1504:     }
                   1505:     /* Configure mdi-mdix settings */
                   1506:     ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
                   1507:     if (ret_val)
                   1508:         return ret_val;
                   1509:
                   1510:     if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
                   1511:         hw->dsp_config_state = em_dsp_config_disabled;
                   1512:         /* Force MDI for earlier revs of the IGP PHY */
                   1513:         phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
                   1514:         hw->mdix = 1;
                   1515:
                   1516:     } else {
                   1517:         hw->dsp_config_state = em_dsp_config_enabled;
                   1518:         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
                   1519:
                   1520:         switch (hw->mdix) {
                   1521:         case 1:
                   1522:             phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
                   1523:             break;
                   1524:         case 2:
                   1525:             phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
                   1526:             break;
                   1527:         case 0:
                   1528:         default:
                   1529:             phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
                   1530:             break;
                   1531:         }
                   1532:     }
                   1533:     ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
                   1534:     if (ret_val)
                   1535:         return ret_val;
                   1536:
                   1537:     /* set auto-master slave resolution settings */
                   1538:     if (hw->autoneg) {
                   1539:         em_ms_type phy_ms_setting = hw->master_slave;
                   1540:
                   1541:         if (hw->ffe_config_state == em_ffe_config_active)
                   1542:             hw->ffe_config_state = em_ffe_config_enabled;
                   1543:
                   1544:         if (hw->dsp_config_state == em_dsp_config_activated)
                   1545:             hw->dsp_config_state = em_dsp_config_enabled;
                   1546:
                   1547:         /* when autonegotiation advertisement is only 1000Mbps then we
                   1548:           * should disable SmartSpeed and enable Auto MasterSlave
                   1549:           * resolution as hardware default. */
                   1550:         if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
                   1551:             /* Disable SmartSpeed */
                   1552:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   1553:                                          &phy_data);
                   1554:             if (ret_val)
                   1555:                 return ret_val;
                   1556:             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
                   1557:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   1558:                                           phy_data);
                   1559:             if (ret_val)
                   1560:                 return ret_val;
                   1561:             /* Set auto Master/Slave resolution process */
                   1562:             ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
                   1563:             if (ret_val)
                   1564:                 return ret_val;
                   1565:             phy_data &= ~CR_1000T_MS_ENABLE;
                   1566:             ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
                   1567:             if (ret_val)
                   1568:                 return ret_val;
                   1569:         }
                   1570:
                   1571:         ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
                   1572:         if (ret_val)
                   1573:             return ret_val;
                   1574:
                   1575:         /* load defaults for future use */
                   1576:         hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
                   1577:                                         ((phy_data & CR_1000T_MS_VALUE) ?
                   1578:                                          em_ms_force_master :
                   1579:                                          em_ms_force_slave) :
                   1580:                                          em_ms_auto;
                   1581:
                   1582:         switch (phy_ms_setting) {
                   1583:         case em_ms_force_master:
                   1584:             phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
                   1585:             break;
                   1586:         case em_ms_force_slave:
                   1587:             phy_data |= CR_1000T_MS_ENABLE;
                   1588:             phy_data &= ~(CR_1000T_MS_VALUE);
                   1589:             break;
                   1590:         case em_ms_auto:
                   1591:             phy_data &= ~CR_1000T_MS_ENABLE;
                   1592:             break;
                   1593:         default:
                   1594:             break;
                   1595:         }
                   1596:         ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
                   1597:         if (ret_val)
                   1598:             return ret_val;
                   1599:     }
                   1600:
                   1601:     return E1000_SUCCESS;
                   1602: }
                   1603:
                   1604: /********************************************************************
                   1605: * Copper link setup for em_phy_gg82563 series.
                   1606: *
                   1607: * hw - Struct containing variables accessed by shared code
                   1608: *********************************************************************/
                   1609: static int32_t
                   1610: em_copper_link_ggp_setup(struct em_hw *hw)
                   1611: {
                   1612:     int32_t ret_val;
                   1613:     uint16_t phy_data;
                   1614:     uint32_t reg_data;
                   1615:
                   1616:     DEBUGFUNC("em_copper_link_ggp_setup");
                   1617:
                   1618:     if (!hw->phy_reset_disable) {
                   1619:
                   1620:         /* Enable CRS on TX for half-duplex operation. */
                   1621:         ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
                   1622:                                      &phy_data);
                   1623:         if (ret_val)
                   1624:             return ret_val;
                   1625:
                   1626:         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
                   1627:         /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
                   1628:         phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
                   1629:
                   1630:         ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
                   1631:                                       phy_data);
                   1632:         if (ret_val)
                   1633:             return ret_val;
                   1634:
                   1635:         /* Options:
                   1636:          *   MDI/MDI-X = 0 (default)
                   1637:          *   0 - Auto for all speeds
                   1638:          *   1 - MDI mode
                   1639:          *   2 - MDI-X mode
                   1640:          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
                   1641:          */
                   1642:         ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
                   1643:         if (ret_val)
                   1644:             return ret_val;
                   1645:
                   1646:         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
                   1647:
                   1648:         switch (hw->mdix) {
                   1649:         case 1:
                   1650:             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
                   1651:             break;
                   1652:         case 2:
                   1653:             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
                   1654:             break;
                   1655:         case 0:
                   1656:         default:
                   1657:             phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
                   1658:             break;
                   1659:         }
                   1660:
                   1661:         /* Options:
                   1662:          *   disable_polarity_correction = 0 (default)
                   1663:          *       Automatic Correction for Reversed Cable Polarity
                   1664:          *   0 - Disabled
                   1665:          *   1 - Enabled
                   1666:          */
                   1667:         phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
                   1668:         if (hw->disable_polarity_correction == 1)
                   1669:             phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
                   1670:         ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
                   1671:
                   1672:         if (ret_val)
                   1673:             return ret_val;
                   1674:
                   1675:         /* SW Reset the PHY so all changes take effect */
                   1676:         ret_val = em_phy_reset(hw);
                   1677:         if (ret_val) {
                   1678:             DEBUGOUT("Error Resetting the PHY\n");
                   1679:             return ret_val;
                   1680:         }
                   1681:     } /* phy_reset_disable */
                   1682:
                   1683:     if (hw->mac_type == em_80003es2lan) {
                   1684:         /* Bypass RX and TX FIFO's */
                   1685:         ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
                   1686:                                        E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
                   1687:                                        E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
                   1688:         if (ret_val)
                   1689:             return ret_val;
                   1690:
                   1691:         ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
                   1692:         if (ret_val)
                   1693:             return ret_val;
                   1694:
                   1695:         phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
                   1696:         ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
                   1697:
                   1698:         if (ret_val)
                   1699:             return ret_val;
                   1700:
                   1701:         reg_data = E1000_READ_REG(hw, CTRL_EXT);
                   1702:         reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
                   1703:         E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
                   1704:
                   1705:         ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
                   1706:                                           &phy_data);
                   1707:         if (ret_val)
                   1708:             return ret_val;
                   1709:
                   1710:         /* Do not init these registers when the HW is in IAMT mode, since the
                   1711:          * firmware will have already initialized them.  We only initialize
                   1712:          * them if the HW is not in IAMT mode.
                   1713:          */
                   1714:         if (em_check_mng_mode(hw) == FALSE) {
                   1715:             /* Enable Electrical Idle on the PHY */
                   1716:             phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
                   1717:             ret_val = em_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
                   1718:                                           phy_data);
                   1719:             if (ret_val)
                   1720:                 return ret_val;
                   1721:
                   1722:             ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
                   1723:                                          &phy_data);
                   1724:             if (ret_val)
                   1725:                 return ret_val;
                   1726:
                   1727:             phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
                   1728:             ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
                   1729:                                           phy_data);
                   1730:
                   1731:             if (ret_val)
                   1732:                 return ret_val;
                   1733:         }
                   1734:
                   1735:         /* Workaround: Disable padding in Kumeran interface in the MAC
                   1736:          * and in the PHY to avoid CRC errors.
                   1737:          */
                   1738:         ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
                   1739:                                      &phy_data);
                   1740:         if (ret_val)
                   1741:             return ret_val;
                   1742:         phy_data |= GG82563_ICR_DIS_PADDING;
                   1743:         ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
                   1744:                                       phy_data);
                   1745:         if (ret_val)
                   1746:             return ret_val;
                   1747:     }
                   1748:
                   1749:     return E1000_SUCCESS;
                   1750: }
                   1751:
                   1752: /********************************************************************
                   1753: * Copper link setup for em_phy_m88 series.
                   1754: *
                   1755: * hw - Struct containing variables accessed by shared code
                   1756: *********************************************************************/
                   1757: static int32_t
                   1758: em_copper_link_mgp_setup(struct em_hw *hw)
                   1759: {
                   1760:     int32_t ret_val;
                   1761:     uint16_t phy_data;
                   1762:
                   1763:     DEBUGFUNC("em_copper_link_mgp_setup");
                   1764:
                   1765:     if (hw->phy_reset_disable)
                   1766:         return E1000_SUCCESS;
                   1767:
                   1768:     /* Enable CRS on TX. This must be set for half-duplex operation. */
                   1769:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
                   1770:     if (ret_val)
                   1771:         return ret_val;
                   1772:
                   1773:     phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
                   1774:
                   1775:     /* Options:
                   1776:      *   MDI/MDI-X = 0 (default)
                   1777:      *   0 - Auto for all speeds
                   1778:      *   1 - MDI mode
                   1779:      *   2 - MDI-X mode
                   1780:      *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
                   1781:      */
                   1782:     phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
                   1783:
                   1784:     switch (hw->mdix) {
                   1785:     case 1:
                   1786:         phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
                   1787:         break;
                   1788:     case 2:
                   1789:         phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
                   1790:         break;
                   1791:     case 3:
                   1792:         phy_data |= M88E1000_PSCR_AUTO_X_1000T;
                   1793:         break;
                   1794:     case 0:
                   1795:     default:
                   1796:         phy_data |= M88E1000_PSCR_AUTO_X_MODE;
                   1797:         break;
                   1798:     }
                   1799:
                   1800:     /* Options:
                   1801:      *   disable_polarity_correction = 0 (default)
                   1802:      *       Automatic Correction for Reversed Cable Polarity
                   1803:      *   0 - Disabled
                   1804:      *   1 - Enabled
                   1805:      */
                   1806:     phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
                   1807:     if (hw->disable_polarity_correction == 1)
                   1808:         phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
                   1809:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
                   1810:     if (ret_val)
                   1811:         return ret_val;
                   1812:
                   1813:     if (hw->phy_revision < M88E1011_I_REV_4) {
                   1814:         /* Force TX_CLK in the Extended PHY Specific Control Register
                   1815:          * to 25MHz clock.
                   1816:          */
                   1817:         ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
                   1818:         if (ret_val)
                   1819:             return ret_val;
                   1820:
                   1821:         phy_data |= M88E1000_EPSCR_TX_CLK_25;
                   1822:
                   1823:         if ((hw->phy_revision == E1000_REVISION_2) &&
                   1824:             (hw->phy_id == M88E1111_I_PHY_ID)) {
                   1825:             /* Vidalia Phy, set the downshift counter to 5x */
                   1826:             phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
                   1827:             phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
                   1828:             ret_val = em_write_phy_reg(hw,
                   1829:                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
                   1830:             if (ret_val)
                   1831:                 return ret_val;
                   1832:         } else {
                   1833:             /* Configure Master and Slave downshift values */
                   1834:             phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
                   1835:                               M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
                   1836:             phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
                   1837:                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
                   1838:             ret_val = em_write_phy_reg(hw,
                   1839:                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
                   1840:             if (ret_val)
                   1841:                return ret_val;
                   1842:         }
                   1843:     }
                   1844:
                   1845:     /* SW Reset the PHY so all changes take effect */
                   1846:     ret_val = em_phy_reset(hw);
                   1847:     if (ret_val) {
                   1848:         DEBUGOUT("Error Resetting the PHY\n");
                   1849:         return ret_val;
                   1850:     }
                   1851:
                   1852:    return E1000_SUCCESS;
                   1853: }
                   1854:
                   1855: /********************************************************************
                   1856: * Setup auto-negotiation and flow control advertisements,
                   1857: * and then perform auto-negotiation.
                   1858: *
                   1859: * hw - Struct containing variables accessed by shared code
                   1860: *********************************************************************/
                   1861: static int32_t
                   1862: em_copper_link_autoneg(struct em_hw *hw)
                   1863: {
                   1864:     int32_t ret_val;
                   1865:     uint16_t phy_data;
                   1866:
                   1867:     DEBUGFUNC("em_copper_link_autoneg");
                   1868:
                   1869:     /* Perform some bounds checking on the hw->autoneg_advertised
                   1870:      * parameter.  If this variable is zero, then set it to the default.
                   1871:      */
                   1872:     hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
                   1873:
                   1874:     /* If autoneg_advertised is zero, we assume it was not defaulted
                   1875:      * by the calling code so we set to advertise full capability.
                   1876:      */
                   1877:     if (hw->autoneg_advertised == 0)
                   1878:         hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
                   1879:
                   1880:     /* IFE phy only supports 10/100 */
                   1881:     if (hw->phy_type == em_phy_ife)
                   1882:         hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
                   1883:
                   1884:     DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
                   1885:     ret_val = em_phy_setup_autoneg(hw);
                   1886:     if (ret_val) {
                   1887:         DEBUGOUT("Error Setting up Auto-Negotiation\n");
                   1888:         return ret_val;
                   1889:     }
                   1890:     DEBUGOUT("Restarting Auto-Neg\n");
                   1891:
                   1892:     /* Restart auto-negotiation by setting the Auto Neg Enable bit and
                   1893:      * the Auto Neg Restart bit in the PHY control register.
                   1894:      */
                   1895:     ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
                   1896:     if (ret_val)
                   1897:         return ret_val;
                   1898:
                   1899:     phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
                   1900:     ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
                   1901:     if (ret_val)
                   1902:         return ret_val;
                   1903:
                   1904:     /* Does the user want to wait for Auto-Neg to complete here, or
                   1905:      * check at a later time (for example, callback routine).
                   1906:      */
                   1907:     if (hw->wait_autoneg_complete) {
                   1908:         ret_val = em_wait_autoneg(hw);
                   1909:         if (ret_val) {
                   1910:             DEBUGOUT("Error while waiting for autoneg to complete\n");
                   1911:             return ret_val;
                   1912:         }
                   1913:     }
                   1914:
                   1915:     hw->get_link_status = TRUE;
                   1916:
                   1917:     return E1000_SUCCESS;
                   1918: }
                   1919:
                   1920: /******************************************************************************
                   1921: * Config the MAC and the PHY after link is up.
                   1922: *   1) Set up the MAC to the current PHY speed/duplex
                   1923: *      if we are on 82543.  If we
                   1924: *      are on newer silicon, we only need to configure
                   1925: *      collision distance in the Transmit Control Register.
                   1926: *   2) Set up flow control on the MAC to that established with
                   1927: *      the link partner.
                   1928: *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
                   1929: *
                   1930: * hw - Struct containing variables accessed by shared code
                   1931: ******************************************************************************/
                   1932: static int32_t
                   1933: em_copper_link_postconfig(struct em_hw *hw)
                   1934: {
                   1935:     int32_t ret_val;
                   1936:     DEBUGFUNC("em_copper_link_postconfig");
                   1937:
                   1938:     if (hw->mac_type >= em_82544) {
                   1939:         em_config_collision_dist(hw);
                   1940:     } else {
                   1941:         ret_val = em_config_mac_to_phy(hw);
                   1942:         if (ret_val) {
                   1943:             DEBUGOUT("Error configuring MAC to PHY settings\n");
                   1944:             return ret_val;
                   1945:         }
                   1946:     }
                   1947:     ret_val = em_config_fc_after_link_up(hw);
                   1948:     if (ret_val) {
                   1949:         DEBUGOUT("Error Configuring Flow Control\n");
                   1950:         return ret_val;
                   1951:     }
                   1952:
                   1953:     /* Config DSP to improve Giga link quality */
                   1954:     if (hw->phy_type == em_phy_igp) {
                   1955:         ret_val = em_config_dsp_after_link_change(hw, TRUE);
                   1956:         if (ret_val) {
                   1957:             DEBUGOUT("Error Configuring DSP after link up\n");
                   1958:             return ret_val;
                   1959:         }
                   1960:     }
                   1961:
                   1962:     return E1000_SUCCESS;
                   1963: }
                   1964:
                   1965: /******************************************************************************
                   1966: * Detects which PHY is present and setup the speed and duplex
                   1967: *
                   1968: * hw - Struct containing variables accessed by shared code
                   1969: ******************************************************************************/
                   1970: static int32_t
                   1971: em_setup_copper_link(struct em_hw *hw)
                   1972: {
                   1973:     int32_t ret_val;
                   1974:     uint16_t i;
                   1975:     uint16_t phy_data;
                   1976:     uint16_t reg_data;
                   1977:
                   1978:     DEBUGFUNC("em_setup_copper_link");
                   1979:
                   1980:     switch (hw->mac_type) {
                   1981:     case em_80003es2lan:
                   1982:     case em_ich8lan:
                   1983:         /* Set the mac to wait the maximum time between each
                   1984:          * iteration and increase the max iterations when
                   1985:          * polling the phy; this fixes erroneous timeouts at 10Mbps. */
                   1986:         ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
                   1987:         if (ret_val)
                   1988:             return ret_val;
                   1989:         ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
                   1990:         if (ret_val)
                   1991:             return ret_val;
                   1992:         reg_data |= 0x3F;
                   1993:         ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
                   1994:         if (ret_val)
                   1995:             return ret_val;
                   1996:     default:
                   1997:         break;
                   1998:     }
                   1999:
                   2000:     /* Check if it is a valid PHY and set PHY mode if necessary. */
                   2001:     ret_val = em_copper_link_preconfig(hw);
                   2002:     if (ret_val)
                   2003:         return ret_val;
                   2004:
                   2005:     switch (hw->mac_type) {
                   2006:     case em_80003es2lan:
                   2007:         /* Kumeran registers are written-only */
                   2008:         reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
                   2009:         reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
                   2010:         ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
                   2011:                                        reg_data);
                   2012:         if (ret_val)
                   2013:             return ret_val;
                   2014:         break;
                   2015:     default:
                   2016:         break;
                   2017:     }
                   2018:
                   2019:     if (hw->phy_type == em_phy_igp ||
                   2020:         hw->phy_type == em_phy_igp_3 ||
                   2021:         hw->phy_type == em_phy_igp_2) {
                   2022:         ret_val = em_copper_link_igp_setup(hw);
                   2023:         if (ret_val)
                   2024:             return ret_val;
                   2025:     } else if (hw->phy_type == em_phy_m88) {
                   2026:         ret_val = em_copper_link_mgp_setup(hw);
                   2027:         if (ret_val)
                   2028:             return ret_val;
                   2029:     } else if (hw->phy_type == em_phy_gg82563) {
                   2030:         ret_val = em_copper_link_ggp_setup(hw);
                   2031:         if (ret_val)
                   2032:             return ret_val;
                   2033:     }
                   2034:
                   2035:     if (hw->autoneg) {
                   2036:         /* Setup autoneg and flow control advertisement
                   2037:           * and perform autonegotiation */
                   2038:         ret_val = em_copper_link_autoneg(hw);
                   2039:         if (ret_val)
                   2040:             return ret_val;
                   2041:     } else {
                   2042:         /* PHY will be set to 10H, 10F, 100H,or 100F
                   2043:           * depending on value from forced_speed_duplex. */
                   2044:         DEBUGOUT("Forcing speed and duplex\n");
                   2045:         ret_val = em_phy_force_speed_duplex(hw);
                   2046:         if (ret_val) {
                   2047:             DEBUGOUT("Error Forcing Speed and Duplex\n");
                   2048:             return ret_val;
                   2049:         }
                   2050:     }
                   2051:
                   2052:     /* Check link status. Wait up to 100 microseconds for link to become
                   2053:      * valid.
                   2054:      */
                   2055:     for (i = 0; i < 10; i++) {
                   2056:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
                   2057:         if (ret_val)
                   2058:             return ret_val;
                   2059:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
                   2060:         if (ret_val)
                   2061:             return ret_val;
                   2062:
                   2063:         if (phy_data & MII_SR_LINK_STATUS) {
                   2064:             /* Config the MAC and PHY after link is up */
                   2065:             ret_val = em_copper_link_postconfig(hw);
                   2066:             if (ret_val)
                   2067:                 return ret_val;
                   2068:
                   2069:             DEBUGOUT("Valid link established!!!\n");
                   2070:             return E1000_SUCCESS;
                   2071:         }
                   2072:         usec_delay(10);
                   2073:     }
                   2074:
                   2075:     DEBUGOUT("Unable to establish link!!!\n");
                   2076:     return E1000_SUCCESS;
                   2077: }
                   2078:
                   2079: /******************************************************************************
                   2080: * Configure the MAC-to-PHY interface for 10/100Mbps
                   2081: *
                   2082: * hw - Struct containing variables accessed by shared code
                   2083: ******************************************************************************/
                   2084: static int32_t
                   2085: em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex)
                   2086: {
                   2087:     int32_t ret_val = E1000_SUCCESS;
                   2088:     uint32_t tipg;
                   2089:     uint16_t reg_data;
                   2090:
                   2091:     DEBUGFUNC("em_configure_kmrn_for_10_100");
                   2092:
                   2093:     reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
                   2094:     ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
                   2095:                                    reg_data);
                   2096:     if (ret_val)
                   2097:         return ret_val;
                   2098:
                   2099:     /* Configure Transmit Inter-Packet Gap */
                   2100:     tipg = E1000_READ_REG(hw, TIPG);
                   2101:     tipg &= ~E1000_TIPG_IPGT_MASK;
                   2102:     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
                   2103:     E1000_WRITE_REG(hw, TIPG, tipg);
                   2104:
                   2105:     ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
                   2106:
                   2107:     if (ret_val)
                   2108:         return ret_val;
                   2109:
                   2110:     if (duplex == HALF_DUPLEX)
                   2111:         reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
                   2112:     else
                   2113:         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
                   2114:
                   2115:     ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
                   2116:
                   2117:     return ret_val;
                   2118: }
                   2119:
                   2120: static int32_t
                   2121: em_configure_kmrn_for_1000(struct em_hw *hw)
                   2122: {
                   2123:     int32_t ret_val = E1000_SUCCESS;
                   2124:     uint16_t reg_data;
                   2125:     uint32_t tipg;
                   2126:
                   2127:     DEBUGFUNC("em_configure_kmrn_for_1000");
                   2128:
                   2129:     reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
                   2130:     ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
                   2131:                                    reg_data);
                   2132:     if (ret_val)
                   2133:         return ret_val;
                   2134:
                   2135:     /* Configure Transmit Inter-Packet Gap */
                   2136:     tipg = E1000_READ_REG(hw, TIPG);
                   2137:     tipg &= ~E1000_TIPG_IPGT_MASK;
                   2138:     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
                   2139:     E1000_WRITE_REG(hw, TIPG, tipg);
                   2140:
                   2141:     ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
                   2142:
                   2143:     if (ret_val)
                   2144:         return ret_val;
                   2145:
                   2146:     reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
                   2147:     ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
                   2148:
                   2149:     return ret_val;
                   2150: }
                   2151:
                   2152: /******************************************************************************
                   2153: * Configures PHY autoneg and flow control advertisement settings
                   2154: *
                   2155: * hw - Struct containing variables accessed by shared code
                   2156: ******************************************************************************/
                   2157: int32_t
                   2158: em_phy_setup_autoneg(struct em_hw *hw)
                   2159: {
                   2160:     int32_t ret_val;
                   2161:     uint16_t mii_autoneg_adv_reg;
                   2162:     uint16_t mii_1000t_ctrl_reg;
                   2163:
                   2164:     DEBUGFUNC("em_phy_setup_autoneg");
                   2165:
                   2166:     /* Read the MII Auto-Neg Advertisement Register (Address 4). */
                   2167:     ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
                   2168:     if (ret_val)
                   2169:         return ret_val;
                   2170:
                   2171:     if (hw->phy_type != em_phy_ife) {
                   2172:         /* Read the MII 1000Base-T Control Register (Address 9). */
                   2173:         ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
                   2174:         if (ret_val)
                   2175:             return ret_val;
                   2176:     } else
                   2177:         mii_1000t_ctrl_reg=0;
                   2178:
                   2179:     /* Need to parse both autoneg_advertised and fc and set up
                   2180:      * the appropriate PHY registers.  First we will parse for
                   2181:      * autoneg_advertised software override.  Since we can advertise
                   2182:      * a plethora of combinations, we need to check each bit
                   2183:      * individually.
                   2184:      */
                   2185:
                   2186:     /* First we clear all the 10/100 mb speed bits in the Auto-Neg
                   2187:      * Advertisement Register (Address 4) and the 1000 mb speed bits in
                   2188:      * the  1000Base-T Control Register (Address 9).
                   2189:      */
                   2190:     mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
                   2191:     mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
                   2192:
                   2193:     DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
                   2194:
                   2195:     /* Do we want to advertise 10 Mb Half Duplex? */
                   2196:     if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
                   2197:         DEBUGOUT("Advertise 10mb Half duplex\n");
                   2198:         mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
                   2199:     }
                   2200:
                   2201:     /* Do we want to advertise 10 Mb Full Duplex? */
                   2202:     if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
                   2203:         DEBUGOUT("Advertise 10mb Full duplex\n");
                   2204:         mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
                   2205:     }
                   2206:
                   2207:     /* Do we want to advertise 100 Mb Half Duplex? */
                   2208:     if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
                   2209:         DEBUGOUT("Advertise 100mb Half duplex\n");
                   2210:         mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
                   2211:     }
                   2212:
                   2213:     /* Do we want to advertise 100 Mb Full Duplex? */
                   2214:     if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
                   2215:         DEBUGOUT("Advertise 100mb Full duplex\n");
                   2216:         mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
                   2217:     }
                   2218:
                   2219:     /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
                   2220:     if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
                   2221:         DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
                   2222:     }
                   2223:
                   2224:     /* Do we want to advertise 1000 Mb Full Duplex? */
                   2225:     if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
                   2226:         DEBUGOUT("Advertise 1000mb Full duplex\n");
                   2227:         mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
                   2228:         if (hw->phy_type == em_phy_ife) {
                   2229:             DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
                   2230:         }
                   2231:     }
                   2232:
                   2233:     /* Check for a software override of the flow control settings, and
                   2234:      * setup the PHY advertisement registers accordingly.  If
                   2235:      * auto-negotiation is enabled, then software will have to set the
                   2236:      * "PAUSE" bits to the correct value in the Auto-Negotiation
                   2237:      * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
                   2238:      *
                   2239:      * The possible values of the "fc" parameter are:
                   2240:      *      0:  Flow control is completely disabled
                   2241:      *      1:  Rx flow control is enabled (we can receive pause frames
                   2242:      *          but not send pause frames).
                   2243:      *      2:  Tx flow control is enabled (we can send pause frames
                   2244:      *          but we do not support receiving pause frames).
                   2245:      *      3:  Both Rx and TX flow control (symmetric) are enabled.
                   2246:      *  other:  No software override.  The flow control configuration
                   2247:      *          in the EEPROM is used.
                   2248:      */
                   2249:     switch (hw->fc) {
                   2250:     case E1000_FC_NONE: /* 0 */
                   2251:         /* Flow control (RX & TX) is completely disabled by a
                   2252:          * software over-ride.
                   2253:          */
                   2254:         mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
                   2255:         break;
                   2256:     case E1000_FC_RX_PAUSE: /* 1 */
                   2257:         /* RX Flow control is enabled, and TX Flow control is
                   2258:          * disabled, by a software over-ride.
                   2259:          */
                   2260:         /* Since there really isn't a way to advertise that we are
                   2261:          * capable of RX Pause ONLY, we will advertise that we
                   2262:          * support both symmetric and asymmetric RX PAUSE.  Later
                   2263:          * (in em_config_fc_after_link_up) we will disable the
                   2264:          *hw's ability to send PAUSE frames.
                   2265:          */
                   2266:         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
                   2267:         break;
                   2268:     case E1000_FC_TX_PAUSE: /* 2 */
                   2269:         /* TX Flow control is enabled, and RX Flow control is
                   2270:          * disabled, by a software over-ride.
                   2271:          */
                   2272:         mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
                   2273:         mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
                   2274:         break;
                   2275:     case E1000_FC_FULL: /* 3 */
                   2276:         /* Flow control (both RX and TX) is enabled by a software
                   2277:          * over-ride.
                   2278:          */
                   2279:         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
                   2280:         break;
                   2281:     default:
                   2282:         DEBUGOUT("Flow control param set incorrectly\n");
                   2283:         return -E1000_ERR_CONFIG;
                   2284:     }
                   2285:
                   2286:     ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
                   2287:     if (ret_val)
                   2288:         return ret_val;
                   2289:
                   2290:     DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
                   2291:
                   2292:     if (hw->phy_type != em_phy_ife) {
                   2293:         ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
                   2294:         if (ret_val)
                   2295:             return ret_val;
                   2296:     }
                   2297:
                   2298:     return E1000_SUCCESS;
                   2299: }
                   2300:
                   2301: /******************************************************************************
                   2302: * Force PHY speed and duplex settings to hw->forced_speed_duplex
                   2303: *
                   2304: * hw - Struct containing variables accessed by shared code
                   2305: ******************************************************************************/
                   2306: static int32_t
                   2307: em_phy_force_speed_duplex(struct em_hw *hw)
                   2308: {
                   2309:     uint32_t ctrl;
                   2310:     int32_t ret_val;
                   2311:     uint16_t mii_ctrl_reg;
                   2312:     uint16_t mii_status_reg;
                   2313:     uint16_t phy_data;
                   2314:     uint16_t i;
                   2315:
                   2316:     DEBUGFUNC("em_phy_force_speed_duplex");
                   2317:
                   2318:     /* Turn off Flow control if we are forcing speed and duplex. */
                   2319:     hw->fc = E1000_FC_NONE;
                   2320:
                   2321:     DEBUGOUT1("hw->fc = %d\n", hw->fc);
                   2322:
                   2323:     /* Read the Device Control Register. */
                   2324:     ctrl = E1000_READ_REG(hw, CTRL);
                   2325:
                   2326:     /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
                   2327:     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
                   2328:     ctrl &= ~(DEVICE_SPEED_MASK);
                   2329:
                   2330:     /* Clear the Auto Speed Detect Enable bit. */
                   2331:     ctrl &= ~E1000_CTRL_ASDE;
                   2332:
                   2333:     /* Read the MII Control Register. */
                   2334:     ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
                   2335:     if (ret_val)
                   2336:         return ret_val;
                   2337:
                   2338:     /* We need to disable autoneg in order to force link and duplex. */
                   2339:
                   2340:     mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
                   2341:
                   2342:     /* Are we forcing Full or Half Duplex? */
                   2343:     if (hw->forced_speed_duplex == em_100_full ||
                   2344:         hw->forced_speed_duplex == em_10_full) {
                   2345:         /* We want to force full duplex so we SET the full duplex bits in the
                   2346:          * Device and MII Control Registers.
                   2347:          */
                   2348:         ctrl |= E1000_CTRL_FD;
                   2349:         mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
                   2350:         DEBUGOUT("Full Duplex\n");
                   2351:     } else {
                   2352:         /* We want to force half duplex so we CLEAR the full duplex bits in
                   2353:          * the Device and MII Control Registers.
                   2354:          */
                   2355:         ctrl &= ~E1000_CTRL_FD;
                   2356:         mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
                   2357:         DEBUGOUT("Half Duplex\n");
                   2358:     }
                   2359:
                   2360:     /* Are we forcing 100Mbps??? */
                   2361:     if (hw->forced_speed_duplex == em_100_full ||
                   2362:        hw->forced_speed_duplex == em_100_half) {
                   2363:         /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
                   2364:         ctrl |= E1000_CTRL_SPD_100;
                   2365:         mii_ctrl_reg |= MII_CR_SPEED_100;
                   2366:         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
                   2367:         DEBUGOUT("Forcing 100mb ");
                   2368:     } else {
                   2369:         /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
                   2370:         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
                   2371:         mii_ctrl_reg |= MII_CR_SPEED_10;
                   2372:         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
                   2373:         DEBUGOUT("Forcing 10mb ");
                   2374:     }
                   2375:
                   2376:     em_config_collision_dist(hw);
                   2377:
                   2378:     /* Write the configured values back to the Device Control Reg. */
                   2379:     E1000_WRITE_REG(hw, CTRL, ctrl);
                   2380:
                   2381:     if ((hw->phy_type == em_phy_m88) ||
                   2382:         (hw->phy_type == em_phy_gg82563)) {
                   2383:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
                   2384:         if (ret_val)
                   2385:             return ret_val;
                   2386:
                   2387:         /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
                   2388:          * forced whenever speed are duplex are forced.
                   2389:          */
                   2390:         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
                   2391:         ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
                   2392:         if (ret_val)
                   2393:             return ret_val;
                   2394:
                   2395:         DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
                   2396:
                   2397:         /* Need to reset the PHY or these changes will be ignored */
                   2398:         mii_ctrl_reg |= MII_CR_RESET;
                   2399:     /* Disable MDI-X support for 10/100 */
                   2400:     } else if (hw->phy_type == em_phy_ife) {
                   2401:         ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
                   2402:         if (ret_val)
                   2403:             return ret_val;
                   2404:
                   2405:         phy_data &= ~IFE_PMC_AUTO_MDIX;
                   2406:         phy_data &= ~IFE_PMC_FORCE_MDIX;
                   2407:
                   2408:         ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
                   2409:         if (ret_val)
                   2410:             return ret_val;
                   2411:     } else {
                   2412:         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
                   2413:          * forced whenever speed or duplex are forced.
                   2414:          */
                   2415:         ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
                   2416:         if (ret_val)
                   2417:             return ret_val;
                   2418:
                   2419:         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
                   2420:         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
                   2421:
                   2422:         ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
                   2423:         if (ret_val)
                   2424:             return ret_val;
                   2425:     }
                   2426:
                   2427:     /* Write back the modified PHY MII control register. */
                   2428:     ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
                   2429:     if (ret_val)
                   2430:         return ret_val;
                   2431:
                   2432:     usec_delay(1);
                   2433:
                   2434:     /* The wait_autoneg_complete flag may be a little misleading here.
                   2435:      * Since we are forcing speed and duplex, Auto-Neg is not enabled.
                   2436:      * But we do want to delay for a period while forcing only so we
                   2437:      * don't generate false No Link messages.  So we will wait here
                   2438:      * only if the user has set wait_autoneg_complete to 1, which is
                   2439:      * the default.
                   2440:      */
                   2441:     if (hw->wait_autoneg_complete) {
                   2442:         /* We will wait for autoneg to complete. */
                   2443:         DEBUGOUT("Waiting for forced speed/duplex link.\n");
                   2444:         mii_status_reg = 0;
                   2445:
                   2446:         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
                   2447:         for (i = PHY_FORCE_TIME; i > 0; i--) {
                   2448:             /* Read the MII Status Register and wait for Auto-Neg Complete bit
                   2449:              * to be set.
                   2450:              */
                   2451:             ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   2452:             if (ret_val)
                   2453:                 return ret_val;
                   2454:
                   2455:             ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   2456:             if (ret_val)
                   2457:                 return ret_val;
                   2458:
                   2459:             if (mii_status_reg & MII_SR_LINK_STATUS) break;
                   2460:             msec_delay(100);
                   2461:         }
                   2462:         if ((i == 0) &&
                   2463:            ((hw->phy_type == em_phy_m88) ||
                   2464:             (hw->phy_type == em_phy_gg82563))) {
                   2465:             /* We didn't get link.  Reset the DSP and wait again for link. */
                   2466:             ret_val = em_phy_reset_dsp(hw);
                   2467:             if (ret_val) {
                   2468:                 DEBUGOUT("Error Resetting PHY DSP\n");
                   2469:                 return ret_val;
                   2470:             }
                   2471:         }
                   2472:         /* This loop will early-out if the link condition has been met.  */
                   2473:         for (i = PHY_FORCE_TIME; i > 0; i--) {
                   2474:             if (mii_status_reg & MII_SR_LINK_STATUS) break;
                   2475:             msec_delay(100);
                   2476:             /* Read the MII Status Register and wait for Auto-Neg Complete bit
                   2477:              * to be set.
                   2478:              */
                   2479:             ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   2480:             if (ret_val)
                   2481:                 return ret_val;
                   2482:
                   2483:             ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   2484:             if (ret_val)
                   2485:                 return ret_val;
                   2486:         }
                   2487:     }
                   2488:
                   2489:     if (hw->phy_type == em_phy_m88) {
                   2490:         /* Because we reset the PHY above, we need to re-force TX_CLK in the
                   2491:          * Extended PHY Specific Control Register to 25MHz clock.  This value
                   2492:          * defaults back to a 2.5MHz clock when the PHY is reset.
                   2493:          */
                   2494:         ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
                   2495:         if (ret_val)
                   2496:             return ret_val;
                   2497:
                   2498:         phy_data |= M88E1000_EPSCR_TX_CLK_25;
                   2499:         ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
                   2500:         if (ret_val)
                   2501:             return ret_val;
                   2502:
                   2503:         /* In addition, because of the s/w reset above, we need to enable CRS on
                   2504:          * TX.  This must be set for both full and half duplex operation.
                   2505:          */
                   2506:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
                   2507:         if (ret_val)
                   2508:             return ret_val;
                   2509:
                   2510:         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
                   2511:         ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
                   2512:         if (ret_val)
                   2513:             return ret_val;
                   2514:
                   2515:         if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
                   2516:             (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full ||
                   2517:              hw->forced_speed_duplex == em_10_half)) {
                   2518:             ret_val = em_polarity_reversal_workaround(hw);
                   2519:             if (ret_val)
                   2520:                 return ret_val;
                   2521:         }
                   2522:     } else if (hw->phy_type == em_phy_gg82563) {
                   2523:         /* The TX_CLK of the Extended PHY Specific Control Register defaults
                   2524:          * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
                   2525:          * we're not in a forced 10/duplex configuration. */
                   2526:         ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
                   2527:         if (ret_val)
                   2528:             return ret_val;
                   2529:
                   2530:         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
                   2531:         if ((hw->forced_speed_duplex == em_10_full) ||
                   2532:             (hw->forced_speed_duplex == em_10_half))
                   2533:             phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
                   2534:         else
                   2535:             phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
                   2536:
                   2537:         /* Also due to the reset, we need to enable CRS on Tx. */
                   2538:         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
                   2539:
                   2540:         ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
                   2541:         if (ret_val)
                   2542:             return ret_val;
                   2543:     }
                   2544:     return E1000_SUCCESS;
                   2545: }
                   2546:
                   2547: /******************************************************************************
                   2548: * Sets the collision distance in the Transmit Control register
                   2549: *
                   2550: * hw - Struct containing variables accessed by shared code
                   2551: *
                   2552: * Link should have been established previously. Reads the speed and duplex
                   2553: * information from the Device Status register.
                   2554: ******************************************************************************/
                   2555: void
                   2556: em_config_collision_dist(struct em_hw *hw)
                   2557: {
                   2558:     uint32_t tctl, coll_dist;
                   2559:
                   2560:     DEBUGFUNC("em_config_collision_dist");
                   2561:
                   2562:     if (hw->mac_type < em_82543)
                   2563:         coll_dist = E1000_COLLISION_DISTANCE_82542;
                   2564:     else
                   2565:         coll_dist = E1000_COLLISION_DISTANCE;
                   2566:
                   2567:     tctl = E1000_READ_REG(hw, TCTL);
                   2568:
                   2569:     tctl &= ~E1000_TCTL_COLD;
                   2570:     tctl |= coll_dist << E1000_COLD_SHIFT;
                   2571:
                   2572:     E1000_WRITE_REG(hw, TCTL, tctl);
                   2573:     E1000_WRITE_FLUSH(hw);
                   2574: }
                   2575:
                   2576: /******************************************************************************
                   2577: * Sets MAC speed and duplex settings to reflect the those in the PHY
                   2578: *
                   2579: * hw - Struct containing variables accessed by shared code
                   2580: * mii_reg - data to write to the MII control register
                   2581: *
                   2582: * The contents of the PHY register containing the needed information need to
                   2583: * be passed in.
                   2584: ******************************************************************************/
                   2585: static int32_t
                   2586: em_config_mac_to_phy(struct em_hw *hw)
                   2587: {
                   2588:     uint32_t ctrl;
                   2589:     int32_t ret_val;
                   2590:     uint16_t phy_data;
                   2591:
                   2592:     DEBUGFUNC("em_config_mac_to_phy");
                   2593:
                   2594:     /* 82544 or newer MAC, Auto Speed Detection takes care of
                   2595:     * MAC speed/duplex configuration.*/
                   2596:     if (hw->mac_type >= em_82544)
                   2597:         return E1000_SUCCESS;
                   2598:
                   2599:     /* Read the Device Control Register and set the bits to Force Speed
                   2600:      * and Duplex.
                   2601:      */
                   2602:     ctrl = E1000_READ_REG(hw, CTRL);
                   2603:     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
                   2604:     ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
                   2605:
                   2606:     /* Set up duplex in the Device Control and Transmit Control
                   2607:      * registers depending on negotiated values.
                   2608:      */
                   2609:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
                   2610:     if (ret_val)
                   2611:         return ret_val;
                   2612:
                   2613:     if (phy_data & M88E1000_PSSR_DPLX)
                   2614:         ctrl |= E1000_CTRL_FD;
                   2615:     else
                   2616:         ctrl &= ~E1000_CTRL_FD;
                   2617:
                   2618:     em_config_collision_dist(hw);
                   2619:
                   2620:     /* Set up speed in the Device Control register depending on
                   2621:      * negotiated values.
                   2622:      */
                   2623:     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
                   2624:         ctrl |= E1000_CTRL_SPD_1000;
                   2625:     else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
                   2626:         ctrl |= E1000_CTRL_SPD_100;
                   2627:
                   2628:     /* Write the configured values back to the Device Control Reg. */
                   2629:     E1000_WRITE_REG(hw, CTRL, ctrl);
                   2630:     return E1000_SUCCESS;
                   2631: }
                   2632:
                   2633: /******************************************************************************
                   2634:  * Forces the MAC's flow control settings.
                   2635:  *
                   2636:  * hw - Struct containing variables accessed by shared code
                   2637:  *
                   2638:  * Sets the TFCE and RFCE bits in the device control register to reflect
                   2639:  * the adapter settings. TFCE and RFCE need to be explicitly set by
                   2640:  * software when a Copper PHY is used because autonegotiation is managed
                   2641:  * by the PHY rather than the MAC. Software must also configure these
                   2642:  * bits when link is forced on a fiber connection.
                   2643:  *****************************************************************************/
                   2644: int32_t
                   2645: em_force_mac_fc(struct em_hw *hw)
                   2646: {
                   2647:     uint32_t ctrl;
                   2648:
                   2649:     DEBUGFUNC("em_force_mac_fc");
                   2650:
                   2651:     /* Get the current configuration of the Device Control Register */
                   2652:     ctrl = E1000_READ_REG(hw, CTRL);
                   2653:
                   2654:     /* Because we didn't get link via the internal auto-negotiation
                   2655:      * mechanism (we either forced link or we got link via PHY
                   2656:      * auto-neg), we have to manually enable/disable transmit an
                   2657:      * receive flow control.
                   2658:      *
                   2659:      * The "Case" statement below enables/disable flow control
                   2660:      * according to the "hw->fc" parameter.
                   2661:      *
                   2662:      * The possible values of the "fc" parameter are:
                   2663:      *      0:  Flow control is completely disabled
                   2664:      *      1:  Rx flow control is enabled (we can receive pause
                   2665:      *          frames but not send pause frames).
                   2666:      *      2:  Tx flow control is enabled (we can send pause frames
                   2667:      *          frames but we do not receive pause frames).
                   2668:      *      3:  Both Rx and TX flow control (symmetric) is enabled.
                   2669:      *  other:  No other values should be possible at this point.
                   2670:      */
                   2671:
                   2672:     switch (hw->fc) {
                   2673:     case E1000_FC_NONE:
                   2674:         ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
                   2675:         break;
                   2676:     case E1000_FC_RX_PAUSE:
                   2677:         ctrl &= (~E1000_CTRL_TFCE);
                   2678:         ctrl |= E1000_CTRL_RFCE;
                   2679:         break;
                   2680:     case E1000_FC_TX_PAUSE:
                   2681:         ctrl &= (~E1000_CTRL_RFCE);
                   2682:         ctrl |= E1000_CTRL_TFCE;
                   2683:         break;
                   2684:     case E1000_FC_FULL:
                   2685:         ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
                   2686:         break;
                   2687:     default:
                   2688:         DEBUGOUT("Flow control param set incorrectly\n");
                   2689:         return -E1000_ERR_CONFIG;
                   2690:     }
                   2691:
                   2692:     /* Disable TX Flow Control for 82542 (rev 2.0) */
                   2693:     if (hw->mac_type == em_82542_rev2_0)
                   2694:         ctrl &= (~E1000_CTRL_TFCE);
                   2695:
                   2696:     E1000_WRITE_REG(hw, CTRL, ctrl);
                   2697:     return E1000_SUCCESS;
                   2698: }
                   2699:
                   2700: /******************************************************************************
                   2701:  * Configures flow control settings after link is established
                   2702:  *
                   2703:  * hw - Struct containing variables accessed by shared code
                   2704:  *
                   2705:  * Should be called immediately after a valid link has been established.
                   2706:  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
                   2707:  * and autonegotiation is enabled, the MAC flow control settings will be set
                   2708:  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
                   2709:  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
                   2710:  *****************************************************************************/
                   2711: STATIC int32_t
                   2712: em_config_fc_after_link_up(struct em_hw *hw)
                   2713: {
                   2714:     int32_t ret_val;
                   2715:     uint16_t mii_status_reg;
                   2716:     uint16_t mii_nway_adv_reg;
                   2717:     uint16_t mii_nway_lp_ability_reg;
                   2718:     uint16_t speed;
                   2719:     uint16_t duplex;
                   2720:
                   2721:     DEBUGFUNC("em_config_fc_after_link_up");
                   2722:
                   2723:     /* Check for the case where we have fiber media and auto-neg failed
                   2724:      * so we had to force link.  In this case, we need to force the
                   2725:      * configuration of the MAC to match the "fc" parameter.
                   2726:      */
                   2727:     if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
                   2728:         ((hw->media_type == em_media_type_internal_serdes) &&
                   2729:          (hw->autoneg_failed)) ||
                   2730:         ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
                   2731:         ret_val = em_force_mac_fc(hw);
                   2732:         if (ret_val) {
                   2733:             DEBUGOUT("Error forcing flow control settings\n");
                   2734:             return ret_val;
                   2735:         }
                   2736:     }
                   2737:
                   2738:     /* Check for the case where we have copper media and auto-neg is
                   2739:      * enabled.  In this case, we need to check and see if Auto-Neg
                   2740:      * has completed, and if so, how the PHY and link partner has
                   2741:      * flow control configured.
                   2742:      */
                   2743:     if ((hw->media_type == em_media_type_copper) && hw->autoneg) {
                   2744:         /* Read the MII Status Register and check to see if AutoNeg
                   2745:          * has completed.  We read this twice because this reg has
                   2746:          * some "sticky" (latched) bits.
                   2747:          */
                   2748:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   2749:         if (ret_val)
                   2750:             return ret_val;
                   2751:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   2752:         if (ret_val)
                   2753:             return ret_val;
                   2754:
                   2755:         if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
                   2756:             /* The AutoNeg process has completed, so we now need to
                   2757:              * read both the Auto Negotiation Advertisement Register
                   2758:              * (Address 4) and the Auto_Negotiation Base Page Ability
                   2759:              * Register (Address 5) to determine how flow control was
                   2760:              * negotiated.
                   2761:              */
                   2762:             ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
                   2763:                                          &mii_nway_adv_reg);
                   2764:             if (ret_val)
                   2765:                 return ret_val;
                   2766:             ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
                   2767:                                          &mii_nway_lp_ability_reg);
                   2768:             if (ret_val)
                   2769:                 return ret_val;
                   2770:
                   2771:             /* Two bits in the Auto Negotiation Advertisement Register
                   2772:              * (Address 4) and two bits in the Auto Negotiation Base
                   2773:              * Page Ability Register (Address 5) determine flow control
                   2774:              * for both the PHY and the link partner.  The following
                   2775:              * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
                   2776:              * 1999, describes these PAUSE resolution bits and how flow
                   2777:              * control is determined based upon these settings.
                   2778:              * NOTE:  DC = Don't Care
                   2779:              *
                   2780:              *   LOCAL DEVICE  |   LINK PARTNER
                   2781:              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
                   2782:              *-------|---------|-------|---------|--------------------
                   2783:              *   0   |    0    |  DC   |   DC    | em_fc_none
                   2784:              *   0   |    1    |   0   |   DC    | em_fc_none
                   2785:              *   0   |    1    |   1   |    0    | em_fc_none
                   2786:              *   0   |    1    |   1   |    1    | em_fc_tx_pause
                   2787:              *   1   |    0    |   0   |   DC    | em_fc_none
                   2788:              *   1   |   DC    |   1   |   DC    | em_fc_full
                   2789:              *   1   |    1    |   0   |    0    | em_fc_none
                   2790:              *   1   |    1    |   0   |    1    | em_fc_rx_pause
                   2791:              *
                   2792:              */
                   2793:             /* Are both PAUSE bits set to 1?  If so, this implies
                   2794:              * Symmetric Flow Control is enabled at both ends.  The
                   2795:              * ASM_DIR bits are irrelevant per the spec.
                   2796:              *
                   2797:              * For Symmetric Flow Control:
                   2798:              *
                   2799:              *   LOCAL DEVICE  |   LINK PARTNER
                   2800:              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
                   2801:              *-------|---------|-------|---------|--------------------
                   2802:              *   1   |   DC    |   1   |   DC    | em_fc_full
                   2803:              *
                   2804:              */
                   2805:             if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                   2806:                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
                   2807:                 /* Now we need to check if the user selected RX ONLY
                   2808:                  * of pause frames.  In this case, we had to advertise
                   2809:                  * FULL flow control because we could not advertise RX
                   2810:                  * ONLY. Hence, we must now check to see if we need to
                   2811:                  * turn OFF  the TRANSMISSION of PAUSE frames.
                   2812:                  */
                   2813:                 if (hw->original_fc == E1000_FC_FULL) {
                   2814:                     hw->fc = E1000_FC_FULL;
                   2815:                     DEBUGOUT("Flow Control = FULL.\n");
                   2816:                 } else {
                   2817:                     hw->fc = E1000_FC_RX_PAUSE;
                   2818:                     DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
                   2819:                 }
                   2820:             }
                   2821:             /* For receiving PAUSE frames ONLY.
                   2822:              *
                   2823:              *   LOCAL DEVICE  |   LINK PARTNER
                   2824:              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
                   2825:              *-------|---------|-------|---------|--------------------
                   2826:              *   0   |    1    |   1   |    1    | em_fc_tx_pause
                   2827:              *
                   2828:              */
                   2829:             else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                   2830:                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                   2831:                      (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                   2832:                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
                   2833:                 hw->fc = E1000_FC_TX_PAUSE;
                   2834:                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
                   2835:             }
                   2836:             /* For transmitting PAUSE frames ONLY.
                   2837:              *
                   2838:              *   LOCAL DEVICE  |   LINK PARTNER
                   2839:              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
                   2840:              *-------|---------|-------|---------|--------------------
                   2841:              *   1   |    1    |   0   |    1    | em_fc_rx_pause
                   2842:              *
                   2843:              */
                   2844:             else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                   2845:                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                   2846:                      !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                   2847:                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
                   2848:                 hw->fc = E1000_FC_RX_PAUSE;
                   2849:                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
                   2850:             }
                   2851:             /* Per the IEEE spec, at this point flow control should be
                   2852:              * disabled.  However, we want to consider that we could
                   2853:              * be connected to a legacy switch that doesn't advertise
                   2854:              * desired flow control, but can be forced on the link
                   2855:              * partner.  So if we advertised no flow control, that is
                   2856:              * what we will resolve to.  If we advertised some kind of
                   2857:              * receive capability (Rx Pause Only or Full Flow Control)
                   2858:              * and the link partner advertised none, we will configure
                   2859:              * ourselves to enable Rx Flow Control only.  We can do
                   2860:              * this safely for two reasons:  If the link partner really
                   2861:              * didn't want flow control enabled, and we enable Rx, no
                   2862:              * harm done since we won't be receiving any PAUSE frames
                   2863:              * anyway.  If the intent on the link partner was to have
                   2864:              * flow control enabled, then by us enabling RX only, we
                   2865:              * can at least receive pause frames and process them.
                   2866:              * This is a good idea because in most cases, since we are
                   2867:              * predominantly a server NIC, more times than not we will
                   2868:              * be asked to delay transmission of packets than asking
                   2869:              * our link partner to pause transmission of frames.
                   2870:              */
                   2871:             else if ((hw->original_fc == E1000_FC_NONE||
                   2872:                       hw->original_fc == E1000_FC_TX_PAUSE) ||
                   2873:                       hw->fc_strict_ieee) {
                   2874:                 hw->fc = E1000_FC_NONE;
                   2875:                 DEBUGOUT("Flow Control = NONE.\n");
                   2876:             } else {
                   2877:                 hw->fc = E1000_FC_RX_PAUSE;
                   2878:                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
                   2879:             }
                   2880:
                   2881:             /* Now we need to do one last check...  If we auto-
                   2882:              * negotiated to HALF DUPLEX, flow control should not be
                   2883:              * enabled per IEEE 802.3 spec.
                   2884:              */
                   2885:             ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
                   2886:             if (ret_val) {
                   2887:                 DEBUGOUT("Error getting link speed and duplex\n");
                   2888:                 return ret_val;
                   2889:             }
                   2890:
                   2891:             if (duplex == HALF_DUPLEX)
                   2892:                 hw->fc = E1000_FC_NONE;
                   2893:
                   2894:             /* Now we call a subroutine to actually force the MAC
                   2895:              * controller to use the correct flow control settings.
                   2896:              */
                   2897:             ret_val = em_force_mac_fc(hw);
                   2898:             if (ret_val) {
                   2899:                 DEBUGOUT("Error forcing flow control settings\n");
                   2900:                 return ret_val;
                   2901:             }
                   2902:         } else {
                   2903:             DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
                   2904:         }
                   2905:     }
                   2906:     return E1000_SUCCESS;
                   2907: }
                   2908:
                   2909: /******************************************************************************
                   2910:  * Checks to see if the link status of the hardware has changed.
                   2911:  *
                   2912:  * hw - Struct containing variables accessed by shared code
                   2913:  *
                   2914:  * Called by any function that needs to check the link status of the adapter.
                   2915:  *****************************************************************************/
                   2916: int32_t
                   2917: em_check_for_link(struct em_hw *hw)
                   2918: {
                   2919:     uint32_t rxcw = 0;
                   2920:     uint32_t ctrl;
                   2921:     uint32_t status;
                   2922:     uint32_t rctl;
                   2923:     uint32_t icr;
                   2924:     uint32_t signal = 0;
                   2925:     int32_t ret_val;
                   2926:     uint16_t phy_data;
                   2927:
                   2928:     DEBUGFUNC("em_check_for_link");
                   2929:
                   2930:     ctrl = E1000_READ_REG(hw, CTRL);
                   2931:     status = E1000_READ_REG(hw, STATUS);
                   2932:
                   2933:     /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
                   2934:      * set when the optics detect a signal. On older adapters, it will be
                   2935:      * cleared when there is a signal.  This applies to fiber media only.
                   2936:      */
                   2937:     if ((hw->media_type == em_media_type_fiber) ||
                   2938:         (hw->media_type == em_media_type_internal_serdes)) {
                   2939:         rxcw = E1000_READ_REG(hw, RXCW);
                   2940:
                   2941:         if (hw->media_type == em_media_type_fiber) {
                   2942:             signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
                   2943:             if (status & E1000_STATUS_LU)
                   2944:                 hw->get_link_status = FALSE;
                   2945:         }
                   2946:     }
                   2947:
                   2948:     /* If we have a copper PHY then we only want to go out to the PHY
                   2949:      * registers to see if Auto-Neg has completed and/or if our link
                   2950:      * status has changed.  The get_link_status flag will be set if we
                   2951:      * receive a Link Status Change interrupt or we have Rx Sequence
                   2952:      * Errors.
                   2953:      */
                   2954:     if ((hw->media_type == em_media_type_copper) && hw->get_link_status) {
                   2955:         /* First we want to see if the MII Status Register reports
                   2956:          * link.  If so, then we want to get the current speed/duplex
                   2957:          * of the PHY.
                   2958:          * Read the register twice since the link bit is sticky.
                   2959:          */
                   2960:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
                   2961:         if (ret_val)
                   2962:             return ret_val;
                   2963:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
                   2964:         if (ret_val)
                   2965:             return ret_val;
                   2966:
                   2967:         if (phy_data & MII_SR_LINK_STATUS) {
                   2968:             hw->get_link_status = FALSE;
                   2969:             /* Check if there was DownShift, must be checked immediately after
                   2970:              * link-up */
                   2971:             em_check_downshift(hw);
                   2972:
                   2973:             /* If we are on 82544 or 82543 silicon and speed/duplex
                   2974:              * are forced to 10H or 10F, then we will implement the polarity
                   2975:              * reversal workaround.  We disable interrupts first, and upon
                   2976:              * returning, place the devices interrupt state to its previous
                   2977:              * value except for the link status change interrupt which will
                   2978:              * happen due to the execution of this workaround.
                   2979:              */
                   2980:
                   2981:             if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
                   2982:                 (!hw->autoneg) &&
                   2983:                 (hw->forced_speed_duplex == em_10_full ||
                   2984:                  hw->forced_speed_duplex == em_10_half)) {
                   2985:                 E1000_WRITE_REG(hw, IMC, 0xffffffff);
                   2986:                 ret_val = em_polarity_reversal_workaround(hw);
                   2987:                 icr = E1000_READ_REG(hw, ICR);
                   2988:                 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
                   2989:                 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
                   2990:             }
                   2991:
                   2992:         } else {
                   2993:             /* No link detected */
                   2994:             em_config_dsp_after_link_change(hw, FALSE);
                   2995:             return 0;
                   2996:         }
                   2997:
                   2998:         /* If we are forcing speed/duplex, then we simply return since
                   2999:          * we have already determined whether we have link or not.
                   3000:          */
                   3001:         if (!hw->autoneg) return -E1000_ERR_CONFIG;
                   3002:
                   3003:         /* optimize the dsp settings for the igp phy */
                   3004:         em_config_dsp_after_link_change(hw, TRUE);
                   3005:
                   3006:         /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
                   3007:          * have Si on board that is 82544 or newer, Auto
                   3008:          * Speed Detection takes care of MAC speed/duplex
                   3009:          * configuration.  So we only need to configure Collision
                   3010:          * Distance in the MAC.  Otherwise, we need to force
                   3011:          * speed/duplex on the MAC to the current PHY speed/duplex
                   3012:          * settings.
                   3013:          */
                   3014:         if (hw->mac_type >= em_82544)
                   3015:             em_config_collision_dist(hw);
                   3016:         else {
                   3017:             ret_val = em_config_mac_to_phy(hw);
                   3018:             if (ret_val) {
                   3019:                 DEBUGOUT("Error configuring MAC to PHY settings\n");
                   3020:                 return ret_val;
                   3021:             }
                   3022:         }
                   3023:
                   3024:         /* Configure Flow Control now that Auto-Neg has completed. First, we
                   3025:          * need to restore the desired flow control settings because we may
                   3026:          * have had to re-autoneg with a different link partner.
                   3027:          */
                   3028:         ret_val = em_config_fc_after_link_up(hw);
                   3029:         if (ret_val) {
                   3030:             DEBUGOUT("Error configuring flow control\n");
                   3031:             return ret_val;
                   3032:         }
                   3033:
                   3034:         /* At this point we know that we are on copper and we have
                   3035:          * auto-negotiated link.  These are conditions for checking the link
                   3036:          * partner capability register.  We use the link speed to determine if
                   3037:          * TBI compatibility needs to be turned on or off.  If the link is not
                   3038:          * at gigabit speed, then TBI compatibility is not needed.  If we are
                   3039:          * at gigabit speed, we turn on TBI compatibility.
                   3040:          */
                   3041:         if (hw->tbi_compatibility_en) {
                   3042:             uint16_t speed, duplex;
                   3043:             ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
                   3044:             if (ret_val) {
                   3045:                 DEBUGOUT("Error getting link speed and duplex\n");
                   3046:                 return ret_val;
                   3047:             }
                   3048:             if (speed != SPEED_1000) {
                   3049:                 /* If link speed is not set to gigabit speed, we do not need
                   3050:                  * to enable TBI compatibility.
                   3051:                  */
                   3052:                 if (hw->tbi_compatibility_on) {
                   3053:                     /* If we previously were in the mode, turn it off. */
                   3054:                     rctl = E1000_READ_REG(hw, RCTL);
                   3055:                     rctl &= ~E1000_RCTL_SBP;
                   3056:                     E1000_WRITE_REG(hw, RCTL, rctl);
                   3057:                     hw->tbi_compatibility_on = FALSE;
                   3058:                 }
                   3059:             } else {
                   3060:                 /* If TBI compatibility is was previously off, turn it on. For
                   3061:                  * compatibility with a TBI link partner, we will store bad
                   3062:                  * packets. Some frames have an additional byte on the end and
                   3063:                  * will look like CRC errors to to the hardware.
                   3064:                  */
                   3065:                 if (!hw->tbi_compatibility_on) {
                   3066:                     hw->tbi_compatibility_on = TRUE;
                   3067:                     rctl = E1000_READ_REG(hw, RCTL);
                   3068:                     rctl |= E1000_RCTL_SBP;
                   3069:                     E1000_WRITE_REG(hw, RCTL, rctl);
                   3070:                 }
                   3071:             }
                   3072:         }
                   3073:     }
                   3074:     /* If we don't have link (auto-negotiation failed or link partner cannot
                   3075:      * auto-negotiate), the cable is plugged in (we have signal), and our
                   3076:      * link partner is not trying to auto-negotiate with us (we are receiving
                   3077:      * idles or data), we need to force link up. We also need to give
                   3078:      * auto-negotiation time to complete, in case the cable was just plugged
                   3079:      * in. The autoneg_failed flag does this.
                   3080:      */
                   3081:     else if ((((hw->media_type == em_media_type_fiber) &&
                   3082:               ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
                   3083:               (hw->media_type == em_media_type_internal_serdes)) &&
                   3084:               (!(status & E1000_STATUS_LU)) &&
                   3085:               (!(rxcw & E1000_RXCW_C))) {
                   3086:         if (hw->autoneg_failed == 0) {
                   3087:             hw->autoneg_failed = 1;
                   3088:             return 0;
                   3089:         }
                   3090:         DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
                   3091:
                   3092:         /* Disable auto-negotiation in the TXCW register */
                   3093:         E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
                   3094:
                   3095:         /* Force link-up and also force full-duplex. */
                   3096:         ctrl = E1000_READ_REG(hw, CTRL);
                   3097:         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
                   3098:         E1000_WRITE_REG(hw, CTRL, ctrl);
                   3099:
                   3100:         /* Configure Flow Control after forcing link up. */
                   3101:         ret_val = em_config_fc_after_link_up(hw);
                   3102:         if (ret_val) {
                   3103:             DEBUGOUT("Error configuring flow control\n");
                   3104:             return ret_val;
                   3105:         }
                   3106:     }
                   3107:     /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
                   3108:      * auto-negotiation in the TXCW register and disable forced link in the
                   3109:      * Device Control register in an attempt to auto-negotiate with our link
                   3110:      * partner.
                   3111:      */
                   3112:     else if (((hw->media_type == em_media_type_fiber) ||
                   3113:               (hw->media_type == em_media_type_internal_serdes)) &&
                   3114:               (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
                   3115:         DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
                   3116:         E1000_WRITE_REG(hw, TXCW, hw->txcw);
                   3117:         E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
                   3118:
                   3119:         hw->serdes_link_down = FALSE;
                   3120:     }
                   3121:     /* If we force link for non-auto-negotiation switch, check link status
                   3122:      * based on MAC synchronization for internal serdes media type.
                   3123:      */
                   3124:     else if ((hw->media_type == em_media_type_internal_serdes) &&
                   3125:              !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
                   3126:         /* SYNCH bit and IV bit are sticky. */
                   3127:         usec_delay(10);
                   3128:         if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
                   3129:             if (!(rxcw & E1000_RXCW_IV)) {
                   3130:                 hw->serdes_link_down = FALSE;
                   3131:                 DEBUGOUT("SERDES: Link is up.\n");
                   3132:             }
                   3133:         } else {
                   3134:             hw->serdes_link_down = TRUE;
                   3135:             DEBUGOUT("SERDES: Link is down.\n");
                   3136:         }
                   3137:     }
                   3138:     if ((hw->media_type == em_media_type_internal_serdes) &&
                   3139:         (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
                   3140:         hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
                   3141:     }
                   3142:     return E1000_SUCCESS;
                   3143: }
                   3144:
                   3145: /******************************************************************************
                   3146:  * Detects the current speed and duplex settings of the hardware.
                   3147:  *
                   3148:  * hw - Struct containing variables accessed by shared code
                   3149:  * speed - Speed of the connection
                   3150:  * duplex - Duplex setting of the connection
                   3151:  *****************************************************************************/
                   3152: int32_t
                   3153: em_get_speed_and_duplex(struct em_hw *hw,
                   3154:                            uint16_t *speed,
                   3155:                            uint16_t *duplex)
                   3156: {
                   3157:     uint32_t status;
                   3158:     int32_t ret_val;
                   3159:     uint16_t phy_data;
                   3160:
                   3161:     DEBUGFUNC("em_get_speed_and_duplex");
                   3162:
                   3163:     if (hw->mac_type >= em_82543) {
                   3164:         status = E1000_READ_REG(hw, STATUS);
                   3165:         if (status & E1000_STATUS_SPEED_1000) {
                   3166:             *speed = SPEED_1000;
                   3167:             DEBUGOUT("1000 Mbs, ");
                   3168:         } else if (status & E1000_STATUS_SPEED_100) {
                   3169:             *speed = SPEED_100;
                   3170:             DEBUGOUT("100 Mbs, ");
                   3171:         } else {
                   3172:             *speed = SPEED_10;
                   3173:             DEBUGOUT("10 Mbs, ");
                   3174:         }
                   3175:
                   3176:         if (status & E1000_STATUS_FD) {
                   3177:             *duplex = FULL_DUPLEX;
                   3178:             DEBUGOUT("Full Duplex\n");
                   3179:         } else {
                   3180:             *duplex = HALF_DUPLEX;
                   3181:             DEBUGOUT(" Half Duplex\n");
                   3182:         }
                   3183:     } else {
                   3184:         DEBUGOUT("1000 Mbs, Full Duplex\n");
                   3185:         *speed = SPEED_1000;
                   3186:         *duplex = FULL_DUPLEX;
                   3187:     }
                   3188:
                   3189:     /* IGP01 PHY may advertise full duplex operation after speed downgrade even
                   3190:      * if it is operating at half duplex.  Here we set the duplex settings to
                   3191:      * match the duplex in the link partner's capabilities.
                   3192:      */
                   3193:     if (hw->phy_type == em_phy_igp && hw->speed_downgraded) {
                   3194:         ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
                   3195:         if (ret_val)
                   3196:             return ret_val;
                   3197:
                   3198:         if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
                   3199:             *duplex = HALF_DUPLEX;
                   3200:         else {
                   3201:             ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
                   3202:             if (ret_val)
                   3203:                 return ret_val;
                   3204:             if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
                   3205:                (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
                   3206:                 *duplex = HALF_DUPLEX;
                   3207:         }
                   3208:     }
                   3209:
                   3210:     if ((hw->mac_type == em_80003es2lan) &&
                   3211:         (hw->media_type == em_media_type_copper)) {
                   3212:         if (*speed == SPEED_1000)
                   3213:             ret_val = em_configure_kmrn_for_1000(hw);
                   3214:         else
                   3215:             ret_val = em_configure_kmrn_for_10_100(hw, *duplex);
                   3216:         if (ret_val)
                   3217:             return ret_val;
                   3218:     }
                   3219:
                   3220:     if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) {
                   3221:         ret_val = em_kumeran_lock_loss_workaround(hw);
                   3222:         if (ret_val)
                   3223:             return ret_val;
                   3224:     }
                   3225:
                   3226:     return E1000_SUCCESS;
                   3227: }
                   3228:
                   3229: /******************************************************************************
                   3230: * Blocks until autoneg completes or times out (~4.5 seconds)
                   3231: *
                   3232: * hw - Struct containing variables accessed by shared code
                   3233: ******************************************************************************/
                   3234: STATIC int32_t
                   3235: em_wait_autoneg(struct em_hw *hw)
                   3236: {
                   3237:     int32_t ret_val;
                   3238:     uint16_t i;
                   3239:     uint16_t phy_data;
                   3240:
                   3241:     DEBUGFUNC("em_wait_autoneg");
                   3242:     DEBUGOUT("Waiting for Auto-Neg to complete.\n");
                   3243:
                   3244:     /* We will wait for autoneg to complete or 4.5 seconds to expire. */
                   3245:     for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
                   3246:         /* Read the MII Status Register and wait for Auto-Neg
                   3247:          * Complete bit to be set.
                   3248:          */
                   3249:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
                   3250:         if (ret_val)
                   3251:             return ret_val;
                   3252:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
                   3253:         if (ret_val)
                   3254:             return ret_val;
                   3255:         if (phy_data & MII_SR_AUTONEG_COMPLETE) {
                   3256:             return E1000_SUCCESS;
                   3257:         }
                   3258:         msec_delay(100);
                   3259:     }
                   3260:     return E1000_SUCCESS;
                   3261: }
                   3262:
                   3263: /******************************************************************************
                   3264: * Raises the Management Data Clock
                   3265: *
                   3266: * hw - Struct containing variables accessed by shared code
                   3267: * ctrl - Device control register's current value
                   3268: ******************************************************************************/
                   3269: static void
                   3270: em_raise_mdi_clk(struct em_hw *hw,
                   3271:                     uint32_t *ctrl)
                   3272: {
                   3273:     /* Raise the clock input to the Management Data Clock (by setting the MDC
                   3274:      * bit), and then delay 10 microseconds.
                   3275:      */
                   3276:     E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
                   3277:     E1000_WRITE_FLUSH(hw);
                   3278:     usec_delay(10);
                   3279: }
                   3280:
                   3281: /******************************************************************************
                   3282: * Lowers the Management Data Clock
                   3283: *
                   3284: * hw - Struct containing variables accessed by shared code
                   3285: * ctrl - Device control register's current value
                   3286: ******************************************************************************/
                   3287: static void
                   3288: em_lower_mdi_clk(struct em_hw *hw,
                   3289:                     uint32_t *ctrl)
                   3290: {
                   3291:     /* Lower the clock input to the Management Data Clock (by clearing the MDC
                   3292:      * bit), and then delay 10 microseconds.
                   3293:      */
                   3294:     E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
                   3295:     E1000_WRITE_FLUSH(hw);
                   3296:     usec_delay(10);
                   3297: }
                   3298:
                   3299: /******************************************************************************
                   3300: * Shifts data bits out to the PHY
                   3301: *
                   3302: * hw - Struct containing variables accessed by shared code
                   3303: * data - Data to send out to the PHY
                   3304: * count - Number of bits to shift out
                   3305: *
                   3306: * Bits are shifted out in MSB to LSB order.
                   3307: ******************************************************************************/
                   3308: static void
                   3309: em_shift_out_mdi_bits(struct em_hw *hw,
                   3310:                          uint32_t data,
                   3311:                          uint16_t count)
                   3312: {
                   3313:     uint32_t ctrl;
                   3314:     uint32_t mask;
                   3315:
                   3316:     /* We need to shift "count" number of bits out to the PHY. So, the value
                   3317:      * in the "data" parameter will be shifted out to the PHY one bit at a
                   3318:      * time. In order to do this, "data" must be broken down into bits.
                   3319:      */
                   3320:     mask = 0x01;
                   3321:     mask <<= (count - 1);
                   3322:
                   3323:     ctrl = E1000_READ_REG(hw, CTRL);
                   3324:
                   3325:     /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
                   3326:     ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
                   3327:
                   3328:     while (mask) {
                   3329:         /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
                   3330:          * then raising and lowering the Management Data Clock. A "0" is
                   3331:          * shifted out to the PHY by setting the MDIO bit to "0" and then
                   3332:          * raising and lowering the clock.
                   3333:          */
                   3334:         if (data & mask)
                   3335:             ctrl |= E1000_CTRL_MDIO;
                   3336:         else
                   3337:             ctrl &= ~E1000_CTRL_MDIO;
                   3338:
                   3339:         E1000_WRITE_REG(hw, CTRL, ctrl);
                   3340:         E1000_WRITE_FLUSH(hw);
                   3341:
                   3342:         usec_delay(10);
                   3343:
                   3344:         em_raise_mdi_clk(hw, &ctrl);
                   3345:         em_lower_mdi_clk(hw, &ctrl);
                   3346:
                   3347:         mask = mask >> 1;
                   3348:     }
                   3349: }
                   3350:
                   3351: /******************************************************************************
                   3352: * Shifts data bits in from the PHY
                   3353: *
                   3354: * hw - Struct containing variables accessed by shared code
                   3355: *
                   3356: * Bits are shifted in in MSB to LSB order.
                   3357: ******************************************************************************/
                   3358: static uint16_t
                   3359: em_shift_in_mdi_bits(struct em_hw *hw)
                   3360: {
                   3361:     uint32_t ctrl;
                   3362:     uint16_t data = 0;
                   3363:     uint8_t i;
                   3364:
                   3365:     /* In order to read a register from the PHY, we need to shift in a total
                   3366:      * of 18 bits from the PHY. The first two bit (turnaround) times are used
                   3367:      * to avoid contention on the MDIO pin when a read operation is performed.
                   3368:      * These two bits are ignored by us and thrown away. Bits are "shifted in"
                   3369:      * by raising the input to the Management Data Clock (setting the MDC bit),
                   3370:      * and then reading the value of the MDIO bit.
                   3371:      */
                   3372:     ctrl = E1000_READ_REG(hw, CTRL);
                   3373:
                   3374:     /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
                   3375:     ctrl &= ~E1000_CTRL_MDIO_DIR;
                   3376:     ctrl &= ~E1000_CTRL_MDIO;
                   3377:
                   3378:     E1000_WRITE_REG(hw, CTRL, ctrl);
                   3379:     E1000_WRITE_FLUSH(hw);
                   3380:
                   3381:     /* Raise and Lower the clock before reading in the data. This accounts for
                   3382:      * the turnaround bits. The first clock occurred when we clocked out the
                   3383:      * last bit of the Register Address.
                   3384:      */
                   3385:     em_raise_mdi_clk(hw, &ctrl);
                   3386:     em_lower_mdi_clk(hw, &ctrl);
                   3387:
                   3388:     for (data = 0, i = 0; i < 16; i++) {
                   3389:         data = data << 1;
                   3390:         em_raise_mdi_clk(hw, &ctrl);
                   3391:         ctrl = E1000_READ_REG(hw, CTRL);
                   3392:         /* Check to see if we shifted in a "1". */
                   3393:         if (ctrl & E1000_CTRL_MDIO)
                   3394:             data |= 1;
                   3395:         em_lower_mdi_clk(hw, &ctrl);
                   3396:     }
                   3397:
                   3398:     em_raise_mdi_clk(hw, &ctrl);
                   3399:     em_lower_mdi_clk(hw, &ctrl);
                   3400:
                   3401:     return data;
                   3402: }
                   3403:
                   3404: STATIC int32_t
                   3405: em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask)
                   3406: {
                   3407:     uint32_t swfw_sync = 0;
                   3408:     uint32_t swmask = mask;
                   3409:     uint32_t fwmask = mask << 16;
                   3410:     int32_t timeout = 200;
                   3411:
                   3412:     DEBUGFUNC("em_swfw_sync_acquire");
                   3413:
                   3414:     if (hw->swfwhw_semaphore_present)
                   3415:         return em_get_software_flag(hw);
                   3416:
                   3417:     if (!hw->swfw_sync_present)
                   3418:         return em_get_hw_eeprom_semaphore(hw);
                   3419:
                   3420:     while (timeout) {
                   3421:             if (em_get_hw_eeprom_semaphore(hw))
                   3422:                 return -E1000_ERR_SWFW_SYNC;
                   3423:
                   3424:             swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
                   3425:             if (!(swfw_sync & (fwmask | swmask))) {
                   3426:                 break;
                   3427:             }
                   3428:
                   3429:             /* firmware currently using resource (fwmask) */
                   3430:             /* or other software thread currently using resource (swmask) */
                   3431:             em_put_hw_eeprom_semaphore(hw);
                   3432:             msec_delay_irq(5);
                   3433:             timeout--;
                   3434:     }
                   3435:
                   3436:     if (!timeout) {
                   3437:         DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
                   3438:         return -E1000_ERR_SWFW_SYNC;
                   3439:     }
                   3440:
                   3441:     swfw_sync |= swmask;
                   3442:     E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
                   3443:
                   3444:     em_put_hw_eeprom_semaphore(hw);
                   3445:     return E1000_SUCCESS;
                   3446: }
                   3447:
                   3448: STATIC void
                   3449: em_swfw_sync_release(struct em_hw *hw, uint16_t mask)
                   3450: {
                   3451:     uint32_t swfw_sync;
                   3452:     uint32_t swmask = mask;
                   3453:
                   3454:     DEBUGFUNC("em_swfw_sync_release");
                   3455:
                   3456:     if (hw->swfwhw_semaphore_present) {
                   3457:         em_release_software_flag(hw);
                   3458:         return;
                   3459:     }
                   3460:
                   3461:     if (!hw->swfw_sync_present) {
                   3462:         em_put_hw_eeprom_semaphore(hw);
                   3463:         return;
                   3464:     }
                   3465:
                   3466:     /* if (em_get_hw_eeprom_semaphore(hw))
                   3467:      *    return -E1000_ERR_SWFW_SYNC; */
                   3468:     while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
                   3469:         /* empty */
                   3470:
                   3471:     swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
                   3472:     swfw_sync &= ~swmask;
                   3473:     E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
                   3474:
                   3475:     em_put_hw_eeprom_semaphore(hw);
                   3476: }
                   3477:
                   3478: /*****************************************************************************
                   3479: * Reads the value from a PHY register, if the value is on a specific non zero
                   3480: * page, sets the page first.
                   3481: * hw - Struct containing variables accessed by shared code
                   3482: * reg_addr - address of the PHY register to read
                   3483: ******************************************************************************/
                   3484: int32_t
                   3485: em_read_phy_reg(struct em_hw *hw,
                   3486:                    uint32_t reg_addr,
                   3487:                    uint16_t *phy_data)
                   3488: {
                   3489:     uint32_t ret_val;
                   3490:     uint16_t swfw;
                   3491:
                   3492:     DEBUGFUNC("em_read_phy_reg");
                   3493:
                   3494:     if ((hw->mac_type == em_80003es2lan) &&
                   3495:         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
                   3496:         swfw = E1000_SWFW_PHY1_SM;
                   3497:     } else {
                   3498:         swfw = E1000_SWFW_PHY0_SM;
                   3499:     }
                   3500:     if (em_swfw_sync_acquire(hw, swfw))
                   3501:         return -E1000_ERR_SWFW_SYNC;
                   3502:
                   3503:     if ((hw->phy_type == em_phy_igp ||
                   3504:         hw->phy_type == em_phy_igp_3 ||
                   3505:         hw->phy_type == em_phy_igp_2) &&
                   3506:        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
                   3507:         ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
                   3508:                                          (uint16_t)reg_addr);
                   3509:         if (ret_val) {
                   3510:             em_swfw_sync_release(hw, swfw);
                   3511:             return ret_val;
                   3512:         }
                   3513:     } else if (hw->phy_type == em_phy_gg82563) {
                   3514:         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
                   3515:             (hw->mac_type == em_80003es2lan)) {
                   3516:             /* Select Configuration Page */
                   3517:             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
                   3518:                 ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
                   3519:                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
                   3520:             } else {
                   3521:                 /* Use Alternative Page Select register to access
                   3522:                  * registers 30 and 31
                   3523:                  */
                   3524:                 ret_val = em_write_phy_reg_ex(hw,
                   3525:                                                  GG82563_PHY_PAGE_SELECT_ALT,
                   3526:                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
                   3527:             }
                   3528:
                   3529:             if (ret_val) {
                   3530:                 em_swfw_sync_release(hw, swfw);
                   3531:                 return ret_val;
                   3532:             }
                   3533:         }
                   3534:     }
                   3535:
                   3536:     ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
                   3537:                                     phy_data);
                   3538:
                   3539:     em_swfw_sync_release(hw, swfw);
                   3540:     return ret_val;
                   3541: }
                   3542:
                   3543: STATIC int32_t
                   3544: em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
                   3545:                       uint16_t *phy_data)
                   3546: {
                   3547:     uint32_t i;
                   3548:     uint32_t mdic = 0;
                   3549:     const uint32_t phy_addr = 1;
                   3550:
                   3551:     DEBUGFUNC("em_read_phy_reg_ex");
                   3552:
                   3553:     if (reg_addr > MAX_PHY_REG_ADDRESS) {
                   3554:         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
                   3555:         return -E1000_ERR_PARAM;
                   3556:     }
                   3557:
                   3558:     if (hw->mac_type > em_82543) {
                   3559:         /* Set up Op-code, Phy Address, and register address in the MDI
                   3560:          * Control register.  The MAC will take care of interfacing with the
                   3561:          * PHY to retrieve the desired data.
                   3562:          */
                   3563:         mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
                   3564:                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
                   3565:                 (E1000_MDIC_OP_READ));
                   3566:
                   3567:         E1000_WRITE_REG(hw, MDIC, mdic);
                   3568:
                   3569:         /* Poll the ready bit to see if the MDI read completed */
                   3570:         for (i = 0; i < 64; i++) {
                   3571:             usec_delay(50);
                   3572:             mdic = E1000_READ_REG(hw, MDIC);
                   3573:             if (mdic & E1000_MDIC_READY) break;
                   3574:         }
                   3575:         if (!(mdic & E1000_MDIC_READY)) {
                   3576:             DEBUGOUT("MDI Read did not complete\n");
                   3577:             return -E1000_ERR_PHY;
                   3578:         }
                   3579:         if (mdic & E1000_MDIC_ERROR) {
                   3580:             DEBUGOUT("MDI Error\n");
                   3581:             return -E1000_ERR_PHY;
                   3582:         }
                   3583:         *phy_data = (uint16_t) mdic;
                   3584:     } else {
                   3585:         /* We must first send a preamble through the MDIO pin to signal the
                   3586:          * beginning of an MII instruction.  This is done by sending 32
                   3587:          * consecutive "1" bits.
                   3588:          */
                   3589:         em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
                   3590:
                   3591:         /* Now combine the next few fields that are required for a read
                   3592:          * operation.  We use this method instead of calling the
                   3593:          * em_shift_out_mdi_bits routine five different times. The format of
                   3594:          * a MII read instruction consists of a shift out of 14 bits and is
                   3595:          * defined as follows:
                   3596:          *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
                   3597:          * followed by a shift in of 18 bits.  This first two bits shifted in
                   3598:          * are TurnAround bits used to avoid contention on the MDIO pin when a
                   3599:          * READ operation is performed.  These two bits are thrown away
                   3600:          * followed by a shift in of 16 bits which contains the desired data.
                   3601:          */
                   3602:         mdic = ((reg_addr) | (phy_addr << 5) |
                   3603:                 (PHY_OP_READ << 10) | (PHY_SOF << 12));
                   3604:
                   3605:         em_shift_out_mdi_bits(hw, mdic, 14);
                   3606:
                   3607:         /* Now that we've shifted out the read command to the MII, we need to
                   3608:          * "shift in" the 16-bit value (18 total bits) of the requested PHY
                   3609:          * register address.
                   3610:          */
                   3611:         *phy_data = em_shift_in_mdi_bits(hw);
                   3612:     }
                   3613:     return E1000_SUCCESS;
                   3614: }
                   3615:
                   3616: /******************************************************************************
                   3617: * Writes a value to a PHY register
                   3618: *
                   3619: * hw - Struct containing variables accessed by shared code
                   3620: * reg_addr - address of the PHY register to write
                   3621: * data - data to write to the PHY
                   3622: ******************************************************************************/
                   3623: int32_t
                   3624: em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr,
                   3625:                     uint16_t phy_data)
                   3626: {
                   3627:     uint32_t ret_val;
                   3628:     uint16_t swfw;
                   3629:
                   3630:     DEBUGFUNC("em_write_phy_reg");
                   3631:
                   3632:     if ((hw->mac_type == em_80003es2lan) &&
                   3633:         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
                   3634:         swfw = E1000_SWFW_PHY1_SM;
                   3635:     } else {
                   3636:         swfw = E1000_SWFW_PHY0_SM;
                   3637:     }
                   3638:     if (em_swfw_sync_acquire(hw, swfw))
                   3639:         return -E1000_ERR_SWFW_SYNC;
                   3640:
                   3641:     if ((hw->phy_type == em_phy_igp ||
                   3642:         hw->phy_type == em_phy_igp_3 ||
                   3643:         hw->phy_type == em_phy_igp_2) &&
                   3644:        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
                   3645:         ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
                   3646:                                          (uint16_t)reg_addr);
                   3647:         if (ret_val) {
                   3648:             em_swfw_sync_release(hw, swfw);
                   3649:             return ret_val;
                   3650:         }
                   3651:     } else if (hw->phy_type == em_phy_gg82563) {
                   3652:         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
                   3653:             (hw->mac_type == em_80003es2lan)) {
                   3654:             /* Select Configuration Page */
                   3655:             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
                   3656:                 ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
                   3657:                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
                   3658:             } else {
                   3659:                 /* Use Alternative Page Select register to access
                   3660:                  * registers 30 and 31
                   3661:                  */
                   3662:                 ret_val = em_write_phy_reg_ex(hw,
                   3663:                                                  GG82563_PHY_PAGE_SELECT_ALT,
                   3664:                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
                   3665:             }
                   3666:
                   3667:             if (ret_val) {
                   3668:                 em_swfw_sync_release(hw, swfw);
                   3669:                 return ret_val;
                   3670:             }
                   3671:         }
                   3672:     }
                   3673:
                   3674:     ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
                   3675:                                      phy_data);
                   3676:
                   3677:     em_swfw_sync_release(hw, swfw);
                   3678:     return ret_val;
                   3679: }
                   3680:
                   3681: STATIC int32_t
                   3682: em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
                   3683:                        uint16_t phy_data)
                   3684: {
                   3685:     uint32_t i;
                   3686:     uint32_t mdic = 0;
                   3687:     const uint32_t phy_addr = 1;
                   3688:
                   3689:     DEBUGFUNC("em_write_phy_reg_ex");
                   3690:
                   3691:     if (reg_addr > MAX_PHY_REG_ADDRESS) {
                   3692:         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
                   3693:         return -E1000_ERR_PARAM;
                   3694:     }
                   3695:
                   3696:     if (hw->mac_type > em_82543) {
                   3697:         /* Set up Op-code, Phy Address, register address, and data intended
                   3698:          * for the PHY register in the MDI Control register.  The MAC will take
                   3699:          * care of interfacing with the PHY to send the desired data.
                   3700:          */
                   3701:         mdic = (((uint32_t) phy_data) |
                   3702:                 (reg_addr << E1000_MDIC_REG_SHIFT) |
                   3703:                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
                   3704:                 (E1000_MDIC_OP_WRITE));
                   3705:
                   3706:         E1000_WRITE_REG(hw, MDIC, mdic);
                   3707:
                   3708:         /* Poll the ready bit to see if the MDI read completed */
                   3709:         for (i = 0; i < 641; i++) {
                   3710:             usec_delay(5);
                   3711:             mdic = E1000_READ_REG(hw, MDIC);
                   3712:             if (mdic & E1000_MDIC_READY) break;
                   3713:         }
                   3714:         if (!(mdic & E1000_MDIC_READY)) {
                   3715:             DEBUGOUT("MDI Write did not complete\n");
                   3716:             return -E1000_ERR_PHY;
                   3717:         }
                   3718:     } else {
                   3719:         /* We'll need to use the SW defined pins to shift the write command
                   3720:          * out to the PHY. We first send a preamble to the PHY to signal the
                   3721:          * beginning of the MII instruction.  This is done by sending 32
                   3722:          * consecutive "1" bits.
                   3723:          */
                   3724:         em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
                   3725:
                   3726:         /* Now combine the remaining required fields that will indicate a
                   3727:          * write operation. We use this method instead of calling the
                   3728:          * em_shift_out_mdi_bits routine for each field in the command. The
                   3729:          * format of a MII write instruction is as follows:
                   3730:          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
                   3731:          */
                   3732:         mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
                   3733:                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
                   3734:         mdic <<= 16;
                   3735:         mdic |= (uint32_t) phy_data;
                   3736:
                   3737:         em_shift_out_mdi_bits(hw, mdic, 32);
                   3738:     }
                   3739:
                   3740:     return E1000_SUCCESS;
                   3741: }
                   3742:
                   3743: STATIC int32_t
                   3744: em_read_kmrn_reg(struct em_hw *hw,
                   3745:                     uint32_t reg_addr,
                   3746:                     uint16_t *data)
                   3747: {
                   3748:     uint32_t reg_val;
                   3749:     uint16_t swfw;
                   3750:     DEBUGFUNC("em_read_kmrn_reg");
                   3751:
                   3752:     if ((hw->mac_type == em_80003es2lan) &&
                   3753:         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
                   3754:         swfw = E1000_SWFW_PHY1_SM;
                   3755:     } else {
                   3756:         swfw = E1000_SWFW_PHY0_SM;
                   3757:     }
                   3758:     if (em_swfw_sync_acquire(hw, swfw))
                   3759:         return -E1000_ERR_SWFW_SYNC;
                   3760:
                   3761:     /* Write register address */
                   3762:     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
                   3763:               E1000_KUMCTRLSTA_OFFSET) |
                   3764:               E1000_KUMCTRLSTA_REN;
                   3765:     E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
                   3766:     usec_delay(2);
                   3767:
                   3768:     /* Read the data returned */
                   3769:     reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
                   3770:     *data = (uint16_t)reg_val;
                   3771:
                   3772:     em_swfw_sync_release(hw, swfw);
                   3773:     return E1000_SUCCESS;
                   3774: }
                   3775:
                   3776: STATIC int32_t
                   3777: em_write_kmrn_reg(struct em_hw *hw,
                   3778:                      uint32_t reg_addr,
                   3779:                      uint16_t data)
                   3780: {
                   3781:     uint32_t reg_val;
                   3782:     uint16_t swfw;
                   3783:     DEBUGFUNC("em_write_kmrn_reg");
                   3784:
                   3785:     if ((hw->mac_type == em_80003es2lan) &&
                   3786:         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
                   3787:         swfw = E1000_SWFW_PHY1_SM;
                   3788:     } else {
                   3789:         swfw = E1000_SWFW_PHY0_SM;
                   3790:     }
                   3791:     if (em_swfw_sync_acquire(hw, swfw))
                   3792:         return -E1000_ERR_SWFW_SYNC;
                   3793:
                   3794:     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
                   3795:               E1000_KUMCTRLSTA_OFFSET) | data;
                   3796:     E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
                   3797:     usec_delay(2);
                   3798:
                   3799:     em_swfw_sync_release(hw, swfw);
                   3800:     return E1000_SUCCESS;
                   3801: }
                   3802:
                   3803: /******************************************************************************
                   3804: * Returns the PHY to the power-on reset state
                   3805: *
                   3806: * hw - Struct containing variables accessed by shared code
                   3807: ******************************************************************************/
                   3808: int32_t
                   3809: em_phy_hw_reset(struct em_hw *hw)
                   3810: {
                   3811:     uint32_t ctrl, ctrl_ext;
                   3812:     uint32_t led_ctrl;
                   3813:     int32_t ret_val;
                   3814:     uint16_t swfw;
                   3815:
                   3816:     DEBUGFUNC("em_phy_hw_reset");
                   3817:
                   3818:     /* In the case of the phy reset being blocked, it's not an error, we
                   3819:      * simply return success without performing the reset. */
                   3820:     ret_val = em_check_phy_reset_block(hw);
                   3821:     if (ret_val)
                   3822:         return E1000_SUCCESS;
                   3823:
                   3824:     DEBUGOUT("Resetting Phy...\n");
                   3825:
                   3826:     if (hw->mac_type > em_82543) {
                   3827:         if ((hw->mac_type == em_80003es2lan) &&
                   3828:             (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
                   3829:             swfw = E1000_SWFW_PHY1_SM;
                   3830:         } else {
                   3831:             swfw = E1000_SWFW_PHY0_SM;
                   3832:         }
                   3833:         if (em_swfw_sync_acquire(hw, swfw)) {
                   3834:             DEBUGOUT("Unable to acquire swfw sync\n");
                   3835:             return -E1000_ERR_SWFW_SYNC;
                   3836:         }
                   3837:         /* Read the device control register and assert the E1000_CTRL_PHY_RST
                   3838:          * bit. Then, take it out of reset.
                   3839:          * For pre-em_82571 hardware, we delay for 10ms between the assert
                   3840:          * and deassert.  For em_82571 hardware and later, we instead delay
                   3841:          * for 50us between and 10ms after the deassertion.
                   3842:          */
                   3843:         ctrl = E1000_READ_REG(hw, CTRL);
                   3844:         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
                   3845:         E1000_WRITE_FLUSH(hw);
                   3846:
                   3847:         if (hw->mac_type < em_82571)
                   3848:             msec_delay(10);
                   3849:         else
                   3850:             usec_delay(100);
                   3851:
                   3852:         E1000_WRITE_REG(hw, CTRL, ctrl);
                   3853:         E1000_WRITE_FLUSH(hw);
                   3854:
                   3855:         if (hw->mac_type >= em_82571)
                   3856:             msec_delay_irq(10);
                   3857:         em_swfw_sync_release(hw, swfw);
                   3858:     } else {
                   3859:         /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
                   3860:          * bit to put the PHY into reset. Then, take it out of reset.
                   3861:          */
                   3862:         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                   3863:         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
                   3864:         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
                   3865:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                   3866:         E1000_WRITE_FLUSH(hw);
                   3867:         msec_delay(10);
                   3868:         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
                   3869:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                   3870:         E1000_WRITE_FLUSH(hw);
                   3871:     }
                   3872:     usec_delay(150);
                   3873:
                   3874:     if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
                   3875:         /* Configure activity LED after PHY reset */
                   3876:         led_ctrl = E1000_READ_REG(hw, LEDCTL);
                   3877:         led_ctrl &= IGP_ACTIVITY_LED_MASK;
                   3878:         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
                   3879:         E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
                   3880:     }
                   3881:
                   3882:     /* Wait for FW to finish PHY configuration. */
                   3883:     ret_val = em_get_phy_cfg_done(hw);
                   3884:     if (ret_val != E1000_SUCCESS)
                   3885:         return ret_val;
                   3886:     em_release_software_semaphore(hw);
                   3887:
                   3888:     if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3))
                   3889:         ret_val = em_init_lcd_from_nvm(hw);
                   3890:
                   3891:     return ret_val;
                   3892: }
                   3893:
                   3894: /******************************************************************************
                   3895: * Resets the PHY
                   3896: *
                   3897: * hw - Struct containing variables accessed by shared code
                   3898: *
                   3899: * Sets bit 15 of the MII Control regiser
                   3900: ******************************************************************************/
                   3901: int32_t
                   3902: em_phy_reset(struct em_hw *hw)
                   3903: {
                   3904:     int32_t ret_val;
                   3905:     uint16_t phy_data;
                   3906:
                   3907:     DEBUGFUNC("em_phy_reset");
                   3908:
                   3909:     /* In the case of the phy reset being blocked, it's not an error, we
                   3910:      * simply return success without performing the reset. */
                   3911:     ret_val = em_check_phy_reset_block(hw);
                   3912:     if (ret_val)
                   3913:         return E1000_SUCCESS;
                   3914:
                   3915:     switch (hw->phy_type) {
                   3916:     case em_phy_igp:
                   3917:     case em_phy_igp_2:
                   3918:     case em_phy_igp_3:
                   3919:     case em_phy_ife:
                   3920:         ret_val = em_phy_hw_reset(hw);
                   3921:         if (ret_val)
                   3922:             return ret_val;
                   3923:         break;
                   3924:     default:
                   3925:         ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
                   3926:         if (ret_val)
                   3927:             return ret_val;
                   3928:
                   3929:         phy_data |= MII_CR_RESET;
                   3930:         ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
                   3931:         if (ret_val)
                   3932:             return ret_val;
                   3933:
                   3934:         usec_delay(1);
                   3935:         break;
                   3936:     }
                   3937:
                   3938:     if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
                   3939:         em_phy_init_script(hw);
                   3940:
                   3941:     return E1000_SUCCESS;
                   3942: }
                   3943:
                   3944: /******************************************************************************
                   3945: * Work-around for 82566 Kumeran PCS lock loss:
                   3946: * On link status change (i.e. PCI reset, speed change) and link is up and
                   3947: * speed is gigabit-
                   3948: * 0) if workaround is optionally disabled do nothing
                   3949: * 1) wait 1ms for Kumeran link to come up
                   3950: * 2) check Kumeran Diagnostic register PCS lock loss bit
                   3951: * 3) if not set the link is locked (all is good), otherwise...
                   3952: * 4) reset the PHY
                   3953: * 5) repeat up to 10 times
                   3954: * Note: this is only called for IGP3 copper when speed is 1gb.
                   3955: *
                   3956: * hw - struct containing variables accessed by shared code
                   3957: ******************************************************************************/
                   3958: STATIC int32_t
                   3959: em_kumeran_lock_loss_workaround(struct em_hw *hw)
                   3960: {
                   3961:     int32_t ret_val;
                   3962:     int32_t reg;
                   3963:     int32_t cnt;
                   3964:     uint16_t phy_data;
                   3965:
                   3966:     if (hw->kmrn_lock_loss_workaround_disabled)
                   3967:         return E1000_SUCCESS;
                   3968:
                   3969:     /* Make sure link is up before proceeding.  If not just return.
                   3970:      * Attempting this while link is negotiating fouled up link
                   3971:      * stability */
                   3972:     ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
                   3973:     ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
                   3974:
                   3975:     if (phy_data & MII_SR_LINK_STATUS) {
                   3976:         for (cnt = 0; cnt < 10; cnt++) {
                   3977:             /* read once to clear */
                   3978:             ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
                   3979:             if (ret_val)
                   3980:                 return ret_val;
                   3981:             /* and again to get new status */
                   3982:             ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
                   3983:             if (ret_val)
                   3984:                 return ret_val;
                   3985:
                   3986:             /* check for PCS lock */
                   3987:             if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
                   3988:                 return E1000_SUCCESS;
                   3989:
                   3990:             /* Issue PHY reset */
                   3991:             em_phy_hw_reset(hw);
                   3992:             msec_delay_irq(5);
                   3993:         }
                   3994:         /* Disable GigE link negotiation */
                   3995:         reg = E1000_READ_REG(hw, PHY_CTRL);
                   3996:         E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
                   3997:                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
                   3998:
                   3999:         /* unable to acquire PCS lock */
                   4000:         return E1000_ERR_PHY;
                   4001:     }
                   4002:
                   4003:     return E1000_SUCCESS;
                   4004: }
                   4005:
                   4006: /******************************************************************************
                   4007: * Probes the expected PHY address for known PHY IDs
                   4008: *
                   4009: * hw - Struct containing variables accessed by shared code
                   4010: ******************************************************************************/
                   4011: STATIC int32_t
                   4012: em_detect_gig_phy(struct em_hw *hw)
                   4013: {
                   4014:     int32_t phy_init_status, ret_val;
                   4015:     uint16_t phy_id_high, phy_id_low;
                   4016:     boolean_t match = FALSE;
                   4017:
                   4018:     DEBUGFUNC("em_detect_gig_phy");
                   4019:
                   4020:     if (hw->phy_id != 0)
                   4021:         return E1000_SUCCESS;
                   4022:
                   4023:     /* The 82571 firmware may still be configuring the PHY.  In this
                   4024:      * case, we cannot access the PHY until the configuration is done.  So
                   4025:      * we explicitly set the PHY values. */
                   4026:     if (hw->mac_type == em_82571 ||
                   4027:         hw->mac_type == em_82572) {
                   4028:         hw->phy_id = IGP01E1000_I_PHY_ID;
                   4029:         hw->phy_type = em_phy_igp_2;
                   4030:         return E1000_SUCCESS;
                   4031:     }
                   4032:
                   4033:     /* ESB-2 PHY reads require em_phy_gg82563 to be set because of a work-
                   4034:      * around that forces PHY page 0 to be set or the reads fail.  The rest of
                   4035:      * the code in this routine uses em_read_phy_reg to read the PHY ID.
                   4036:      * So for ESB-2 we need to have this set so our reads won't fail.  If the
                   4037:      * attached PHY is not a em_phy_gg82563, the routines below will figure
                   4038:      * this out as well. */
                   4039:     if (hw->mac_type == em_80003es2lan)
                   4040:         hw->phy_type = em_phy_gg82563;
                   4041:
                   4042:     /* Read the PHY ID Registers to identify which PHY is onboard. */
                   4043:     ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
                   4044:     if (ret_val)
                   4045:         return ret_val;
                   4046:
                   4047:     hw->phy_id = (uint32_t) (phy_id_high << 16);
                   4048:     usec_delay(20);
                   4049:     ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
                   4050:     if (ret_val)
                   4051:         return ret_val;
                   4052:
                   4053:     hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
                   4054:     hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
                   4055:
                   4056:     switch (hw->mac_type) {
                   4057:     case em_82543:
                   4058:         if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
                   4059:         break;
                   4060:     case em_82544:
                   4061:         if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
                   4062:         break;
                   4063:     case em_82540:
                   4064:     case em_82545:
                   4065:     case em_82545_rev_3:
                   4066:     case em_82546:
                   4067:     case em_82546_rev_3:
                   4068:         if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
                   4069:         break;
                   4070:     case em_82541:
                   4071:     case em_82541_rev_2:
                   4072:     case em_82547:
                   4073:     case em_82547_rev_2:
                   4074:         if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
                   4075:         break;
                   4076:     case em_82573:
                   4077:         if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
                   4078:         break;
                   4079:     case em_80003es2lan:
                   4080:         if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
                   4081:         break;
                   4082:     case em_ich8lan:
                   4083:         if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
                   4084:         if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
                   4085:         if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
                   4086:         if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
                   4087:         break;
                   4088:     default:
                   4089:         DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
                   4090:         return -E1000_ERR_CONFIG;
                   4091:     }
                   4092:     phy_init_status = em_set_phy_type(hw);
                   4093:
                   4094:     if ((match) && (phy_init_status == E1000_SUCCESS)) {
                   4095:         DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
                   4096:         return E1000_SUCCESS;
                   4097:     }
                   4098:     DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
                   4099:     return -E1000_ERR_PHY;
                   4100: }
                   4101:
                   4102: /******************************************************************************
                   4103: * Resets the PHY's DSP
                   4104: *
                   4105: * hw - Struct containing variables accessed by shared code
                   4106: ******************************************************************************/
                   4107: static int32_t
                   4108: em_phy_reset_dsp(struct em_hw *hw)
                   4109: {
                   4110:     int32_t ret_val;
                   4111:     DEBUGFUNC("em_phy_reset_dsp");
                   4112:
                   4113:     do {
                   4114:         if (hw->phy_type != em_phy_gg82563) {
                   4115:             ret_val = em_write_phy_reg(hw, 29, 0x001d);
                   4116:             if (ret_val) break;
                   4117:         }
                   4118:         ret_val = em_write_phy_reg(hw, 30, 0x00c1);
                   4119:         if (ret_val) break;
                   4120:         ret_val = em_write_phy_reg(hw, 30, 0x0000);
                   4121:         if (ret_val) break;
                   4122:         ret_val = E1000_SUCCESS;
                   4123:     } while (0);
                   4124:
                   4125:     return ret_val;
                   4126: }
                   4127:
                   4128: /******************************************************************************
                   4129:  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
                   4130:  * is configured.  Additionally, if this is ICH8, the flash controller GbE
                   4131:  * registers must be mapped, or this will crash.
                   4132:  *
                   4133:  * hw - Struct containing variables accessed by shared code
                   4134:  *****************************************************************************/
                   4135: int32_t
                   4136: em_init_eeprom_params(struct em_hw *hw)
                   4137: {
                   4138:     struct em_eeprom_info *eeprom = &hw->eeprom;
                   4139:     uint32_t eecd = E1000_READ_REG(hw, EECD);
                   4140:     int32_t ret_val = E1000_SUCCESS;
                   4141:     uint16_t eeprom_size;
                   4142:
                   4143:     DEBUGFUNC("em_init_eeprom_params");
                   4144:
                   4145:     switch (hw->mac_type) {
                   4146:     case em_82542_rev2_0:
                   4147:     case em_82542_rev2_1:
                   4148:     case em_82543:
                   4149:     case em_82544:
                   4150:         eeprom->type = em_eeprom_microwire;
                   4151:         eeprom->word_size = 64;
                   4152:         eeprom->opcode_bits = 3;
                   4153:         eeprom->address_bits = 6;
                   4154:         eeprom->delay_usec = 50;
                   4155:         eeprom->use_eerd = FALSE;
                   4156:         eeprom->use_eewr = FALSE;
                   4157:         break;
                   4158:     case em_82540:
                   4159:     case em_82545:
                   4160:     case em_82545_rev_3:
                   4161:     case em_82546:
                   4162:     case em_82546_rev_3:
                   4163:         eeprom->type = em_eeprom_microwire;
                   4164:         eeprom->opcode_bits = 3;
                   4165:         eeprom->delay_usec = 50;
                   4166:         if (eecd & E1000_EECD_SIZE) {
                   4167:             eeprom->word_size = 256;
                   4168:             eeprom->address_bits = 8;
                   4169:         } else {
                   4170:             eeprom->word_size = 64;
                   4171:             eeprom->address_bits = 6;
                   4172:         }
                   4173:         eeprom->use_eerd = FALSE;
                   4174:         eeprom->use_eewr = FALSE;
                   4175:         break;
                   4176:     case em_82541:
                   4177:     case em_82541_rev_2:
                   4178:     case em_82547:
                   4179:     case em_82547_rev_2:
                   4180:         if (eecd & E1000_EECD_TYPE) {
                   4181:             eeprom->type = em_eeprom_spi;
                   4182:             eeprom->opcode_bits = 8;
                   4183:             eeprom->delay_usec = 1;
                   4184:             if (eecd & E1000_EECD_ADDR_BITS) {
                   4185:                 eeprom->page_size = 32;
                   4186:                 eeprom->address_bits = 16;
                   4187:             } else {
                   4188:                 eeprom->page_size = 8;
                   4189:                 eeprom->address_bits = 8;
                   4190:             }
                   4191:         } else {
                   4192:             eeprom->type = em_eeprom_microwire;
                   4193:             eeprom->opcode_bits = 3;
                   4194:             eeprom->delay_usec = 50;
                   4195:             if (eecd & E1000_EECD_ADDR_BITS) {
                   4196:                 eeprom->word_size = 256;
                   4197:                 eeprom->address_bits = 8;
                   4198:             } else {
                   4199:                 eeprom->word_size = 64;
                   4200:                 eeprom->address_bits = 6;
                   4201:             }
                   4202:         }
                   4203:         eeprom->use_eerd = FALSE;
                   4204:         eeprom->use_eewr = FALSE;
                   4205:         break;
                   4206:     case em_82571:
                   4207:     case em_82572:
                   4208:         eeprom->type = em_eeprom_spi;
                   4209:         eeprom->opcode_bits = 8;
                   4210:         eeprom->delay_usec = 1;
                   4211:         if (eecd & E1000_EECD_ADDR_BITS) {
                   4212:             eeprom->page_size = 32;
                   4213:             eeprom->address_bits = 16;
                   4214:         } else {
                   4215:             eeprom->page_size = 8;
                   4216:             eeprom->address_bits = 8;
                   4217:         }
                   4218:         eeprom->use_eerd = FALSE;
                   4219:         eeprom->use_eewr = FALSE;
                   4220:         break;
                   4221:     case em_82573:
                   4222:         eeprom->type = em_eeprom_spi;
                   4223:         eeprom->opcode_bits = 8;
                   4224:         eeprom->delay_usec = 1;
                   4225:         if (eecd & E1000_EECD_ADDR_BITS) {
                   4226:             eeprom->page_size = 32;
                   4227:             eeprom->address_bits = 16;
                   4228:         } else {
                   4229:             eeprom->page_size = 8;
                   4230:             eeprom->address_bits = 8;
                   4231:         }
                   4232:         eeprom->use_eerd = TRUE;
                   4233:         eeprom->use_eewr = TRUE;
                   4234:         if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
                   4235:             eeprom->type = em_eeprom_flash;
                   4236:             eeprom->word_size = 2048;
                   4237:
                   4238:             /* Ensure that the Autonomous FLASH update bit is cleared due to
                   4239:              * Flash update issue on parts which use a FLASH for NVM. */
                   4240:             eecd &= ~E1000_EECD_AUPDEN;
                   4241:             E1000_WRITE_REG(hw, EECD, eecd);
                   4242:         }
                   4243:         break;
                   4244:     case em_80003es2lan:
                   4245:         eeprom->type = em_eeprom_spi;
                   4246:         eeprom->opcode_bits = 8;
                   4247:         eeprom->delay_usec = 1;
                   4248:         if (eecd & E1000_EECD_ADDR_BITS) {
                   4249:             eeprom->page_size = 32;
                   4250:             eeprom->address_bits = 16;
                   4251:         } else {
                   4252:             eeprom->page_size = 8;
                   4253:             eeprom->address_bits = 8;
                   4254:         }
                   4255:         eeprom->use_eerd = TRUE;
                   4256:         eeprom->use_eewr = FALSE;
                   4257:         break;
                   4258:     case em_ich8lan:
                   4259:     {
                   4260:         int32_t  i = 0;
                   4261:         uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
                   4262:
                   4263:         eeprom->type = em_eeprom_ich8;
                   4264:         eeprom->use_eerd = FALSE;
                   4265:         eeprom->use_eewr = FALSE;
                   4266:         eeprom->word_size = E1000_SHADOW_RAM_WORDS;
                   4267:
                   4268:         /* Zero the shadow RAM structure. But don't load it from NVM
                   4269:          * so as to save time for driver init */
                   4270:         if (hw->eeprom_shadow_ram != NULL) {
                   4271:             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
                   4272:                 hw->eeprom_shadow_ram[i].modified = FALSE;
                   4273:                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
                   4274:             }
                   4275:         }
                   4276:
                   4277:         hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
                   4278:                               ICH_FLASH_SECTOR_SIZE;
                   4279:
                   4280:         hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
                   4281:         hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
                   4282:
                   4283:         hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
                   4284:
                   4285:         hw->flash_bank_size /= 2 * sizeof(uint16_t);
                   4286:
                   4287:         break;
                   4288:     }
                   4289:     default:
                   4290:         break;
                   4291:     }
                   4292:
                   4293:     if (eeprom->type == em_eeprom_spi) {
                   4294:         /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
                   4295:          * 32KB (incremented by powers of 2).
                   4296:          */
                   4297:         if (hw->mac_type <= em_82547_rev_2) {
                   4298:             /* Set to default value for initial eeprom read. */
                   4299:             eeprom->word_size = 64;
                   4300:             ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
                   4301:             if (ret_val)
                   4302:                 return ret_val;
                   4303:             eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
                   4304:             /* 256B eeprom size was not supported in earlier hardware, so we
                   4305:              * bump eeprom_size up one to ensure that "1" (which maps to 256B)
                   4306:              * is never the result used in the shifting logic below. */
                   4307:             if (eeprom_size)
                   4308:                 eeprom_size++;
                   4309:         } else {
                   4310:             eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
                   4311:                           E1000_EECD_SIZE_EX_SHIFT);
                   4312:         }
                   4313:
                   4314:         eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
                   4315:     }
                   4316:     return ret_val;
                   4317: }
                   4318:
                   4319: /******************************************************************************
                   4320:  * Raises the EEPROM's clock input.
                   4321:  *
                   4322:  * hw - Struct containing variables accessed by shared code
                   4323:  * eecd - EECD's current value
                   4324:  *****************************************************************************/
                   4325: static void
                   4326: em_raise_ee_clk(struct em_hw *hw,
                   4327:                    uint32_t *eecd)
                   4328: {
                   4329:     /* Raise the clock input to the EEPROM (by setting the SK bit), and then
                   4330:      * wait <delay> microseconds.
                   4331:      */
                   4332:     *eecd = *eecd | E1000_EECD_SK;
                   4333:     E1000_WRITE_REG(hw, EECD, *eecd);
                   4334:     E1000_WRITE_FLUSH(hw);
                   4335:     usec_delay(hw->eeprom.delay_usec);
                   4336: }
                   4337:
                   4338: /******************************************************************************
                   4339:  * Lowers the EEPROM's clock input.
                   4340:  *
                   4341:  * hw - Struct containing variables accessed by shared code
                   4342:  * eecd - EECD's current value
                   4343:  *****************************************************************************/
                   4344: static void
                   4345: em_lower_ee_clk(struct em_hw *hw,
                   4346:                    uint32_t *eecd)
                   4347: {
                   4348:     /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
                   4349:      * wait 50 microseconds.
                   4350:      */
                   4351:     *eecd = *eecd & ~E1000_EECD_SK;
                   4352:     E1000_WRITE_REG(hw, EECD, *eecd);
                   4353:     E1000_WRITE_FLUSH(hw);
                   4354:     usec_delay(hw->eeprom.delay_usec);
                   4355: }
                   4356:
                   4357: /******************************************************************************
                   4358:  * Shift data bits out to the EEPROM.
                   4359:  *
                   4360:  * hw - Struct containing variables accessed by shared code
                   4361:  * data - data to send to the EEPROM
                   4362:  * count - number of bits to shift out
                   4363:  *****************************************************************************/
                   4364: static void
                   4365: em_shift_out_ee_bits(struct em_hw *hw,
                   4366:                         uint16_t data,
                   4367:                         uint16_t count)
                   4368: {
                   4369:     struct em_eeprom_info *eeprom = &hw->eeprom;
                   4370:     uint32_t eecd;
                   4371:     uint32_t mask;
                   4372:
                   4373:     /* We need to shift "count" bits out to the EEPROM. So, value in the
                   4374:      * "data" parameter will be shifted out to the EEPROM one bit at a time.
                   4375:      * In order to do this, "data" must be broken down into bits.
                   4376:      */
                   4377:     mask = 0x01 << (count - 1);
                   4378:     eecd = E1000_READ_REG(hw, EECD);
                   4379:     if (eeprom->type == em_eeprom_microwire) {
                   4380:         eecd &= ~E1000_EECD_DO;
                   4381:     } else if (eeprom->type == em_eeprom_spi) {
                   4382:         eecd |= E1000_EECD_DO;
                   4383:     }
                   4384:     do {
                   4385:         /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
                   4386:          * and then raising and then lowering the clock (the SK bit controls
                   4387:          * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
                   4388:          * by setting "DI" to "0" and then raising and then lowering the clock.
                   4389:          */
                   4390:         eecd &= ~E1000_EECD_DI;
                   4391:
                   4392:         if (data & mask)
                   4393:             eecd |= E1000_EECD_DI;
                   4394:
                   4395:         E1000_WRITE_REG(hw, EECD, eecd);
                   4396:         E1000_WRITE_FLUSH(hw);
                   4397:
                   4398:         usec_delay(eeprom->delay_usec);
                   4399:
                   4400:         em_raise_ee_clk(hw, &eecd);
                   4401:         em_lower_ee_clk(hw, &eecd);
                   4402:
                   4403:         mask = mask >> 1;
                   4404:
                   4405:     } while (mask);
                   4406:
                   4407:     /* We leave the "DI" bit set to "0" when we leave this routine. */
                   4408:     eecd &= ~E1000_EECD_DI;
                   4409:     E1000_WRITE_REG(hw, EECD, eecd);
                   4410: }
                   4411:
                   4412: /******************************************************************************
                   4413:  * Shift data bits in from the EEPROM
                   4414:  *
                   4415:  * hw - Struct containing variables accessed by shared code
                   4416:  *****************************************************************************/
                   4417: static uint16_t
                   4418: em_shift_in_ee_bits(struct em_hw *hw,
                   4419:                        uint16_t count)
                   4420: {
                   4421:     uint32_t eecd;
                   4422:     uint32_t i;
                   4423:     uint16_t data;
                   4424:
                   4425:     /* In order to read a register from the EEPROM, we need to shift 'count'
                   4426:      * bits in from the EEPROM. Bits are "shifted in" by raising the clock
                   4427:      * input to the EEPROM (setting the SK bit), and then reading the value of
                   4428:      * the "DO" bit.  During this "shifting in" process the "DI" bit should
                   4429:      * always be clear.
                   4430:      */
                   4431:
                   4432:     eecd = E1000_READ_REG(hw, EECD);
                   4433:
                   4434:     eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
                   4435:     data = 0;
                   4436:
                   4437:     for (i = 0; i < count; i++) {
                   4438:         data = data << 1;
                   4439:         em_raise_ee_clk(hw, &eecd);
                   4440:
                   4441:         eecd = E1000_READ_REG(hw, EECD);
                   4442:
                   4443:         eecd &= ~(E1000_EECD_DI);
                   4444:         if (eecd & E1000_EECD_DO)
                   4445:             data |= 1;
                   4446:
                   4447:         em_lower_ee_clk(hw, &eecd);
                   4448:     }
                   4449:
                   4450:     return data;
                   4451: }
                   4452:
                   4453: /******************************************************************************
                   4454:  * Prepares EEPROM for access
                   4455:  *
                   4456:  * hw - Struct containing variables accessed by shared code
                   4457:  *
                   4458:  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
                   4459:  * function should be called before issuing a command to the EEPROM.
                   4460:  *****************************************************************************/
                   4461: static int32_t
                   4462: em_acquire_eeprom(struct em_hw *hw)
                   4463: {
                   4464:     struct em_eeprom_info *eeprom = &hw->eeprom;
                   4465:     uint32_t eecd, i=0;
                   4466:
                   4467:     DEBUGFUNC("em_acquire_eeprom");
                   4468:
                   4469:     if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
                   4470:         return -E1000_ERR_SWFW_SYNC;
                   4471:     eecd = E1000_READ_REG(hw, EECD);
                   4472:
                   4473:     if (hw->mac_type != em_82573) {
                   4474:         /* Request EEPROM Access */
                   4475:         if (hw->mac_type > em_82544) {
                   4476:             eecd |= E1000_EECD_REQ;
                   4477:             E1000_WRITE_REG(hw, EECD, eecd);
                   4478:             eecd = E1000_READ_REG(hw, EECD);
                   4479:             while ((!(eecd & E1000_EECD_GNT)) &&
                   4480:                   (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
                   4481:                 i++;
                   4482:                 usec_delay(5);
                   4483:                 eecd = E1000_READ_REG(hw, EECD);
                   4484:             }
                   4485:             if (!(eecd & E1000_EECD_GNT)) {
                   4486:                 eecd &= ~E1000_EECD_REQ;
                   4487:                 E1000_WRITE_REG(hw, EECD, eecd);
                   4488:                 DEBUGOUT("Could not acquire EEPROM grant\n");
                   4489:                 em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
                   4490:                 return -E1000_ERR_EEPROM;
                   4491:             }
                   4492:         }
                   4493:     }
                   4494:
                   4495:     /* Setup EEPROM for Read/Write */
                   4496:
                   4497:     if (eeprom->type == em_eeprom_microwire) {
                   4498:         /* Clear SK and DI */
                   4499:         eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
                   4500:         E1000_WRITE_REG(hw, EECD, eecd);
                   4501:
                   4502:         /* Set CS */
                   4503:         eecd |= E1000_EECD_CS;
                   4504:         E1000_WRITE_REG(hw, EECD, eecd);
                   4505:     } else if (eeprom->type == em_eeprom_spi) {
                   4506:         /* Clear SK and CS */
                   4507:         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
                   4508:         E1000_WRITE_REG(hw, EECD, eecd);
                   4509:         usec_delay(1);
                   4510:     }
                   4511:
                   4512:     return E1000_SUCCESS;
                   4513: }
                   4514:
                   4515: /******************************************************************************
                   4516:  * Returns EEPROM to a "standby" state
                   4517:  *
                   4518:  * hw - Struct containing variables accessed by shared code
                   4519:  *****************************************************************************/
                   4520: static void
                   4521: em_standby_eeprom(struct em_hw *hw)
                   4522: {
                   4523:     struct em_eeprom_info *eeprom = &hw->eeprom;
                   4524:     uint32_t eecd;
                   4525:
                   4526:     eecd = E1000_READ_REG(hw, EECD);
                   4527:
                   4528:     if (eeprom->type == em_eeprom_microwire) {
                   4529:         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
                   4530:         E1000_WRITE_REG(hw, EECD, eecd);
                   4531:         E1000_WRITE_FLUSH(hw);
                   4532:         usec_delay(eeprom->delay_usec);
                   4533:
                   4534:         /* Clock high */
                   4535:         eecd |= E1000_EECD_SK;
                   4536:         E1000_WRITE_REG(hw, EECD, eecd);
                   4537:         E1000_WRITE_FLUSH(hw);
                   4538:         usec_delay(eeprom->delay_usec);
                   4539:
                   4540:         /* Select EEPROM */
                   4541:         eecd |= E1000_EECD_CS;
                   4542:         E1000_WRITE_REG(hw, EECD, eecd);
                   4543:         E1000_WRITE_FLUSH(hw);
                   4544:         usec_delay(eeprom->delay_usec);
                   4545:
                   4546:         /* Clock low */
                   4547:         eecd &= ~E1000_EECD_SK;
                   4548:         E1000_WRITE_REG(hw, EECD, eecd);
                   4549:         E1000_WRITE_FLUSH(hw);
                   4550:         usec_delay(eeprom->delay_usec);
                   4551:     } else if (eeprom->type == em_eeprom_spi) {
                   4552:         /* Toggle CS to flush commands */
                   4553:         eecd |= E1000_EECD_CS;
                   4554:         E1000_WRITE_REG(hw, EECD, eecd);
                   4555:         E1000_WRITE_FLUSH(hw);
                   4556:         usec_delay(eeprom->delay_usec);
                   4557:         eecd &= ~E1000_EECD_CS;
                   4558:         E1000_WRITE_REG(hw, EECD, eecd);
                   4559:         E1000_WRITE_FLUSH(hw);
                   4560:         usec_delay(eeprom->delay_usec);
                   4561:     }
                   4562: }
                   4563:
                   4564: /******************************************************************************
                   4565:  * Terminates a command by inverting the EEPROM's chip select pin
                   4566:  *
                   4567:  * hw - Struct containing variables accessed by shared code
                   4568:  *****************************************************************************/
                   4569: static void
                   4570: em_release_eeprom(struct em_hw *hw)
                   4571: {
                   4572:     uint32_t eecd;
                   4573:
                   4574:     DEBUGFUNC("em_release_eeprom");
                   4575:
                   4576:     eecd = E1000_READ_REG(hw, EECD);
                   4577:
                   4578:     if (hw->eeprom.type == em_eeprom_spi) {
                   4579:         eecd |= E1000_EECD_CS;  /* Pull CS high */
                   4580:         eecd &= ~E1000_EECD_SK; /* Lower SCK */
                   4581:
                   4582:         E1000_WRITE_REG(hw, EECD, eecd);
                   4583:
                   4584:         usec_delay(hw->eeprom.delay_usec);
                   4585:     } else if (hw->eeprom.type == em_eeprom_microwire) {
                   4586:         /* cleanup eeprom */
                   4587:
                   4588:         /* CS on Microwire is active-high */
                   4589:         eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
                   4590:
                   4591:         E1000_WRITE_REG(hw, EECD, eecd);
                   4592:
                   4593:         /* Rising edge of clock */
                   4594:         eecd |= E1000_EECD_SK;
                   4595:         E1000_WRITE_REG(hw, EECD, eecd);
                   4596:         E1000_WRITE_FLUSH(hw);
                   4597:         usec_delay(hw->eeprom.delay_usec);
                   4598:
                   4599:         /* Falling edge of clock */
                   4600:         eecd &= ~E1000_EECD_SK;
                   4601:         E1000_WRITE_REG(hw, EECD, eecd);
                   4602:         E1000_WRITE_FLUSH(hw);
                   4603:         usec_delay(hw->eeprom.delay_usec);
                   4604:     }
                   4605:
                   4606:     /* Stop requesting EEPROM access */
                   4607:     if (hw->mac_type > em_82544) {
                   4608:         eecd &= ~E1000_EECD_REQ;
                   4609:         E1000_WRITE_REG(hw, EECD, eecd);
                   4610:     }
                   4611:
                   4612:     em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
                   4613: }
                   4614:
                   4615: /******************************************************************************
                   4616:  * Reads a 16 bit word from the EEPROM.
                   4617:  *
                   4618:  * hw - Struct containing variables accessed by shared code
                   4619:  *****************************************************************************/
                   4620: STATIC int32_t
                   4621: em_spi_eeprom_ready(struct em_hw *hw)
                   4622: {
                   4623:     uint16_t retry_count = 0;
                   4624:     uint8_t spi_stat_reg;
                   4625:
                   4626:     DEBUGFUNC("em_spi_eeprom_ready");
                   4627:
                   4628:     /* Read "Status Register" repeatedly until the LSB is cleared.  The
                   4629:      * EEPROM will signal that the command has been completed by clearing
                   4630:      * bit 0 of the internal status register.  If it's not cleared within
                   4631:      * 5 milliseconds, then error out.
                   4632:      */
                   4633:     retry_count = 0;
                   4634:     do {
                   4635:         em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
                   4636:                                 hw->eeprom.opcode_bits);
                   4637:         spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8);
                   4638:         if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
                   4639:             break;
                   4640:
                   4641:         usec_delay(5);
                   4642:         retry_count += 5;
                   4643:
                   4644:         em_standby_eeprom(hw);
                   4645:     } while (retry_count < EEPROM_MAX_RETRY_SPI);
                   4646:
                   4647:     /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
                   4648:      * only 0-5mSec on 5V devices)
                   4649:      */
                   4650:     if (retry_count >= EEPROM_MAX_RETRY_SPI) {
                   4651:         DEBUGOUT("SPI EEPROM Status error\n");
                   4652:         return -E1000_ERR_EEPROM;
                   4653:     }
                   4654:
                   4655:     return E1000_SUCCESS;
                   4656: }
                   4657:
                   4658: /******************************************************************************
                   4659:  * Reads a 16 bit word from the EEPROM.
                   4660:  *
                   4661:  * hw - Struct containing variables accessed by shared code
                   4662:  * offset - offset of  word in the EEPROM to read
                   4663:  * data - word read from the EEPROM
                   4664:  * words - number of words to read
                   4665:  *****************************************************************************/
                   4666: int32_t
                   4667: em_read_eeprom(struct em_hw *hw,
                   4668:                   uint16_t offset,
                   4669:                   uint16_t words,
                   4670:                   uint16_t *data)
                   4671: {
                   4672:     struct em_eeprom_info *eeprom = &hw->eeprom;
                   4673:     uint32_t i = 0;
                   4674:
                   4675:     DEBUGFUNC("em_read_eeprom");
                   4676:
                   4677:     /* If eeprom is not yet detected, do so now */
                   4678:     if (eeprom->word_size == 0)
                   4679:         em_init_eeprom_params(hw);
                   4680:
                   4681:     /* A check for invalid values:  offset too large, too many words, and not
                   4682:      * enough words.
                   4683:      */
                   4684:     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
                   4685:        (words == 0)) {
                   4686:         DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
                   4687:         return -E1000_ERR_EEPROM;
                   4688:     }
                   4689:
                   4690:     /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
                   4691:      * directly. In this case, we need to acquire the EEPROM so that
                   4692:      * FW or other port software does not interrupt.
                   4693:      */
                   4694:     if (em_is_onboard_nvm_eeprom(hw) == TRUE &&
                   4695:         hw->eeprom.use_eerd == FALSE) {
                   4696:         /* Prepare the EEPROM for bit-bang reading */
                   4697:         if (em_acquire_eeprom(hw) != E1000_SUCCESS)
                   4698:             return -E1000_ERR_EEPROM;
                   4699:     }
                   4700:
                   4701:     /* Eerd register EEPROM access requires no eeprom aquire/release */
                   4702:     if (eeprom->use_eerd == TRUE)
                   4703:         return em_read_eeprom_eerd(hw, offset, words, data);
                   4704:
                   4705:     /* ICH EEPROM access is done via the ICH flash controller */
                   4706:     if (eeprom->type == em_eeprom_ich8)
                   4707:         return em_read_eeprom_ich8(hw, offset, words, data);
                   4708:
                   4709:     /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
                   4710:      * acquired the EEPROM at this point, so any returns should relase it */
                   4711:     if (eeprom->type == em_eeprom_spi) {
                   4712:         uint16_t word_in;
                   4713:         uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
                   4714:
                   4715:         if (em_spi_eeprom_ready(hw)) {
                   4716:             em_release_eeprom(hw);
                   4717:             return -E1000_ERR_EEPROM;
                   4718:         }
                   4719:
                   4720:         em_standby_eeprom(hw);
                   4721:
                   4722:         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
                   4723:         if ((eeprom->address_bits == 8) && (offset >= 128))
                   4724:             read_opcode |= EEPROM_A8_OPCODE_SPI;
                   4725:
                   4726:         /* Send the READ command (opcode + addr)  */
                   4727:         em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
                   4728:         em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
                   4729:
                   4730:         /* Read the data.  The address of the eeprom internally increments with
                   4731:          * each byte (spi) being read, saving on the overhead of eeprom setup
                   4732:          * and tear-down.  The address counter will roll over if reading beyond
                   4733:          * the size of the eeprom, thus allowing the entire memory to be read
                   4734:          * starting from any offset. */
                   4735:         for (i = 0; i < words; i++) {
                   4736:             word_in = em_shift_in_ee_bits(hw, 16);
                   4737:             data[i] = (word_in >> 8) | (word_in << 8);
                   4738:         }
                   4739:     } else if (eeprom->type == em_eeprom_microwire) {
                   4740:         for (i = 0; i < words; i++) {
                   4741:             /* Send the READ command (opcode + addr)  */
                   4742:             em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
                   4743:                                     eeprom->opcode_bits);
                   4744:             em_shift_out_ee_bits(hw, (uint16_t)(offset + i),
                   4745:                                     eeprom->address_bits);
                   4746:
                   4747:             /* Read the data.  For microwire, each word requires the overhead
                   4748:              * of eeprom setup and tear-down. */
                   4749:             data[i] = em_shift_in_ee_bits(hw, 16);
                   4750:             em_standby_eeprom(hw);
                   4751:         }
                   4752:     }
                   4753:
                   4754:     /* End this read operation */
                   4755:     em_release_eeprom(hw);
                   4756:
                   4757:     return E1000_SUCCESS;
                   4758: }
                   4759:
                   4760: /******************************************************************************
                   4761:  * Reads a 16 bit word from the EEPROM using the EERD register.
                   4762:  *
                   4763:  * hw - Struct containing variables accessed by shared code
                   4764:  * offset - offset of  word in the EEPROM to read
                   4765:  * data - word read from the EEPROM
                   4766:  * words - number of words to read
                   4767:  *****************************************************************************/
                   4768: STATIC int32_t
                   4769: em_read_eeprom_eerd(struct em_hw *hw,
                   4770:                   uint16_t offset,
                   4771:                   uint16_t words,
                   4772:                   uint16_t *data)
                   4773: {
                   4774:     uint32_t i, eerd = 0;
                   4775:     int32_t error = 0;
                   4776:
                   4777:     for (i = 0; i < words; i++) {
                   4778:         eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
                   4779:                          E1000_EEPROM_RW_REG_START;
                   4780:
                   4781:         E1000_WRITE_REG(hw, EERD, eerd);
                   4782:         error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
                   4783:
                   4784:         if (error) {
                   4785:             break;
                   4786:         }
                   4787:         data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
                   4788:
                   4789:     }
                   4790:
                   4791:     return error;
                   4792: }
                   4793:
                   4794: /******************************************************************************
                   4795:  * Writes a 16 bit word from the EEPROM using the EEWR register.
                   4796:  *
                   4797:  * hw - Struct containing variables accessed by shared code
                   4798:  * offset - offset of  word in the EEPROM to read
                   4799:  * data - word read from the EEPROM
                   4800:  * words - number of words to read
                   4801:  *****************************************************************************/
                   4802: STATIC int32_t
                   4803: em_write_eeprom_eewr(struct em_hw *hw,
                   4804:                    uint16_t offset,
                   4805:                    uint16_t words,
                   4806:                    uint16_t *data)
                   4807: {
                   4808:     uint32_t    register_value = 0;
                   4809:     uint32_t    i              = 0;
                   4810:     int32_t     error          = 0;
                   4811:
                   4812:     if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
                   4813:         return -E1000_ERR_SWFW_SYNC;
                   4814:
                   4815:     for (i = 0; i < words; i++) {
                   4816:         register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
                   4817:                          ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
                   4818:                          E1000_EEPROM_RW_REG_START;
                   4819:
                   4820:         error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
                   4821:         if (error) {
                   4822:             break;
                   4823:         }
                   4824:
                   4825:         E1000_WRITE_REG(hw, EEWR, register_value);
                   4826:
                   4827:         error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
                   4828:
                   4829:         if (error) {
                   4830:             break;
                   4831:         }
                   4832:     }
                   4833:
                   4834:     em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
                   4835:     return error;
                   4836: }
                   4837:
                   4838: /******************************************************************************
                   4839:  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
                   4840:  *
                   4841:  * hw - Struct containing variables accessed by shared code
                   4842:  *****************************************************************************/
                   4843: STATIC int32_t
                   4844: em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
                   4845: {
                   4846:     uint32_t attempts = 100000;
                   4847:     uint32_t i, reg = 0;
                   4848:     int32_t done = E1000_ERR_EEPROM;
                   4849:
                   4850:     for (i = 0; i < attempts; i++) {
                   4851:         if (eerd == E1000_EEPROM_POLL_READ)
                   4852:             reg = E1000_READ_REG(hw, EERD);
                   4853:         else
                   4854:             reg = E1000_READ_REG(hw, EEWR);
                   4855:
                   4856:         if (reg & E1000_EEPROM_RW_REG_DONE) {
                   4857:             done = E1000_SUCCESS;
                   4858:             break;
                   4859:         }
                   4860:         usec_delay(5);
                   4861:     }
                   4862:
                   4863:     return done;
                   4864: }
                   4865:
                   4866: /***************************************************************************
                   4867: * Description:     Determines if the onboard NVM is FLASH or EEPROM.
                   4868: *
                   4869: * hw - Struct containing variables accessed by shared code
                   4870: ****************************************************************************/
                   4871: STATIC boolean_t
                   4872: em_is_onboard_nvm_eeprom(struct em_hw *hw)
                   4873: {
                   4874:     uint32_t eecd = 0;
                   4875:
                   4876:     DEBUGFUNC("em_is_onboard_nvm_eeprom");
                   4877:
                   4878:     if (hw->mac_type == em_ich8lan)
                   4879:         return FALSE;
                   4880:
                   4881:     if (hw->mac_type == em_82573) {
                   4882:         eecd = E1000_READ_REG(hw, EECD);
                   4883:
                   4884:         /* Isolate bits 15 & 16 */
                   4885:         eecd = ((eecd >> 15) & 0x03);
                   4886:
                   4887:         /* If both bits are set, device is Flash type */
                   4888:         if (eecd == 0x03) {
                   4889:             return FALSE;
                   4890:         }
                   4891:     }
                   4892:     return TRUE;
                   4893: }
                   4894:
                   4895: /******************************************************************************
                   4896:  * Verifies that the EEPROM has a valid checksum
                   4897:  *
                   4898:  * hw - Struct containing variables accessed by shared code
                   4899:  *
                   4900:  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
                   4901:  * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
                   4902:  * valid.
                   4903:  *****************************************************************************/
                   4904: int32_t
                   4905: em_validate_eeprom_checksum(struct em_hw *hw)
                   4906: {
                   4907:     uint16_t checksum = 0;
                   4908:     uint16_t i, eeprom_data;
                   4909:
                   4910:     DEBUGFUNC("em_validate_eeprom_checksum");
                   4911:
                   4912:     if ((hw->mac_type == em_82573) &&
                   4913:         (em_is_onboard_nvm_eeprom(hw) == FALSE)) {
                   4914:         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
                   4915:          * 10h-12h.  Checksum may need to be fixed. */
                   4916:         em_read_eeprom(hw, 0x10, 1, &eeprom_data);
                   4917:         if ((eeprom_data & 0x10) == 0) {
                   4918:             /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
                   4919:              * has already been fixed.  If the checksum is still wrong and this
                   4920:              * bit is a 1, we need to return bad checksum.  Otherwise, we need
                   4921:              * to set this bit to a 1 and update the checksum. */
                   4922:             em_read_eeprom(hw, 0x23, 1, &eeprom_data);
                   4923:             if ((eeprom_data & 0x8000) == 0) {
                   4924:                 eeprom_data |= 0x8000;
                   4925:                 em_write_eeprom(hw, 0x23, 1, &eeprom_data);
                   4926:                 em_update_eeprom_checksum(hw);
                   4927:             }
                   4928:         }
                   4929:     }
                   4930:
                   4931:     if (hw->mac_type == em_ich8lan) {
                   4932:         /* Drivers must allocate the shadow ram structure for the
                   4933:          * EEPROM checksum to be updated.  Otherwise, this bit as well
                   4934:          * as the checksum must both be set correctly for this
                   4935:          * validation to pass.
                   4936:          */
                   4937:         em_read_eeprom(hw, 0x19, 1, &eeprom_data);
                   4938:         if ((eeprom_data & 0x40) == 0) {
                   4939:             eeprom_data |= 0x40;
                   4940:             em_write_eeprom(hw, 0x19, 1, &eeprom_data);
                   4941:             em_update_eeprom_checksum(hw);
                   4942:         }
                   4943:     }
                   4944:
                   4945:     for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
                   4946:         if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
                   4947:             DEBUGOUT("EEPROM Read Error\n");
                   4948:             return -E1000_ERR_EEPROM;
                   4949:         }
                   4950:         checksum += eeprom_data;
                   4951:     }
                   4952:
                   4953:     if (checksum == (uint16_t) EEPROM_SUM)
                   4954:         return E1000_SUCCESS;
                   4955:     else {
                   4956:         DEBUGOUT("EEPROM Checksum Invalid\n");
                   4957:         return -E1000_ERR_EEPROM;
                   4958:     }
                   4959: }
                   4960:
                   4961: /******************************************************************************
                   4962:  * Calculates the EEPROM checksum and writes it to the EEPROM
                   4963:  *
                   4964:  * hw - Struct containing variables accessed by shared code
                   4965:  *
                   4966:  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
                   4967:  * Writes the difference to word offset 63 of the EEPROM.
                   4968:  *****************************************************************************/
                   4969: int32_t
                   4970: em_update_eeprom_checksum(struct em_hw *hw)
                   4971: {
                   4972:     uint32_t ctrl_ext;
                   4973:     uint16_t checksum = 0;
                   4974:     uint16_t i, eeprom_data;
                   4975:
                   4976:     DEBUGFUNC("em_update_eeprom_checksum");
                   4977:
                   4978:     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
                   4979:         if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
                   4980:             DEBUGOUT("EEPROM Read Error\n");
                   4981:             return -E1000_ERR_EEPROM;
                   4982:         }
                   4983:         checksum += eeprom_data;
                   4984:     }
                   4985:     checksum = (uint16_t) EEPROM_SUM - checksum;
                   4986:     if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
                   4987:         DEBUGOUT("EEPROM Write Error\n");
                   4988:         return -E1000_ERR_EEPROM;
                   4989:     } else if (hw->eeprom.type == em_eeprom_flash) {
                   4990:         em_commit_shadow_ram(hw);
                   4991:     } else if (hw->eeprom.type == em_eeprom_ich8) {
                   4992:         em_commit_shadow_ram(hw);
                   4993:         /* Reload the EEPROM, or else modifications will not appear
                   4994:          * until after next adapter reset. */
                   4995:         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                   4996:         ctrl_ext |= E1000_CTRL_EXT_EE_RST;
                   4997:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                   4998:         msec_delay(10);
                   4999:     }
                   5000:     return E1000_SUCCESS;
                   5001: }
                   5002:
                   5003: /******************************************************************************
                   5004:  * Parent function for writing words to the different EEPROM types.
                   5005:  *
                   5006:  * hw - Struct containing variables accessed by shared code
                   5007:  * offset - offset within the EEPROM to be written to
                   5008:  * words - number of words to write
                   5009:  * data - 16 bit word to be written to the EEPROM
                   5010:  *
                   5011:  * If em_update_eeprom_checksum is not called after this function, the
                   5012:  * EEPROM will most likely contain an invalid checksum.
                   5013:  *****************************************************************************/
                   5014: int32_t
                   5015: em_write_eeprom(struct em_hw *hw,
                   5016:                    uint16_t offset,
                   5017:                    uint16_t words,
                   5018:                    uint16_t *data)
                   5019: {
                   5020:     struct em_eeprom_info *eeprom = &hw->eeprom;
                   5021:     int32_t status = 0;
                   5022:
                   5023:     DEBUGFUNC("em_write_eeprom");
                   5024:
                   5025:     /* If eeprom is not yet detected, do so now */
                   5026:     if (eeprom->word_size == 0)
                   5027:         em_init_eeprom_params(hw);
                   5028:
                   5029:     /* A check for invalid values:  offset too large, too many words, and not
                   5030:      * enough words.
                   5031:      */
                   5032:     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
                   5033:        (words == 0)) {
                   5034:         DEBUGOUT("\"words\" parameter out of bounds\n");
                   5035:         return -E1000_ERR_EEPROM;
                   5036:     }
                   5037:
                   5038:     /* 82573 writes only through eewr */
                   5039:     if (eeprom->use_eewr == TRUE)
                   5040:         return em_write_eeprom_eewr(hw, offset, words, data);
                   5041:
                   5042:     if (eeprom->type == em_eeprom_ich8)
                   5043:         return em_write_eeprom_ich8(hw, offset, words, data);
                   5044:
                   5045:     /* Prepare the EEPROM for writing  */
                   5046:     if (em_acquire_eeprom(hw) != E1000_SUCCESS)
                   5047:         return -E1000_ERR_EEPROM;
                   5048:
                   5049:     if (eeprom->type == em_eeprom_microwire) {
                   5050:         status = em_write_eeprom_microwire(hw, offset, words, data);
                   5051:     } else {
                   5052:         status = em_write_eeprom_spi(hw, offset, words, data);
                   5053:         msec_delay(10);
                   5054:     }
                   5055:
                   5056:     /* Done with writing */
                   5057:     em_release_eeprom(hw);
                   5058:
                   5059:     return status;
                   5060: }
                   5061:
                   5062: /******************************************************************************
                   5063:  * Writes a 16 bit word to a given offset in an SPI EEPROM.
                   5064:  *
                   5065:  * hw - Struct containing variables accessed by shared code
                   5066:  * offset - offset within the EEPROM to be written to
                   5067:  * words - number of words to write
                   5068:  * data - pointer to array of 8 bit words to be written to the EEPROM
                   5069:  *
                   5070:  *****************************************************************************/
                   5071: STATIC int32_t
                   5072: em_write_eeprom_spi(struct em_hw *hw,
                   5073:                        uint16_t offset,
                   5074:                        uint16_t words,
                   5075:                        uint16_t *data)
                   5076: {
                   5077:     struct em_eeprom_info *eeprom = &hw->eeprom;
                   5078:     uint16_t widx = 0;
                   5079:
                   5080:     DEBUGFUNC("em_write_eeprom_spi");
                   5081:
                   5082:     while (widx < words) {
                   5083:         uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
                   5084:
                   5085:         if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
                   5086:
                   5087:         em_standby_eeprom(hw);
                   5088:
                   5089:         /*  Send the WRITE ENABLE command (8 bit opcode )  */
                   5090:         em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
                   5091:                                     eeprom->opcode_bits);
                   5092:
                   5093:         em_standby_eeprom(hw);
                   5094:
                   5095:         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
                   5096:         if ((eeprom->address_bits == 8) && (offset >= 128))
                   5097:             write_opcode |= EEPROM_A8_OPCODE_SPI;
                   5098:
                   5099:         /* Send the Write command (8-bit opcode + addr) */
                   5100:         em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
                   5101:
                   5102:         em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
                   5103:                                 eeprom->address_bits);
                   5104:
                   5105:         /* Send the data */
                   5106:
                   5107:         /* Loop to allow for up to whole page write (32 bytes) of eeprom */
                   5108:         while (widx < words) {
                   5109:             uint16_t word_out = data[widx];
                   5110:             word_out = (word_out >> 8) | (word_out << 8);
                   5111:             em_shift_out_ee_bits(hw, word_out, 16);
                   5112:             widx++;
                   5113:
                   5114:             /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
                   5115:              * operation, while the smaller eeproms are capable of an 8-byte
                   5116:              * PAGE WRITE operation.  Break the inner loop to pass new address
                   5117:              */
                   5118:             if ((((offset + widx)*2) % eeprom->page_size) == 0) {
                   5119:                 em_standby_eeprom(hw);
                   5120:                 break;
                   5121:             }
                   5122:         }
                   5123:     }
                   5124:
                   5125:     return E1000_SUCCESS;
                   5126: }
                   5127:
                   5128: /******************************************************************************
                   5129:  * Writes a 16 bit word to a given offset in a Microwire EEPROM.
                   5130:  *
                   5131:  * hw - Struct containing variables accessed by shared code
                   5132:  * offset - offset within the EEPROM to be written to
                   5133:  * words - number of words to write
                   5134:  * data - pointer to array of 16 bit words to be written to the EEPROM
                   5135:  *
                   5136:  *****************************************************************************/
                   5137: STATIC int32_t
                   5138: em_write_eeprom_microwire(struct em_hw *hw,
                   5139:                              uint16_t offset,
                   5140:                              uint16_t words,
                   5141:                              uint16_t *data)
                   5142: {
                   5143:     struct em_eeprom_info *eeprom = &hw->eeprom;
                   5144:     uint32_t eecd;
                   5145:     uint16_t words_written = 0;
                   5146:     uint16_t i = 0;
                   5147:
                   5148:     DEBUGFUNC("em_write_eeprom_microwire");
                   5149:
                   5150:     /* Send the write enable command to the EEPROM (3-bit opcode plus
                   5151:      * 6/8-bit dummy address beginning with 11).  It's less work to include
                   5152:      * the 11 of the dummy address as part of the opcode than it is to shift
                   5153:      * it over the correct number of bits for the address.  This puts the
                   5154:      * EEPROM into write/erase mode.
                   5155:      */
                   5156:     em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
                   5157:                             (uint16_t)(eeprom->opcode_bits + 2));
                   5158:
                   5159:     em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
                   5160:
                   5161:     /* Prepare the EEPROM */
                   5162:     em_standby_eeprom(hw);
                   5163:
                   5164:     while (words_written < words) {
                   5165:         /* Send the Write command (3-bit opcode + addr) */
                   5166:         em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
                   5167:                                 eeprom->opcode_bits);
                   5168:
                   5169:         em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
                   5170:                                 eeprom->address_bits);
                   5171:
                   5172:         /* Send the data */
                   5173:         em_shift_out_ee_bits(hw, data[words_written], 16);
                   5174:
                   5175:         /* Toggle the CS line.  This in effect tells the EEPROM to execute
                   5176:          * the previous command.
                   5177:          */
                   5178:         em_standby_eeprom(hw);
                   5179:
                   5180:         /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
                   5181:          * signal that the command has been completed by raising the DO signal.
                   5182:          * If DO does not go high in 10 milliseconds, then error out.
                   5183:          */
                   5184:         for (i = 0; i < 200; i++) {
                   5185:             eecd = E1000_READ_REG(hw, EECD);
                   5186:             if (eecd & E1000_EECD_DO) break;
                   5187:             usec_delay(50);
                   5188:         }
                   5189:         if (i == 200) {
                   5190:             DEBUGOUT("EEPROM Write did not complete\n");
                   5191:             return -E1000_ERR_EEPROM;
                   5192:         }
                   5193:
                   5194:         /* Recover from write */
                   5195:         em_standby_eeprom(hw);
                   5196:
                   5197:         words_written++;
                   5198:     }
                   5199:
                   5200:     /* Send the write disable command to the EEPROM (3-bit opcode plus
                   5201:      * 6/8-bit dummy address beginning with 10).  It's less work to include
                   5202:      * the 10 of the dummy address as part of the opcode than it is to shift
                   5203:      * it over the correct number of bits for the address.  This takes the
                   5204:      * EEPROM out of write/erase mode.
                   5205:      */
                   5206:     em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
                   5207:                             (uint16_t)(eeprom->opcode_bits + 2));
                   5208:
                   5209:     em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
                   5210:
                   5211:     return E1000_SUCCESS;
                   5212: }
                   5213:
                   5214: /******************************************************************************
                   5215:  * Flushes the cached eeprom to NVM. This is done by saving the modified values
                   5216:  * in the eeprom cache and the non modified values in the currently active bank
                   5217:  * to the new bank.
                   5218:  *
                   5219:  * hw - Struct containing variables accessed by shared code
                   5220:  * offset - offset of  word in the EEPROM to read
                   5221:  * data - word read from the EEPROM
                   5222:  * words - number of words to read
                   5223:  *****************************************************************************/
                   5224: STATIC int32_t
                   5225: em_commit_shadow_ram(struct em_hw *hw)
                   5226: {
                   5227:     uint32_t attempts = 100000;
                   5228:     uint32_t eecd = 0;
                   5229:     uint32_t flop = 0;
                   5230:     uint32_t i = 0;
                   5231:     int32_t error = E1000_SUCCESS;
                   5232:     uint32_t old_bank_offset = 0;
                   5233:     uint32_t new_bank_offset = 0;
                   5234:     uint8_t low_byte = 0;
                   5235:     uint8_t high_byte = 0;
                   5236:     boolean_t sector_write_failed = FALSE;
                   5237:
                   5238:     if (hw->mac_type == em_82573) {
                   5239:         /* The flop register will be used to determine if flash type is STM */
                   5240:         flop = E1000_READ_REG(hw, FLOP);
                   5241:         for (i=0; i < attempts; i++) {
                   5242:             eecd = E1000_READ_REG(hw, EECD);
                   5243:             if ((eecd & E1000_EECD_FLUPD) == 0) {
                   5244:                 break;
                   5245:             }
                   5246:             usec_delay(5);
                   5247:         }
                   5248:
                   5249:         if (i == attempts) {
                   5250:             return -E1000_ERR_EEPROM;
                   5251:         }
                   5252:
                   5253:         /* If STM opcode located in bits 15:8 of flop, reset firmware */
                   5254:         if ((flop & 0xFF00) == E1000_STM_OPCODE) {
                   5255:             E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
                   5256:         }
                   5257:
                   5258:         /* Perform the flash update */
                   5259:         E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
                   5260:
                   5261:         for (i=0; i < attempts; i++) {
                   5262:             eecd = E1000_READ_REG(hw, EECD);
                   5263:             if ((eecd & E1000_EECD_FLUPD) == 0) {
                   5264:                 break;
                   5265:             }
                   5266:             usec_delay(5);
                   5267:         }
                   5268:
                   5269:         if (i == attempts) {
                   5270:             return -E1000_ERR_EEPROM;
                   5271:         }
                   5272:     }
                   5273:
                   5274:     if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) {
                   5275:         /* We're writing to the opposite bank so if we're on bank 1,
                   5276:          * write to bank 0 etc.  We also need to erase the segment that
                   5277:          * is going to be written */
                   5278:         if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
                   5279:             new_bank_offset = hw->flash_bank_size * 2;
                   5280:             old_bank_offset = 0;
                   5281:             em_erase_ich8_4k_segment(hw, 1);
                   5282:         } else {
                   5283:             old_bank_offset = hw->flash_bank_size * 2;
                   5284:             new_bank_offset = 0;
                   5285:             em_erase_ich8_4k_segment(hw, 0);
                   5286:         }
                   5287:
                   5288:         sector_write_failed = FALSE;
                   5289:         /* Loop for every byte in the shadow RAM,
                   5290:          * which is in units of words. */
                   5291:         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
                   5292:             /* Determine whether to write the value stored
                   5293:              * in the other NVM bank or a modified value stored
                   5294:              * in the shadow RAM */
                   5295:             if (hw->eeprom_shadow_ram[i].modified == TRUE) {
                   5296:                 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
                   5297:                 usec_delay(100);
                   5298:                 error = em_verify_write_ich8_byte(hw,
                   5299:                             (i << 1) + new_bank_offset, low_byte);
                   5300:
                   5301:                 if (error != E1000_SUCCESS)
                   5302:                     sector_write_failed = TRUE;
                   5303:                 else {
                   5304:                     high_byte =
                   5305:                         (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
                   5306:                     usec_delay(100);
                   5307:                 }
                   5308:             } else {
                   5309:                 em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
                   5310:                                      &low_byte);
                   5311:                 usec_delay(100);
                   5312:                 error = em_verify_write_ich8_byte(hw,
                   5313:                             (i << 1) + new_bank_offset, low_byte);
                   5314:
                   5315:                 if (error != E1000_SUCCESS)
                   5316:                     sector_write_failed = TRUE;
                   5317:                 else {
                   5318:                     em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
                   5319:                                          &high_byte);
                   5320:                     usec_delay(100);
                   5321:                 }
                   5322:             }
                   5323:
                   5324:             /* If the write of the low byte was successful, go ahread and
                   5325:              * write the high byte while checking to make sure that if it
                   5326:              * is the signature byte, then it is handled properly */
                   5327:             if (sector_write_failed == FALSE) {
                   5328:                 /* If the word is 0x13, then make sure the signature bits
                   5329:                  * (15:14) are 11b until the commit has completed.
                   5330:                  * This will allow us to write 10b which indicates the
                   5331:                  * signature is valid.  We want to do this after the write
                   5332:                  * has completed so that we don't mark the segment valid
                   5333:                  * while the write is still in progress */
                   5334:                 if (i == E1000_ICH_NVM_SIG_WORD)
                   5335:                     high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
                   5336:
                   5337:                 error = em_verify_write_ich8_byte(hw,
                   5338:                             (i << 1) + new_bank_offset + 1, high_byte);
                   5339:                 if (error != E1000_SUCCESS)
                   5340:                     sector_write_failed = TRUE;
                   5341:
                   5342:             } else {
                   5343:                 /* If the write failed then break from the loop and
                   5344:                  * return an error */
                   5345:                 break;
                   5346:             }
                   5347:         }
                   5348:
                   5349:         /* Don't bother writing the segment valid bits if sector
                   5350:          * programming failed. */
                   5351:         if (sector_write_failed == FALSE) {
                   5352:             /* Finally validate the new segment by setting bit 15:14
                   5353:              * to 10b in word 0x13 , this can be done without an
                   5354:              * erase as well since these bits are 11 to start with
                   5355:              * and we need to change bit 14 to 0b */
                   5356:             em_read_ich8_byte(hw,
                   5357:                                  E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
                   5358:                                  &high_byte);
                   5359:             high_byte &= 0xBF;
                   5360:             error = em_verify_write_ich8_byte(hw,
                   5361:                         E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
                   5362:             /* And invalidate the previously valid segment by setting
                   5363:              * its signature word (0x13) high_byte to 0b. This can be
                   5364:              * done without an erase because flash erase sets all bits
                   5365:              * to 1's. We can write 1's to 0's without an erase */
                   5366:             if (error == E1000_SUCCESS) {
                   5367:                 error = em_verify_write_ich8_byte(hw,
                   5368:                             E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
                   5369:             }
                   5370:
                   5371:             /* Clear the now not used entry in the cache */
                   5372:             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
                   5373:                 hw->eeprom_shadow_ram[i].modified = FALSE;
                   5374:                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
                   5375:             }
                   5376:         }
                   5377:     }
                   5378:
                   5379:     return error;
                   5380: }
                   5381:
                   5382: /******************************************************************************
                   5383:  * Reads the adapter's part number from the EEPROM
                   5384:  *
                   5385:  * hw - Struct containing variables accessed by shared code
                   5386:  * part_num - Adapter's part number
                   5387:  *****************************************************************************/
                   5388: int32_t
                   5389: em_read_part_num(struct em_hw *hw,
                   5390:                     uint32_t *part_num)
                   5391: {
                   5392:     uint16_t offset = EEPROM_PBA_BYTE_1;
                   5393:     uint16_t eeprom_data;
                   5394:
                   5395:     DEBUGFUNC("em_read_part_num");
                   5396:
                   5397:     /* Get word 0 from EEPROM */
                   5398:     if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
                   5399:         DEBUGOUT("EEPROM Read Error\n");
                   5400:         return -E1000_ERR_EEPROM;
                   5401:     }
                   5402:     /* Save word 0 in upper half of part_num */
                   5403:     *part_num = (uint32_t) (eeprom_data << 16);
                   5404:
                   5405:     /* Get word 1 from EEPROM */
                   5406:     if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
                   5407:         DEBUGOUT("EEPROM Read Error\n");
                   5408:         return -E1000_ERR_EEPROM;
                   5409:     }
                   5410:     /* Save word 1 in lower half of part_num */
                   5411:     *part_num |= eeprom_data;
                   5412:
                   5413:     return E1000_SUCCESS;
                   5414: }
                   5415:
                   5416: /******************************************************************************
                   5417:  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
                   5418:  * second function of dual function devices
                   5419:  *
                   5420:  * hw - Struct containing variables accessed by shared code
                   5421:  *****************************************************************************/
                   5422: int32_t
                   5423: em_read_mac_addr(struct em_hw * hw)
                   5424: {
                   5425:     uint16_t offset;
                   5426:     uint16_t eeprom_data, i;
                   5427:
                   5428:     DEBUGFUNC("em_read_mac_addr");
                   5429:
                   5430:     for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
                   5431:         offset = i >> 1;
                   5432:         if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
                   5433:             DEBUGOUT("EEPROM Read Error\n");
                   5434:             return -E1000_ERR_EEPROM;
                   5435:         }
                   5436:         hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
                   5437:         hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
                   5438:     }
                   5439:
                   5440:     switch (hw->mac_type) {
                   5441:     default:
                   5442:         break;
                   5443:     case em_82546:
                   5444:     case em_82546_rev_3:
                   5445:     case em_82571:
                   5446:     case em_80003es2lan:
                   5447:         if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
                   5448:             hw->perm_mac_addr[5] ^= 0x01;
                   5449:         break;
                   5450:     }
                   5451:
                   5452:     for (i = 0; i < NODE_ADDRESS_SIZE; i++)
                   5453:         hw->mac_addr[i] = hw->perm_mac_addr[i];
                   5454:     return E1000_SUCCESS;
                   5455: }
                   5456:
                   5457: /******************************************************************************
                   5458:  * Initializes receive address filters.
                   5459:  *
                   5460:  * hw - Struct containing variables accessed by shared code
                   5461:  *
                   5462:  * Places the MAC address in receive address register 0 and clears the rest
                   5463:  * of the receive addresss registers. Clears the multicast table. Assumes
                   5464:  * the receiver is in reset when the routine is called.
                   5465:  *****************************************************************************/
                   5466: STATIC void
                   5467: em_init_rx_addrs(struct em_hw *hw)
                   5468: {
                   5469:     uint32_t i;
                   5470:     uint32_t rar_num;
                   5471:
                   5472:     DEBUGFUNC("em_init_rx_addrs");
                   5473:
                   5474:     /* Setup the receive address. */
                   5475:     DEBUGOUT("Programming MAC Address into RAR[0]\n");
                   5476:
                   5477:     em_rar_set(hw, hw->mac_addr, 0);
                   5478:
                   5479:     rar_num = E1000_RAR_ENTRIES;
                   5480:
                   5481:     /* Reserve a spot for the Locally Administered Address to work around
                   5482:      * an 82571 issue in which a reset on one port will reload the MAC on
                   5483:      * the other port. */
                   5484:     if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
                   5485:         rar_num -= 1;
                   5486:     if (hw->mac_type == em_ich8lan)
                   5487:         rar_num = E1000_RAR_ENTRIES_ICH8LAN;
                   5488:
                   5489:     /* Zero out the other 15 receive addresses. */
                   5490:     DEBUGOUT("Clearing RAR[1-15]\n");
                   5491:     for (i = 1; i < rar_num; i++) {
                   5492:         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
                   5493:         E1000_WRITE_FLUSH(hw);
                   5494:         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
                   5495:         E1000_WRITE_FLUSH(hw);
                   5496:     }
                   5497: }
                   5498:
                   5499: /******************************************************************************
                   5500:  * Updates the MAC's list of multicast addresses.
                   5501:  *
                   5502:  * hw - Struct containing variables accessed by shared code
                   5503:  * mc_addr_list - the list of new multicast addresses
                   5504:  * mc_addr_count - number of addresses
                   5505:  * pad - number of bytes between addresses in the list
                   5506:  * rar_used_count - offset where to start adding mc addresses into the RAR's
                   5507:  *
                   5508:  * The given list replaces any existing list. Clears the last 15 receive
                   5509:  * address registers and the multicast table. Uses receive address registers
                   5510:  * for the first 15 multicast addresses, and hashes the rest into the
                   5511:  * multicast table.
                   5512:  *****************************************************************************/
                   5513: void
                   5514: em_mc_addr_list_update(struct em_hw *hw,
                   5515:                           uint8_t *mc_addr_list,
                   5516:                           uint32_t mc_addr_count,
                   5517:                           uint32_t pad,
                   5518:                           uint32_t rar_used_count)
                   5519: {
                   5520:     uint32_t hash_value;
                   5521:     uint32_t i;
                   5522:     uint32_t num_rar_entry;
                   5523:     uint32_t num_mta_entry;
                   5524:
                   5525:     DEBUGFUNC("em_mc_addr_list_update");
                   5526:
                   5527:     /* Set the new number of MC addresses that we are being requested to use. */
                   5528:     hw->num_mc_addrs = mc_addr_count;
                   5529:
                   5530:     /* Clear RAR[1-15] */
                   5531:     DEBUGOUT(" Clearing RAR[1-15]\n");
                   5532:     num_rar_entry = E1000_RAR_ENTRIES;
                   5533:     if (hw->mac_type == em_ich8lan)
                   5534:         num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
                   5535:
                   5536:     /* Reserve a spot for the Locally Administered Address to work around
                   5537:      * an 82571 issue in which a reset on one port will reload the MAC on
                   5538:      * the other port. */
                   5539:     if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
                   5540:         num_rar_entry -= 1;
                   5541:
                   5542:     for (i = rar_used_count; i < num_rar_entry; i++) {
                   5543:         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
                   5544:         E1000_WRITE_FLUSH(hw);
                   5545:         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
                   5546:         E1000_WRITE_FLUSH(hw);
                   5547:     }
                   5548:
                   5549:     /* Clear the MTA */
                   5550:     DEBUGOUT(" Clearing MTA\n");
                   5551:     num_mta_entry = E1000_NUM_MTA_REGISTERS;
                   5552:     if (hw->mac_type == em_ich8lan)
                   5553:         num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
                   5554:
                   5555:     for (i = 0; i < num_mta_entry; i++) {
                   5556:         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
                   5557:         E1000_WRITE_FLUSH(hw);
                   5558:     }
                   5559:
                   5560:     /* Add the new addresses */
                   5561:     for (i = 0; i < mc_addr_count; i++) {
                   5562:         DEBUGOUT(" Adding the multicast addresses:\n");
                   5563:         DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
                   5564:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
                   5565:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
                   5566:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
                   5567:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
                   5568:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
                   5569:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
                   5570:
                   5571:         hash_value = em_hash_mc_addr(hw,
                   5572:                                         mc_addr_list +
                   5573:                                         (i * (ETH_LENGTH_OF_ADDRESS + pad)));
                   5574:
                   5575:         DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
                   5576:
                   5577:         /* Place this multicast address in the RAR if there is room, *
                   5578:          * else put it in the MTA
                   5579:          */
                   5580:         if (rar_used_count < num_rar_entry) {
                   5581:             em_rar_set(hw,
                   5582:                           mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
                   5583:                           rar_used_count);
                   5584:             rar_used_count++;
                   5585:         } else {
                   5586:             em_mta_set(hw, hash_value);
                   5587:         }
                   5588:     }
                   5589:     DEBUGOUT("MC Update Complete\n");
                   5590: }
                   5591:
                   5592: /******************************************************************************
                   5593:  * Hashes an address to determine its location in the multicast table
                   5594:  *
                   5595:  * hw - Struct containing variables accessed by shared code
                   5596:  * mc_addr - the multicast address to hash
                   5597:  *****************************************************************************/
                   5598: uint32_t
                   5599: em_hash_mc_addr(struct em_hw *hw,
                   5600:                    uint8_t *mc_addr)
                   5601: {
                   5602:     uint32_t hash_value = 0;
                   5603:
                   5604:     /* The portion of the address that is used for the hash table is
                   5605:      * determined by the mc_filter_type setting.
                   5606:      */
                   5607:     switch (hw->mc_filter_type) {
                   5608:     /* [0] [1] [2] [3] [4] [5]
                   5609:      * 01  AA  00  12  34  56
                   5610:      * LSB                 MSB
                   5611:      */
                   5612:     case 0:
                   5613:         if (hw->mac_type == em_ich8lan) {
                   5614:             /* [47:38] i.e. 0x158 for above example address */
                   5615:             hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
                   5616:         } else {
                   5617:             /* [47:36] i.e. 0x563 for above example address */
                   5618:             hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
                   5619:         }
                   5620:         break;
                   5621:     case 1:
                   5622:         if (hw->mac_type == em_ich8lan) {
                   5623:             /* [46:37] i.e. 0x2B1 for above example address */
                   5624:             hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
                   5625:         } else {
                   5626:             /* [46:35] i.e. 0xAC6 for above example address */
                   5627:             hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
                   5628:         }
                   5629:         break;
                   5630:     case 2:
                   5631:         if (hw->mac_type == em_ich8lan) {
                   5632:             /*[45:36] i.e. 0x163 for above example address */
                   5633:             hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
                   5634:         } else {
                   5635:             /* [45:34] i.e. 0x5D8 for above example address */
                   5636:             hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
                   5637:         }
                   5638:         break;
                   5639:     case 3:
                   5640:         if (hw->mac_type == em_ich8lan) {
                   5641:             /* [43:34] i.e. 0x18D for above example address */
                   5642:             hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
                   5643:         } else {
                   5644:             /* [43:32] i.e. 0x634 for above example address */
                   5645:             hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
                   5646:         }
                   5647:         break;
                   5648:     }
                   5649:
                   5650:     hash_value &= 0xFFF;
                   5651:     if (hw->mac_type == em_ich8lan)
                   5652:         hash_value &= 0x3FF;
                   5653:
                   5654:     return hash_value;
                   5655: }
                   5656:
                   5657: /******************************************************************************
                   5658:  * Sets the bit in the multicast table corresponding to the hash value.
                   5659:  *
                   5660:  * hw - Struct containing variables accessed by shared code
                   5661:  * hash_value - Multicast address hash value
                   5662:  *****************************************************************************/
                   5663: void
                   5664: em_mta_set(struct em_hw *hw,
                   5665:               uint32_t hash_value)
                   5666: {
                   5667:     uint32_t hash_bit, hash_reg;
                   5668:     uint32_t mta;
                   5669:     uint32_t temp;
                   5670:
                   5671:     /* The MTA is a register array of 128 32-bit registers.
                   5672:      * It is treated like an array of 4096 bits.  We want to set
                   5673:      * bit BitArray[hash_value]. So we figure out what register
                   5674:      * the bit is in, read it, OR in the new bit, then write
                   5675:      * back the new value.  The register is determined by the
                   5676:      * upper 7 bits of the hash value and the bit within that
                   5677:      * register are determined by the lower 5 bits of the value.
                   5678:      */
                   5679:     hash_reg = (hash_value >> 5) & 0x7F;
                   5680:     if (hw->mac_type == em_ich8lan)
                   5681:         hash_reg &= 0x1F;
                   5682:
                   5683:     hash_bit = hash_value & 0x1F;
                   5684:
                   5685:     mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
                   5686:
                   5687:     mta |= (1 << hash_bit);
                   5688:
                   5689:     /* If we are on an 82544 and we are trying to write an odd offset
                   5690:      * in the MTA, save off the previous entry before writing and
                   5691:      * restore the old value after writing.
                   5692:      */
                   5693:     if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
                   5694:         temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
                   5695:         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
                   5696:         E1000_WRITE_FLUSH(hw);
                   5697:         E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
                   5698:         E1000_WRITE_FLUSH(hw);
                   5699:     } else {
                   5700:         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
                   5701:         E1000_WRITE_FLUSH(hw);
                   5702:     }
                   5703: }
                   5704:
                   5705: /******************************************************************************
                   5706:  * Puts an ethernet address into a receive address register.
                   5707:  *
                   5708:  * hw - Struct containing variables accessed by shared code
                   5709:  * addr - Address to put into receive address register
                   5710:  * index - Receive address register to write
                   5711:  *****************************************************************************/
                   5712: void
                   5713: em_rar_set(struct em_hw *hw,
                   5714:               uint8_t *addr,
                   5715:               uint32_t index)
                   5716: {
                   5717:     uint32_t rar_low, rar_high;
                   5718:
                   5719:     /* HW expects these in little endian so we reverse the byte order
                   5720:      * from network order (big endian) to little endian
                   5721:      */
                   5722:     rar_low = ((uint32_t) addr[0] |
                   5723:                ((uint32_t) addr[1] << 8) |
                   5724:                ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
                   5725:     rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
                   5726:
                   5727:     /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
                   5728:      * unit hang.
                   5729:      *
                   5730:      * Description:
                   5731:      * If there are any Rx frames queued up or otherwise present in the HW
                   5732:      * before RSS is enabled, and then we enable RSS, the HW Rx unit will
                   5733:      * hang.  To work around this issue, we have to disable receives and
                   5734:      * flush out all Rx frames before we enable RSS. To do so, we modify we
                   5735:      * redirect all Rx traffic to manageability and then reset the HW.
                   5736:      * This flushes away Rx frames, and (since the redirections to
                   5737:      * manageability persists across resets) keeps new ones from coming in
                   5738:      * while we work.  Then, we clear the Address Valid AV bit for all MAC
                   5739:      * addresses and undo the re-direction to manageability.
                   5740:      * Now, frames are coming in again, but the MAC won't accept them, so
                   5741:      * far so good.  We now proceed to initialize RSS (if necessary) and
                   5742:      * configure the Rx unit.  Last, we re-enable the AV bits and continue
                   5743:      * on our merry way.
                   5744:      */
                   5745:     switch (hw->mac_type) {
                   5746:     case em_82571:
                   5747:     case em_82572:
                   5748:     case em_80003es2lan:
                   5749:         if (hw->leave_av_bit_off == TRUE)
                   5750:             break;
                   5751:     default:
                   5752:         /* Indicate to hardware the Address is Valid. */
                   5753:         rar_high |= E1000_RAH_AV;
                   5754:         break;
                   5755:     }
                   5756:
                   5757:     E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
                   5758:     E1000_WRITE_FLUSH(hw);
                   5759:     E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
                   5760:     E1000_WRITE_FLUSH(hw);
                   5761: }
                   5762:
                   5763: /******************************************************************************
                   5764:  * Clears the VLAN filer table
                   5765:  *
                   5766:  * hw - Struct containing variables accessed by shared code
                   5767:  *****************************************************************************/
                   5768: STATIC void
                   5769: em_clear_vfta(struct em_hw *hw)
                   5770: {
                   5771:     uint32_t offset;
                   5772:     uint32_t vfta_value = 0;
                   5773:     uint32_t vfta_offset = 0;
                   5774:     uint32_t vfta_bit_in_reg = 0;
                   5775:
                   5776:     if (hw->mac_type == em_ich8lan)
                   5777:         return;
                   5778:
                   5779:     if (hw->mac_type == em_82573) {
                   5780:         if (hw->mng_cookie.vlan_id != 0) {
                   5781:             /* The VFTA is a 4096b bit-field, each identifying a single VLAN
                   5782:              * ID.  The following operations determine which 32b entry
                   5783:              * (i.e. offset) into the array we want to set the VLAN ID
                   5784:              * (i.e. bit) of the manageability unit. */
                   5785:             vfta_offset = (hw->mng_cookie.vlan_id >>
                   5786:                            E1000_VFTA_ENTRY_SHIFT) &
                   5787:                           E1000_VFTA_ENTRY_MASK;
                   5788:             vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
                   5789:                                     E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
                   5790:         }
                   5791:     }
                   5792:     for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
                   5793:         /* If the offset we want to clear is the same offset of the
                   5794:          * manageability VLAN ID, then clear all bits except that of the
                   5795:          * manageability unit */
                   5796:         vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
                   5797:         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
                   5798:         E1000_WRITE_FLUSH(hw);
                   5799:     }
                   5800: }
                   5801:
                   5802: STATIC int32_t
                   5803: em_id_led_init(struct em_hw * hw)
                   5804: {
                   5805:     uint32_t ledctl;
                   5806:     const uint32_t ledctl_mask = 0x000000FF;
                   5807:     const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
                   5808:     const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
                   5809:     uint16_t eeprom_data, i, temp;
                   5810:     const uint16_t led_mask = 0x0F;
                   5811:
                   5812:     DEBUGFUNC("em_id_led_init");
                   5813:
                   5814:     if (hw->mac_type < em_82540) {
                   5815:         /* Nothing to do */
                   5816:         return E1000_SUCCESS;
                   5817:     }
                   5818:
                   5819:     ledctl = E1000_READ_REG(hw, LEDCTL);
                   5820:     hw->ledctl_default = ledctl;
                   5821:     hw->ledctl_mode1 = hw->ledctl_default;
                   5822:     hw->ledctl_mode2 = hw->ledctl_default;
                   5823:
                   5824:     if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
                   5825:         DEBUGOUT("EEPROM Read Error\n");
                   5826:         return -E1000_ERR_EEPROM;
                   5827:     }
                   5828:
                   5829:     if ((hw->mac_type == em_82573) &&
                   5830:         (eeprom_data == ID_LED_RESERVED_82573))
                   5831:         eeprom_data = ID_LED_DEFAULT_82573;
                   5832:     else if ((eeprom_data == ID_LED_RESERVED_0000) ||
                   5833:             (eeprom_data == ID_LED_RESERVED_FFFF)) {
                   5834:         if (hw->mac_type == em_ich8lan)
                   5835:             eeprom_data = ID_LED_DEFAULT_ICH8LAN;
                   5836:         else
                   5837:             eeprom_data = ID_LED_DEFAULT;
                   5838:     }
                   5839:
                   5840:     for (i = 0; i < 4; i++) {
                   5841:         temp = (eeprom_data >> (i << 2)) & led_mask;
                   5842:         switch (temp) {
                   5843:         case ID_LED_ON1_DEF2:
                   5844:         case ID_LED_ON1_ON2:
                   5845:         case ID_LED_ON1_OFF2:
                   5846:             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
                   5847:             hw->ledctl_mode1 |= ledctl_on << (i << 3);
                   5848:             break;
                   5849:         case ID_LED_OFF1_DEF2:
                   5850:         case ID_LED_OFF1_ON2:
                   5851:         case ID_LED_OFF1_OFF2:
                   5852:             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
                   5853:             hw->ledctl_mode1 |= ledctl_off << (i << 3);
                   5854:             break;
                   5855:         default:
                   5856:             /* Do nothing */
                   5857:             break;
                   5858:         }
                   5859:         switch (temp) {
                   5860:         case ID_LED_DEF1_ON2:
                   5861:         case ID_LED_ON1_ON2:
                   5862:         case ID_LED_OFF1_ON2:
                   5863:             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
                   5864:             hw->ledctl_mode2 |= ledctl_on << (i << 3);
                   5865:             break;
                   5866:         case ID_LED_DEF1_OFF2:
                   5867:         case ID_LED_ON1_OFF2:
                   5868:         case ID_LED_OFF1_OFF2:
                   5869:             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
                   5870:             hw->ledctl_mode2 |= ledctl_off << (i << 3);
                   5871:             break;
                   5872:         default:
                   5873:             /* Do nothing */
                   5874:             break;
                   5875:         }
                   5876:     }
                   5877:     return E1000_SUCCESS;
                   5878: }
                   5879:
                   5880: /******************************************************************************
                   5881:  * Clears all hardware statistics counters.
                   5882:  *
                   5883:  * hw - Struct containing variables accessed by shared code
                   5884:  *****************************************************************************/
                   5885: void
                   5886: em_clear_hw_cntrs(struct em_hw *hw)
                   5887: {
                   5888:     volatile uint32_t temp;
                   5889:
                   5890:     temp = E1000_READ_REG(hw, CRCERRS);
                   5891:     temp = E1000_READ_REG(hw, SYMERRS);
                   5892:     temp = E1000_READ_REG(hw, MPC);
                   5893:     temp = E1000_READ_REG(hw, SCC);
                   5894:     temp = E1000_READ_REG(hw, ECOL);
                   5895:     temp = E1000_READ_REG(hw, MCC);
                   5896:     temp = E1000_READ_REG(hw, LATECOL);
                   5897:     temp = E1000_READ_REG(hw, COLC);
                   5898:     temp = E1000_READ_REG(hw, DC);
                   5899:     temp = E1000_READ_REG(hw, SEC);
                   5900:     temp = E1000_READ_REG(hw, RLEC);
                   5901:     temp = E1000_READ_REG(hw, XONRXC);
                   5902:     temp = E1000_READ_REG(hw, XONTXC);
                   5903:     temp = E1000_READ_REG(hw, XOFFRXC);
                   5904:     temp = E1000_READ_REG(hw, XOFFTXC);
                   5905:     temp = E1000_READ_REG(hw, FCRUC);
                   5906:
                   5907:     if (hw->mac_type != em_ich8lan) {
                   5908:     temp = E1000_READ_REG(hw, PRC64);
                   5909:     temp = E1000_READ_REG(hw, PRC127);
                   5910:     temp = E1000_READ_REG(hw, PRC255);
                   5911:     temp = E1000_READ_REG(hw, PRC511);
                   5912:     temp = E1000_READ_REG(hw, PRC1023);
                   5913:     temp = E1000_READ_REG(hw, PRC1522);
                   5914:     }
                   5915:
                   5916:     temp = E1000_READ_REG(hw, GPRC);
                   5917:     temp = E1000_READ_REG(hw, BPRC);
                   5918:     temp = E1000_READ_REG(hw, MPRC);
                   5919:     temp = E1000_READ_REG(hw, GPTC);
                   5920:     temp = E1000_READ_REG(hw, GORCL);
                   5921:     temp = E1000_READ_REG(hw, GORCH);
                   5922:     temp = E1000_READ_REG(hw, GOTCL);
                   5923:     temp = E1000_READ_REG(hw, GOTCH);
                   5924:     temp = E1000_READ_REG(hw, RNBC);
                   5925:     temp = E1000_READ_REG(hw, RUC);
                   5926:     temp = E1000_READ_REG(hw, RFC);
                   5927:     temp = E1000_READ_REG(hw, ROC);
                   5928:     temp = E1000_READ_REG(hw, RJC);
                   5929:     temp = E1000_READ_REG(hw, TORL);
                   5930:     temp = E1000_READ_REG(hw, TORH);
                   5931:     temp = E1000_READ_REG(hw, TOTL);
                   5932:     temp = E1000_READ_REG(hw, TOTH);
                   5933:     temp = E1000_READ_REG(hw, TPR);
                   5934:     temp = E1000_READ_REG(hw, TPT);
                   5935:
                   5936:     if (hw->mac_type != em_ich8lan) {
                   5937:     temp = E1000_READ_REG(hw, PTC64);
                   5938:     temp = E1000_READ_REG(hw, PTC127);
                   5939:     temp = E1000_READ_REG(hw, PTC255);
                   5940:     temp = E1000_READ_REG(hw, PTC511);
                   5941:     temp = E1000_READ_REG(hw, PTC1023);
                   5942:     temp = E1000_READ_REG(hw, PTC1522);
                   5943:     }
                   5944:
                   5945:     temp = E1000_READ_REG(hw, MPTC);
                   5946:     temp = E1000_READ_REG(hw, BPTC);
                   5947:
                   5948:     if (hw->mac_type < em_82543) return;
                   5949:
                   5950:     temp = E1000_READ_REG(hw, ALGNERRC);
                   5951:     temp = E1000_READ_REG(hw, RXERRC);
                   5952:     temp = E1000_READ_REG(hw, TNCRS);
                   5953:     temp = E1000_READ_REG(hw, CEXTERR);
                   5954:     temp = E1000_READ_REG(hw, TSCTC);
                   5955:     temp = E1000_READ_REG(hw, TSCTFC);
                   5956:
                   5957:     if (hw->mac_type <= em_82544) return;
                   5958:
                   5959:     temp = E1000_READ_REG(hw, MGTPRC);
                   5960:     temp = E1000_READ_REG(hw, MGTPDC);
                   5961:     temp = E1000_READ_REG(hw, MGTPTC);
                   5962:
                   5963:     if (hw->mac_type <= em_82547_rev_2) return;
                   5964:
                   5965:     temp = E1000_READ_REG(hw, IAC);
                   5966:     temp = E1000_READ_REG(hw, ICRXOC);
                   5967:
                   5968:     if (hw->mac_type == em_ich8lan) return;
                   5969:
                   5970:     temp = E1000_READ_REG(hw, ICRXPTC);
                   5971:     temp = E1000_READ_REG(hw, ICRXATC);
                   5972:     temp = E1000_READ_REG(hw, ICTXPTC);
                   5973:     temp = E1000_READ_REG(hw, ICTXATC);
                   5974:     temp = E1000_READ_REG(hw, ICTXQEC);
                   5975:     temp = E1000_READ_REG(hw, ICTXQMTC);
                   5976:     temp = E1000_READ_REG(hw, ICRXDMTC);
                   5977: }
                   5978:
                   5979: /******************************************************************************
                   5980:  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
                   5981:  *
                   5982:  * hw - Struct containing variables accessed by shared code
                   5983:  * frame_len - The length of the frame in question
                   5984:  * mac_addr - The Ethernet destination address of the frame in question
                   5985:  *****************************************************************************/
                   5986: void
                   5987: em_tbi_adjust_stats(struct em_hw *hw,
                   5988:                        struct em_hw_stats *stats,
                   5989:                        uint32_t frame_len,
                   5990:                        uint8_t *mac_addr)
                   5991: {
                   5992:     uint64_t carry_bit;
                   5993:
                   5994:     /* First adjust the frame length. */
                   5995:     frame_len--;
                   5996:     /* We need to adjust the statistics counters, since the hardware
                   5997:      * counters overcount this packet as a CRC error and undercount
                   5998:      * the packet as a good packet
                   5999:      */
                   6000:     /* This packet should not be counted as a CRC error.    */
                   6001:     stats->crcerrs--;
                   6002:     /* This packet does count as a Good Packet Received.    */
                   6003:     stats->gprc++;
                   6004:
                   6005:     /* Adjust the Good Octets received counters             */
                   6006:     carry_bit = 0x80000000 & stats->gorcl;
                   6007:     stats->gorcl += frame_len;
                   6008:     /* If the high bit of Gorcl (the low 32 bits of the Good Octets
                   6009:      * Received Count) was one before the addition,
                   6010:      * AND it is zero after, then we lost the carry out,
                   6011:      * need to add one to Gorch (Good Octets Received Count High).
                   6012:      * This could be simplified if all environments supported
                   6013:      * 64-bit integers.
                   6014:      */
                   6015:     if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
                   6016:         stats->gorch++;
                   6017:     /* Is this a broadcast or multicast?  Check broadcast first,
                   6018:      * since the test for a multicast frame will test positive on
                   6019:      * a broadcast frame.
                   6020:      */
                   6021:     if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
                   6022:         /* Broadcast packet */
                   6023:         stats->bprc++;
                   6024:     else if (*mac_addr & 0x01)
                   6025:         /* Multicast packet */
                   6026:         stats->mprc++;
                   6027:
                   6028:     if (frame_len == hw->max_frame_size) {
                   6029:         /* In this case, the hardware has overcounted the number of
                   6030:          * oversize frames.
                   6031:          */
                   6032:         if (stats->roc > 0)
                   6033:             stats->roc--;
                   6034:     }
                   6035:
                   6036:     /* Adjust the bin counters when the extra byte put the frame in the
                   6037:      * wrong bin. Remember that the frame_len was adjusted above.
                   6038:      */
                   6039:     if (frame_len == 64) {
                   6040:         stats->prc64++;
                   6041:         stats->prc127--;
                   6042:     } else if (frame_len == 127) {
                   6043:         stats->prc127++;
                   6044:         stats->prc255--;
                   6045:     } else if (frame_len == 255) {
                   6046:         stats->prc255++;
                   6047:         stats->prc511--;
                   6048:     } else if (frame_len == 511) {
                   6049:         stats->prc511++;
                   6050:         stats->prc1023--;
                   6051:     } else if (frame_len == 1023) {
                   6052:         stats->prc1023++;
                   6053:         stats->prc1522--;
                   6054:     } else if (frame_len == 1522) {
                   6055:         stats->prc1522++;
                   6056:     }
                   6057: }
                   6058:
                   6059: /******************************************************************************
                   6060:  * Gets the current PCI bus type, speed, and width of the hardware
                   6061:  *
                   6062:  * hw - Struct containing variables accessed by shared code
                   6063:  *****************************************************************************/
                   6064: void
                   6065: em_get_bus_info(struct em_hw *hw)
                   6066: {
                   6067:     int32_t ret_val;
                   6068:     uint16_t pci_ex_link_status;
                   6069:     uint32_t status;
                   6070:
                   6071:     switch (hw->mac_type) {
                   6072:     case em_82542_rev2_0:
                   6073:     case em_82542_rev2_1:
                   6074:         hw->bus_type = em_bus_type_unknown;
                   6075:         hw->bus_speed = em_bus_speed_unknown;
                   6076:         hw->bus_width = em_bus_width_unknown;
                   6077:         break;
                   6078:     case em_82571:
                   6079:     case em_82572:
                   6080:     case em_82573:
                   6081:     case em_80003es2lan:
                   6082:         hw->bus_type = em_bus_type_pci_express;
                   6083:         hw->bus_speed = em_bus_speed_2500;
                   6084:         ret_val = em_read_pcie_cap_reg(hw,
                   6085:                                       PCI_EX_LINK_STATUS,
                   6086:                                       &pci_ex_link_status);
                   6087:         if (ret_val)
                   6088:             hw->bus_width = em_bus_width_unknown;
                   6089:         else
                   6090:             hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
                   6091:                           PCI_EX_LINK_WIDTH_SHIFT;
                   6092:         break;
                   6093:     case em_ich8lan:
                   6094:         hw->bus_type = em_bus_type_pci_express;
                   6095:         hw->bus_speed = em_bus_speed_2500;
                   6096:         hw->bus_width = em_bus_width_pciex_1;
                   6097:         break;
                   6098:     default:
                   6099:         status = E1000_READ_REG(hw, STATUS);
                   6100:         hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
                   6101:                        em_bus_type_pcix : em_bus_type_pci;
                   6102:
                   6103:         if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
                   6104:             hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
                   6105:                             em_bus_speed_66 : em_bus_speed_120;
                   6106:         } else if (hw->bus_type == em_bus_type_pci) {
                   6107:             hw->bus_speed = (status & E1000_STATUS_PCI66) ?
                   6108:                             em_bus_speed_66 : em_bus_speed_33;
                   6109:         } else {
                   6110:             switch (status & E1000_STATUS_PCIX_SPEED) {
                   6111:             case E1000_STATUS_PCIX_SPEED_66:
                   6112:                 hw->bus_speed = em_bus_speed_66;
                   6113:                 break;
                   6114:             case E1000_STATUS_PCIX_SPEED_100:
                   6115:                 hw->bus_speed = em_bus_speed_100;
                   6116:                 break;
                   6117:             case E1000_STATUS_PCIX_SPEED_133:
                   6118:                 hw->bus_speed = em_bus_speed_133;
                   6119:                 break;
                   6120:             default:
                   6121:                 hw->bus_speed = em_bus_speed_reserved;
                   6122:                 break;
                   6123:             }
                   6124:         }
                   6125:         hw->bus_width = (status & E1000_STATUS_BUS64) ?
                   6126:                         em_bus_width_64 : em_bus_width_32;
                   6127:         break;
                   6128:     }
                   6129: }
                   6130:
                   6131: /******************************************************************************
                   6132:  * Writes a value to one of the devices registers using port I/O (as opposed to
                   6133:  * memory mapped I/O). Only 82544 and newer devices support port I/O.
                   6134:  *
                   6135:  * hw - Struct containing variables accessed by shared code
                   6136:  * offset - offset to write to
                   6137:  * value - value to write
                   6138:  *****************************************************************************/
                   6139: STATIC void
                   6140: em_write_reg_io(struct em_hw *hw,
                   6141:                    uint32_t offset,
                   6142:                    uint32_t value)
                   6143: {
                   6144:     unsigned long io_addr = hw->io_base;
                   6145:     unsigned long io_data = hw->io_base + 4;
                   6146:
                   6147:     em_io_write(hw, io_addr, offset);
                   6148:     em_io_write(hw, io_data, value);
                   6149: }
                   6150:
                   6151: /******************************************************************************
                   6152:  * Estimates the cable length.
                   6153:  *
                   6154:  * hw - Struct containing variables accessed by shared code
                   6155:  * min_length - The estimated minimum length
                   6156:  * max_length - The estimated maximum length
                   6157:  *
                   6158:  * returns: - E1000_ERR_XXX
                   6159:  *            E1000_SUCCESS
                   6160:  *
                   6161:  * This function always returns a ranged length (minimum & maximum).
                   6162:  * So for M88 phy's, this function interprets the one value returned from the
                   6163:  * register to the minimum and maximum range.
                   6164:  * For IGP phy's, the function calculates the range by the AGC registers.
                   6165:  *****************************************************************************/
                   6166: STATIC int32_t
                   6167: em_get_cable_length(struct em_hw *hw,
                   6168:                        uint16_t *min_length,
                   6169:                        uint16_t *max_length)
                   6170: {
                   6171:     int32_t ret_val;
                   6172:     uint16_t agc_value = 0;
                   6173:     uint16_t i, phy_data;
                   6174:     uint16_t cable_length;
                   6175:
                   6176:     DEBUGFUNC("em_get_cable_length");
                   6177:
                   6178:     *min_length = *max_length = 0;
                   6179:
                   6180:     /* Use old method for Phy older than IGP */
                   6181:     if (hw->phy_type == em_phy_m88) {
                   6182:
                   6183:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                   6184:                                      &phy_data);
                   6185:         if (ret_val)
                   6186:             return ret_val;
                   6187:         cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
                   6188:                        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
                   6189:
                   6190:         /* Convert the enum value to ranged values */
                   6191:         switch (cable_length) {
                   6192:         case em_cable_length_50:
                   6193:             *min_length = 0;
                   6194:             *max_length = em_igp_cable_length_50;
                   6195:             break;
                   6196:         case em_cable_length_50_80:
                   6197:             *min_length = em_igp_cable_length_50;
                   6198:             *max_length = em_igp_cable_length_80;
                   6199:             break;
                   6200:         case em_cable_length_80_110:
                   6201:             *min_length = em_igp_cable_length_80;
                   6202:             *max_length = em_igp_cable_length_110;
                   6203:             break;
                   6204:         case em_cable_length_110_140:
                   6205:             *min_length = em_igp_cable_length_110;
                   6206:             *max_length = em_igp_cable_length_140;
                   6207:             break;
                   6208:         case em_cable_length_140:
                   6209:             *min_length = em_igp_cable_length_140;
                   6210:             *max_length = em_igp_cable_length_170;
                   6211:             break;
                   6212:         default:
                   6213:             return -E1000_ERR_PHY;
                   6214:             break;
                   6215:         }
                   6216:     } else if (hw->phy_type == em_phy_gg82563) {
                   6217:         ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
                   6218:                                      &phy_data);
                   6219:         if (ret_val)
                   6220:             return ret_val;
                   6221:         cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
                   6222:
                   6223:         switch (cable_length) {
                   6224:         case em_gg_cable_length_60:
                   6225:             *min_length = 0;
                   6226:             *max_length = em_igp_cable_length_60;
                   6227:             break;
                   6228:         case em_gg_cable_length_60_115:
                   6229:             *min_length = em_igp_cable_length_60;
                   6230:             *max_length = em_igp_cable_length_115;
                   6231:             break;
                   6232:         case em_gg_cable_length_115_150:
                   6233:             *min_length = em_igp_cable_length_115;
                   6234:             *max_length = em_igp_cable_length_150;
                   6235:             break;
                   6236:         case em_gg_cable_length_150:
                   6237:             *min_length = em_igp_cable_length_150;
                   6238:             *max_length = em_igp_cable_length_180;
                   6239:             break;
                   6240:         default:
                   6241:             return -E1000_ERR_PHY;
                   6242:             break;
                   6243:         }
                   6244:     } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */
                   6245:         uint16_t cur_agc_value;
                   6246:         uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
                   6247:         uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                   6248:                                                          {IGP01E1000_PHY_AGC_A,
                   6249:                                                           IGP01E1000_PHY_AGC_B,
                   6250:                                                           IGP01E1000_PHY_AGC_C,
                   6251:                                                           IGP01E1000_PHY_AGC_D};
                   6252:         /* Read the AGC registers for all channels */
                   6253:         for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
                   6254:
                   6255:             ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
                   6256:             if (ret_val)
                   6257:                 return ret_val;
                   6258:
                   6259:             cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
                   6260:
                   6261:             /* Value bound check. */
                   6262:             if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
                   6263:                 (cur_agc_value == 0))
                   6264:                 return -E1000_ERR_PHY;
                   6265:
                   6266:             agc_value += cur_agc_value;
                   6267:
                   6268:             /* Update minimal AGC value. */
                   6269:             if (min_agc_value > cur_agc_value)
                   6270:                 min_agc_value = cur_agc_value;
                   6271:         }
                   6272:
                   6273:         /* Remove the minimal AGC result for length < 50m */
                   6274:         if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
                   6275:             agc_value -= min_agc_value;
                   6276:
                   6277:             /* Get the average length of the remaining 3 channels */
                   6278:             agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
                   6279:         } else {
                   6280:             /* Get the average length of all the 4 channels. */
                   6281:             agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
                   6282:         }
                   6283:
                   6284:         /* Set the range of the calculated length. */
                   6285:         *min_length = ((em_igp_cable_length_table[agc_value] -
                   6286:                        IGP01E1000_AGC_RANGE) > 0) ?
                   6287:                        (em_igp_cable_length_table[agc_value] -
                   6288:                        IGP01E1000_AGC_RANGE) : 0;
                   6289:         *max_length = em_igp_cable_length_table[agc_value] +
                   6290:                       IGP01E1000_AGC_RANGE;
                   6291:     } else if (hw->phy_type == em_phy_igp_2 ||
                   6292:                hw->phy_type == em_phy_igp_3) {
                   6293:         uint16_t cur_agc_index, max_agc_index = 0;
                   6294:         uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
                   6295:         uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
                   6296:                                                          {IGP02E1000_PHY_AGC_A,
                   6297:                                                           IGP02E1000_PHY_AGC_B,
                   6298:                                                           IGP02E1000_PHY_AGC_C,
                   6299:                                                           IGP02E1000_PHY_AGC_D};
                   6300:         /* Read the AGC registers for all channels */
                   6301:         for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
                   6302:             ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
                   6303:             if (ret_val)
                   6304:                 return ret_val;
                   6305:
                   6306:             /* Getting bits 15:9, which represent the combination of course and
                   6307:              * fine gain values.  The result is a number that can be put into
                   6308:              * the lookup table to obtain the approximate cable length. */
                   6309:             cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
                   6310:                             IGP02E1000_AGC_LENGTH_MASK;
                   6311:
                   6312:             /* Array index bound check. */
                   6313:             if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
                   6314:                 (cur_agc_index == 0))
                   6315:                 return -E1000_ERR_PHY;
                   6316:
                   6317:             /* Remove min & max AGC values from calculation. */
                   6318:             if (em_igp_2_cable_length_table[min_agc_index] >
                   6319:                 em_igp_2_cable_length_table[cur_agc_index])
                   6320:                 min_agc_index = cur_agc_index;
                   6321:             if (em_igp_2_cable_length_table[max_agc_index] <
                   6322:                 em_igp_2_cable_length_table[cur_agc_index])
                   6323:                 max_agc_index = cur_agc_index;
                   6324:
                   6325:             agc_value += em_igp_2_cable_length_table[cur_agc_index];
                   6326:         }
                   6327:
                   6328:         agc_value -= (em_igp_2_cable_length_table[min_agc_index] +
                   6329:                       em_igp_2_cable_length_table[max_agc_index]);
                   6330:         agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
                   6331:
                   6332:         /* Calculate cable length with the error range of +/- 10 meters. */
                   6333:         *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
                   6334:                        (agc_value - IGP02E1000_AGC_RANGE) : 0;
                   6335:         *max_length = agc_value + IGP02E1000_AGC_RANGE;
                   6336:     }
                   6337:
                   6338:     return E1000_SUCCESS;
                   6339: }
                   6340:
                   6341: /******************************************************************************
                   6342:  * Check if Downshift occured
                   6343:  *
                   6344:  * hw - Struct containing variables accessed by shared code
                   6345:  * downshift - output parameter : 0 - No Downshift ocured.
                   6346:  *                                1 - Downshift ocured.
                   6347:  *
                   6348:  * returns: - E1000_ERR_XXX
                   6349:  *            E1000_SUCCESS
                   6350:  *
                   6351:  * For phy's older then IGP, this function reads the Downshift bit in the Phy
                   6352:  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
                   6353:  * Link Health register.  In IGP this bit is latched high, so the driver must
                   6354:  * read it immediately after link is established.
                   6355:  *****************************************************************************/
                   6356: STATIC int32_t
                   6357: em_check_downshift(struct em_hw *hw)
                   6358: {
                   6359:     int32_t ret_val;
                   6360:     uint16_t phy_data;
                   6361:
                   6362:     DEBUGFUNC("em_check_downshift");
                   6363:
                   6364:     if (hw->phy_type == em_phy_igp ||
                   6365:         hw->phy_type == em_phy_igp_3 ||
                   6366:         hw->phy_type == em_phy_igp_2) {
                   6367:         ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
                   6368:                                      &phy_data);
                   6369:         if (ret_val)
                   6370:             return ret_val;
                   6371:
                   6372:         hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
                   6373:     } else if ((hw->phy_type == em_phy_m88) ||
                   6374:                (hw->phy_type == em_phy_gg82563)) {
                   6375:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                   6376:                                      &phy_data);
                   6377:         if (ret_val)
                   6378:             return ret_val;
                   6379:
                   6380:         hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
                   6381:                                M88E1000_PSSR_DOWNSHIFT_SHIFT;
                   6382:     } else if (hw->phy_type == em_phy_ife) {
                   6383:         /* em_phy_ife supports 10/100 speed only */
                   6384:         hw->speed_downgraded = FALSE;
                   6385:     }
                   6386:
                   6387:     return E1000_SUCCESS;
                   6388: }
                   6389:
                   6390: /*****************************************************************************
                   6391:  *
                   6392:  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
                   6393:  * gigabit link is achieved to improve link quality.
                   6394:  *
                   6395:  * hw: Struct containing variables accessed by shared code
                   6396:  *
                   6397:  * returns: - E1000_ERR_PHY if fail to read/write the PHY
                   6398:  *            E1000_SUCCESS at any other case.
                   6399:  *
                   6400:  ****************************************************************************/
                   6401:
                   6402: STATIC int32_t
                   6403: em_config_dsp_after_link_change(struct em_hw *hw,
                   6404:                                    boolean_t link_up)
                   6405: {
                   6406:     int32_t ret_val;
                   6407:     uint16_t phy_data, phy_saved_data, speed, duplex, i;
                   6408:     uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                   6409:                                         {IGP01E1000_PHY_AGC_PARAM_A,
                   6410:                                         IGP01E1000_PHY_AGC_PARAM_B,
                   6411:                                         IGP01E1000_PHY_AGC_PARAM_C,
                   6412:                                         IGP01E1000_PHY_AGC_PARAM_D};
                   6413:     uint16_t min_length, max_length;
                   6414:
                   6415:     DEBUGFUNC("em_config_dsp_after_link_change");
                   6416:
                   6417:     if (hw->phy_type != em_phy_igp)
                   6418:         return E1000_SUCCESS;
                   6419:
                   6420:     if (link_up) {
                   6421:         ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
                   6422:         if (ret_val) {
                   6423:             DEBUGOUT("Error getting link speed and duplex\n");
                   6424:             return ret_val;
                   6425:         }
                   6426:
                   6427:         if (speed == SPEED_1000) {
                   6428:
                   6429:             ret_val = em_get_cable_length(hw, &min_length, &max_length);
                   6430:             if (ret_val)
                   6431:                 return ret_val;
                   6432:
                   6433:             if ((hw->dsp_config_state == em_dsp_config_enabled) &&
                   6434:                 min_length >= em_igp_cable_length_50) {
                   6435:
                   6436:                 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
                   6437:                     ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
                   6438:                                                  &phy_data);
                   6439:                     if (ret_val)
                   6440:                         return ret_val;
                   6441:
                   6442:                     phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
                   6443:
                   6444:                     ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
                   6445:                                                   phy_data);
                   6446:                     if (ret_val)
                   6447:                         return ret_val;
                   6448:                 }
                   6449:                 hw->dsp_config_state = em_dsp_config_activated;
                   6450:             }
                   6451:
                   6452:             if ((hw->ffe_config_state == em_ffe_config_enabled) &&
                   6453:                (min_length < em_igp_cable_length_50)) {
                   6454:
                   6455:                 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
                   6456:                 uint32_t idle_errs = 0;
                   6457:
                   6458:                 /* clear previous idle error counts */
                   6459:                 ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
                   6460:                                              &phy_data);
                   6461:                 if (ret_val)
                   6462:                     return ret_val;
                   6463:
                   6464:                 for (i = 0; i < ffe_idle_err_timeout; i++) {
                   6465:                     usec_delay(1000);
                   6466:                     ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
                   6467:                                                  &phy_data);
                   6468:                     if (ret_val)
                   6469:                         return ret_val;
                   6470:
                   6471:                     idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
                   6472:                     if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
                   6473:                         hw->ffe_config_state = em_ffe_config_active;
                   6474:
                   6475:                         ret_val = em_write_phy_reg(hw,
                   6476:                                     IGP01E1000_PHY_DSP_FFE,
                   6477:                                     IGP01E1000_PHY_DSP_FFE_CM_CP);
                   6478:                         if (ret_val)
                   6479:                             return ret_val;
                   6480:                         break;
                   6481:                     }
                   6482:
                   6483:                     if (idle_errs)
                   6484:                         ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
                   6485:                 }
                   6486:             }
                   6487:         }
                   6488:     } else {
                   6489:         if (hw->dsp_config_state == em_dsp_config_activated) {
                   6490:             /* Save off the current value of register 0x2F5B to be restored at
                   6491:              * the end of the routines. */
                   6492:             ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
                   6493:
                   6494:             if (ret_val)
                   6495:                 return ret_val;
                   6496:
                   6497:             /* Disable the PHY transmitter */
                   6498:             ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
                   6499:
                   6500:             if (ret_val)
                   6501:                 return ret_val;
                   6502:
                   6503:             msec_delay_irq(20);
                   6504:
                   6505:             ret_val = em_write_phy_reg(hw, 0x0000,
                   6506:                                           IGP01E1000_IEEE_FORCE_GIGA);
                   6507:             if (ret_val)
                   6508:                 return ret_val;
                   6509:             for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
                   6510:                 ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
                   6511:                 if (ret_val)
                   6512:                     return ret_val;
                   6513:
                   6514:                 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
                   6515:                 phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
                   6516:
                   6517:                 ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
                   6518:                 if (ret_val)
                   6519:                     return ret_val;
                   6520:             }
                   6521:
                   6522:             ret_val = em_write_phy_reg(hw, 0x0000,
                   6523:                                           IGP01E1000_IEEE_RESTART_AUTONEG);
                   6524:             if (ret_val)
                   6525:                 return ret_val;
                   6526:
                   6527:             msec_delay_irq(20);
                   6528:
                   6529:             /* Now enable the transmitter */
                   6530:             ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
                   6531:
                   6532:             if (ret_val)
                   6533:                 return ret_val;
                   6534:
                   6535:             hw->dsp_config_state = em_dsp_config_enabled;
                   6536:         }
                   6537:
                   6538:         if (hw->ffe_config_state == em_ffe_config_active) {
                   6539:             /* Save off the current value of register 0x2F5B to be restored at
                   6540:              * the end of the routines. */
                   6541:             ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
                   6542:
                   6543:             if (ret_val)
                   6544:                 return ret_val;
                   6545:
                   6546:             /* Disable the PHY transmitter */
                   6547:             ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
                   6548:
                   6549:             if (ret_val)
                   6550:                 return ret_val;
                   6551:
                   6552:             msec_delay_irq(20);
                   6553:
                   6554:             ret_val = em_write_phy_reg(hw, 0x0000,
                   6555:                                           IGP01E1000_IEEE_FORCE_GIGA);
                   6556:             if (ret_val)
                   6557:                 return ret_val;
                   6558:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
                   6559:                                           IGP01E1000_PHY_DSP_FFE_DEFAULT);
                   6560:             if (ret_val)
                   6561:                 return ret_val;
                   6562:
                   6563:             ret_val = em_write_phy_reg(hw, 0x0000,
                   6564:                                           IGP01E1000_IEEE_RESTART_AUTONEG);
                   6565:             if (ret_val)
                   6566:                 return ret_val;
                   6567:
                   6568:             msec_delay_irq(20);
                   6569:
                   6570:             /* Now enable the transmitter */
                   6571:             ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
                   6572:
                   6573:             if (ret_val)
                   6574:                 return ret_val;
                   6575:
                   6576:             hw->ffe_config_state = em_ffe_config_enabled;
                   6577:         }
                   6578:     }
                   6579:     return E1000_SUCCESS;
                   6580: }
                   6581:
                   6582: /*****************************************************************************
                   6583:  * Set PHY to class A mode
                   6584:  * Assumes the following operations will follow to enable the new class mode.
                   6585:  *  1. Do a PHY soft reset
                   6586:  *  2. Restart auto-negotiation or force link.
                   6587:  *
                   6588:  * hw - Struct containing variables accessed by shared code
                   6589:  ****************************************************************************/
                   6590: static int32_t
                   6591: em_set_phy_mode(struct em_hw *hw)
                   6592: {
                   6593:     int32_t ret_val;
                   6594:     uint16_t eeprom_data;
                   6595:
                   6596:     DEBUGFUNC("em_set_phy_mode");
                   6597:
                   6598:     if ((hw->mac_type == em_82545_rev_3) &&
                   6599:         (hw->media_type == em_media_type_copper)) {
                   6600:         ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
                   6601:         if (ret_val) {
                   6602:             return ret_val;
                   6603:         }
                   6604:
                   6605:         if ((eeprom_data != EEPROM_RESERVED_WORD) &&
                   6606:             (eeprom_data & EEPROM_PHY_CLASS_A)) {
                   6607:             ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
                   6608:             if (ret_val)
                   6609:                 return ret_val;
                   6610:             ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
                   6611:             if (ret_val)
                   6612:                 return ret_val;
                   6613:
                   6614:             hw->phy_reset_disable = FALSE;
                   6615:         }
                   6616:     }
                   6617:
                   6618:     return E1000_SUCCESS;
                   6619: }
                   6620:
                   6621: /*****************************************************************************
                   6622:  *
                   6623:  * This function sets the lplu state according to the active flag.  When
                   6624:  * activating lplu this function also disables smart speed and vise versa.
                   6625:  * lplu will not be activated unless the device autonegotiation advertisement
                   6626:  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
                   6627:  * hw: Struct containing variables accessed by shared code
                   6628:  * active - true to enable lplu false to disable lplu.
                   6629:  *
                   6630:  * returns: - E1000_ERR_PHY if fail to read/write the PHY
                   6631:  *            E1000_SUCCESS at any other case.
                   6632:  *
                   6633:  ****************************************************************************/
                   6634:
                   6635: STATIC int32_t
                   6636: em_set_d3_lplu_state(struct em_hw *hw,
                   6637:                         boolean_t active)
                   6638: {
                   6639:     uint32_t phy_ctrl = 0;
                   6640:     int32_t ret_val;
                   6641:     uint16_t phy_data;
                   6642:     DEBUGFUNC("em_set_d3_lplu_state");
                   6643:
                   6644:     if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2
                   6645:         && hw->phy_type != em_phy_igp_3)
                   6646:         return E1000_SUCCESS;
                   6647:
                   6648:     /* During driver activity LPLU should not be used or it will attain link
                   6649:      * from the lowest speeds starting from 10Mbps. The capability is used for
                   6650:      * Dx transitions and states */
                   6651:     if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
                   6652:         ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
                   6653:         if (ret_val)
                   6654:             return ret_val;
                   6655:     } else if (hw->mac_type == em_ich8lan) {
                   6656:         /* MAC writes into PHY register based on the state transition
                   6657:          * and start auto-negotiation. SW driver can overwrite the settings
                   6658:          * in CSR PHY power control E1000_PHY_CTRL register. */
                   6659:         phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
                   6660:     } else {
                   6661:         ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
                   6662:         if (ret_val)
                   6663:             return ret_val;
                   6664:     }
                   6665:
                   6666:     if (!active) {
                   6667:         if (hw->mac_type == em_82541_rev_2 ||
                   6668:             hw->mac_type == em_82547_rev_2) {
                   6669:             phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
                   6670:             ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
                   6671:             if (ret_val)
                   6672:                 return ret_val;
                   6673:         } else {
                   6674:             if (hw->mac_type == em_ich8lan) {
                   6675:                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
                   6676:                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
                   6677:             } else {
                   6678:                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
                   6679:                 ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                   6680:                                               phy_data);
                   6681:                 if (ret_val)
                   6682:                     return ret_val;
                   6683:             }
                   6684:         }
                   6685:
                   6686:         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
                   6687:          * Dx states where the power conservation is most important.  During
                   6688:          * driver activity we should enable SmartSpeed, so performance is
                   6689:          * maintained. */
                   6690:         if (hw->smart_speed == em_smart_speed_on) {
                   6691:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   6692:                                          &phy_data);
                   6693:             if (ret_val)
                   6694:                 return ret_val;
                   6695:
                   6696:             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
                   6697:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   6698:                                           phy_data);
                   6699:             if (ret_val)
                   6700:                 return ret_val;
                   6701:         } else if (hw->smart_speed == em_smart_speed_off) {
                   6702:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   6703:                                          &phy_data);
                   6704:             if (ret_val)
                   6705:                 return ret_val;
                   6706:
                   6707:             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
                   6708:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   6709:                                           phy_data);
                   6710:             if (ret_val)
                   6711:                 return ret_val;
                   6712:         }
                   6713:
                   6714:     } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
                   6715:                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
                   6716:                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
                   6717:
                   6718:         if (hw->mac_type == em_82541_rev_2 ||
                   6719:             hw->mac_type == em_82547_rev_2) {
                   6720:             phy_data |= IGP01E1000_GMII_FLEX_SPD;
                   6721:             ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
                   6722:             if (ret_val)
                   6723:                 return ret_val;
                   6724:         } else {
                   6725:             if (hw->mac_type == em_ich8lan) {
                   6726:                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
                   6727:                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
                   6728:             } else {
                   6729:                 phy_data |= IGP02E1000_PM_D3_LPLU;
                   6730:                 ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                   6731:                                               phy_data);
                   6732:                 if (ret_val)
                   6733:                     return ret_val;
                   6734:             }
                   6735:         }
                   6736:
                   6737:         /* When LPLU is enabled we should disable SmartSpeed */
                   6738:         ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
                   6739:         if (ret_val)
                   6740:             return ret_val;
                   6741:
                   6742:         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
                   6743:         ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
                   6744:         if (ret_val)
                   6745:             return ret_val;
                   6746:
                   6747:     }
                   6748:     return E1000_SUCCESS;
                   6749: }
                   6750:
                   6751: /*****************************************************************************
                   6752:  *
                   6753:  * This function sets the lplu d0 state according to the active flag.  When
                   6754:  * activating lplu this function also disables smart speed and vise versa.
                   6755:  * lplu will not be activated unless the device autonegotiation advertisement
                   6756:  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
                   6757:  * hw: Struct containing variables accessed by shared code
                   6758:  * active - true to enable lplu false to disable lplu.
                   6759:  *
                   6760:  * returns: - E1000_ERR_PHY if fail to read/write the PHY
                   6761:  *            E1000_SUCCESS at any other case.
                   6762:  *
                   6763:  ****************************************************************************/
                   6764:
                   6765: STATIC int32_t
                   6766: em_set_d0_lplu_state(struct em_hw *hw,
                   6767:                         boolean_t active)
                   6768: {
                   6769:     uint32_t phy_ctrl = 0;
                   6770:     int32_t ret_val;
                   6771:     uint16_t phy_data;
                   6772:     DEBUGFUNC("em_set_d0_lplu_state");
                   6773:
                   6774:     if (hw->mac_type <= em_82547_rev_2)
                   6775:         return E1000_SUCCESS;
                   6776:
                   6777:     if (hw->mac_type == em_ich8lan) {
                   6778:         phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
                   6779:     } else {
                   6780:         ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
                   6781:         if (ret_val)
                   6782:             return ret_val;
                   6783:     }
                   6784:
                   6785:     if (!active) {
                   6786:         if (hw->mac_type == em_ich8lan) {
                   6787:             phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
                   6788:             E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
                   6789:         } else {
                   6790:             phy_data &= ~IGP02E1000_PM_D0_LPLU;
                   6791:             ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
                   6792:             if (ret_val)
                   6793:                 return ret_val;
                   6794:         }
                   6795:
                   6796:         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
                   6797:          * Dx states where the power conservation is most important.  During
                   6798:          * driver activity we should enable SmartSpeed, so performance is
                   6799:          * maintained. */
                   6800:         if (hw->smart_speed == em_smart_speed_on) {
                   6801:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   6802:                                          &phy_data);
                   6803:             if (ret_val)
                   6804:                 return ret_val;
                   6805:
                   6806:             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
                   6807:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   6808:                                           phy_data);
                   6809:             if (ret_val)
                   6810:                 return ret_val;
                   6811:         } else if (hw->smart_speed == em_smart_speed_off) {
                   6812:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   6813:                                          &phy_data);
                   6814:             if (ret_val)
                   6815:                 return ret_val;
                   6816:
                   6817:             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
                   6818:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                   6819:                                           phy_data);
                   6820:             if (ret_val)
                   6821:                 return ret_val;
                   6822:         }
                   6823:
                   6824:
                   6825:     } else {
                   6826:
                   6827:         if (hw->mac_type == em_ich8lan) {
                   6828:             phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
                   6829:             E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
                   6830:         } else {
                   6831:             phy_data |= IGP02E1000_PM_D0_LPLU;
                   6832:             ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
                   6833:             if (ret_val)
                   6834:                 return ret_val;
                   6835:         }
                   6836:
                   6837:         /* When LPLU is enabled we should disable SmartSpeed */
                   6838:         ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
                   6839:         if (ret_val)
                   6840:             return ret_val;
                   6841:
                   6842:         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
                   6843:         ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
                   6844:         if (ret_val)
                   6845:             return ret_val;
                   6846:
                   6847:     }
                   6848:     return E1000_SUCCESS;
                   6849: }
                   6850:
                   6851: /******************************************************************************
                   6852:  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
                   6853:  *
                   6854:  * hw - Struct containing variables accessed by shared code
                   6855:  *****************************************************************************/
                   6856: static int32_t
                   6857: em_set_vco_speed(struct em_hw *hw)
                   6858: {
                   6859:     int32_t  ret_val;
                   6860:     uint16_t default_page = 0;
                   6861:     uint16_t phy_data;
                   6862:
                   6863:     DEBUGFUNC("em_set_vco_speed");
                   6864:
                   6865:     switch (hw->mac_type) {
                   6866:     case em_82545_rev_3:
                   6867:     case em_82546_rev_3:
                   6868:        break;
                   6869:     default:
                   6870:         return E1000_SUCCESS;
                   6871:     }
                   6872:
                   6873:     /* Set PHY register 30, page 5, bit 8 to 0 */
                   6874:
                   6875:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
                   6876:     if (ret_val)
                   6877:         return ret_val;
                   6878:
                   6879:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
                   6880:     if (ret_val)
                   6881:         return ret_val;
                   6882:
                   6883:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
                   6884:     if (ret_val)
                   6885:         return ret_val;
                   6886:
                   6887:     phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
                   6888:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
                   6889:     if (ret_val)
                   6890:         return ret_val;
                   6891:
                   6892:     /* Set PHY register 30, page 4, bit 11 to 1 */
                   6893:
                   6894:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
                   6895:     if (ret_val)
                   6896:         return ret_val;
                   6897:
                   6898:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
                   6899:     if (ret_val)
                   6900:         return ret_val;
                   6901:
                   6902:     phy_data |= M88E1000_PHY_VCO_REG_BIT11;
                   6903:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
                   6904:     if (ret_val)
                   6905:         return ret_val;
                   6906:
                   6907:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
                   6908:     if (ret_val)
                   6909:         return ret_val;
                   6910:
                   6911:     return E1000_SUCCESS;
                   6912: }
                   6913:
                   6914:
                   6915: /*****************************************************************************
                   6916:  * This function reads the cookie from ARC ram.
                   6917:  *
                   6918:  * returns: - E1000_SUCCESS .
                   6919:  ****************************************************************************/
                   6920: STATIC int32_t
                   6921: em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
                   6922: {
                   6923:     uint8_t i;
                   6924:     uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
                   6925:     uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
                   6926:
                   6927:     length = (length >> 2);
                   6928:     offset = (offset >> 2);
                   6929:
                   6930:     for (i = 0; i < length; i++) {
                   6931:         *((uint32_t *) buffer + i) =
                   6932:             E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
                   6933:     }
                   6934:     return E1000_SUCCESS;
                   6935: }
                   6936:
                   6937:
                   6938: /*****************************************************************************
                   6939:  * This function checks whether the HOST IF is enabled for command operaton
                   6940:  * and also checks whether the previous command is completed.
                   6941:  * It busy waits in case of previous command is not completed.
                   6942:  *
                   6943:  * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
                   6944:  *            timeout
                   6945:  *          - E1000_SUCCESS for success.
                   6946:  ****************************************************************************/
                   6947: STATIC int32_t
                   6948: em_mng_enable_host_if(struct em_hw * hw)
                   6949: {
                   6950:     uint32_t hicr;
                   6951:     uint8_t i;
                   6952:
                   6953:     /* Check that the host interface is enabled. */
                   6954:     hicr = E1000_READ_REG(hw, HICR);
                   6955:     if ((hicr & E1000_HICR_EN) == 0) {
                   6956:         DEBUGOUT("E1000_HOST_EN bit disabled.\n");
                   6957:         return -E1000_ERR_HOST_INTERFACE_COMMAND;
                   6958:     }
                   6959:     /* check the previous command is completed */
                   6960:     for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
                   6961:         hicr = E1000_READ_REG(hw, HICR);
                   6962:         if (!(hicr & E1000_HICR_C))
                   6963:             break;
                   6964:         msec_delay_irq(1);
                   6965:     }
                   6966:
                   6967:     if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
                   6968:         DEBUGOUT("Previous command timeout failed .\n");
                   6969:         return -E1000_ERR_HOST_INTERFACE_COMMAND;
                   6970:     }
                   6971:     return E1000_SUCCESS;
                   6972: }
                   6973:
                   6974: /*****************************************************************************
                   6975:  * This function checks the mode of the firmware.
                   6976:  *
                   6977:  * returns  - TRUE when the mode is IAMT or FALSE.
                   6978:  ****************************************************************************/
                   6979: boolean_t
                   6980: em_check_mng_mode(struct em_hw *hw)
                   6981: {
                   6982:     uint32_t fwsm;
                   6983:
                   6984:     fwsm = E1000_READ_REG(hw, FWSM);
                   6985:
                   6986:     if (hw->mac_type == em_ich8lan) {
                   6987:         if ((fwsm & E1000_FWSM_MODE_MASK) ==
                   6988:             (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
                   6989:             return TRUE;
                   6990:     } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
                   6991:                (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
                   6992:         return TRUE;
                   6993:
                   6994:     return FALSE;
                   6995: }
                   6996:
                   6997: /*****************************************************************************
                   6998:  * This function calculates the checksum.
                   6999:  *
                   7000:  * returns  - checksum of buffer contents.
                   7001:  ****************************************************************************/
                   7002: STATIC uint8_t
                   7003: em_calculate_mng_checksum(char *buffer, uint32_t length)
                   7004: {
                   7005:     uint8_t sum = 0;
                   7006:     uint32_t i;
                   7007:
                   7008:     if (!buffer)
                   7009:         return 0;
                   7010:
                   7011:     for (i=0; i < length; i++)
                   7012:         sum += buffer[i];
                   7013:
                   7014:     return (uint8_t) (0 - sum);
                   7015: }
                   7016:
                   7017: /*****************************************************************************
                   7018:  * This function checks whether tx pkt filtering needs to be enabled or not.
                   7019:  *
                   7020:  * returns  - TRUE for packet filtering or FALSE.
                   7021:  ****************************************************************************/
                   7022: boolean_t
                   7023: em_enable_tx_pkt_filtering(struct em_hw *hw)
                   7024: {
                   7025:     /* called in init as well as watchdog timer functions */
                   7026:
                   7027:     int32_t ret_val, checksum;
                   7028:     boolean_t tx_filter = FALSE;
                   7029:     struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
                   7030:     uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
                   7031:
                   7032:     if (em_check_mng_mode(hw)) {
                   7033:         ret_val = em_mng_enable_host_if(hw);
                   7034:         if (ret_val == E1000_SUCCESS) {
                   7035:             ret_val = em_host_if_read_cookie(hw, buffer);
                   7036:             if (ret_val == E1000_SUCCESS) {
                   7037:                 checksum = hdr->checksum;
                   7038:                 hdr->checksum = 0;
                   7039:                 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
                   7040:                     checksum == em_calculate_mng_checksum((char *)buffer,
                   7041:                                                E1000_MNG_DHCP_COOKIE_LENGTH)) {
                   7042:                     if (hdr->status &
                   7043:                         E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
                   7044:                         tx_filter = TRUE;
                   7045:                 } else
                   7046:                     tx_filter = TRUE;
                   7047:             } else
                   7048:                 tx_filter = TRUE;
                   7049:         }
                   7050:     }
                   7051:
                   7052:     hw->tx_pkt_filtering = tx_filter;
                   7053:     return tx_filter;
                   7054: }
                   7055:
                   7056:
                   7057: static int32_t
                   7058: em_polarity_reversal_workaround(struct em_hw *hw)
                   7059: {
                   7060:     int32_t ret_val;
                   7061:     uint16_t mii_status_reg;
                   7062:     uint16_t i;
                   7063:
                   7064:     /* Polarity reversal workaround for forced 10F/10H links. */
                   7065:
                   7066:     /* Disable the transmitter on the PHY */
                   7067:
                   7068:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
                   7069:     if (ret_val)
                   7070:         return ret_val;
                   7071:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
                   7072:     if (ret_val)
                   7073:         return ret_val;
                   7074:
                   7075:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
                   7076:     if (ret_val)
                   7077:         return ret_val;
                   7078:
                   7079:     /* This loop will early-out if the NO link condition has been met. */
                   7080:     for (i = PHY_FORCE_TIME; i > 0; i--) {
                   7081:         /* Read the MII Status Register and wait for Link Status bit
                   7082:          * to be clear.
                   7083:          */
                   7084:
                   7085:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   7086:         if (ret_val)
                   7087:             return ret_val;
                   7088:
                   7089:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   7090:         if (ret_val)
                   7091:             return ret_val;
                   7092:
                   7093:         if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
                   7094:         msec_delay_irq(100);
                   7095:     }
                   7096:
                   7097:     /* Recommended delay time after link has been lost */
                   7098:     msec_delay_irq(1000);
                   7099:
                   7100:     /* Now we will re-enable the transmitter on the PHY */
                   7101:
                   7102:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
                   7103:     if (ret_val)
                   7104:         return ret_val;
                   7105:     msec_delay_irq(50);
                   7106:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
                   7107:     if (ret_val)
                   7108:         return ret_val;
                   7109:     msec_delay_irq(50);
                   7110:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
                   7111:     if (ret_val)
                   7112:         return ret_val;
                   7113:     msec_delay_irq(50);
                   7114:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
                   7115:     if (ret_val)
                   7116:         return ret_val;
                   7117:
                   7118:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
                   7119:     if (ret_val)
                   7120:         return ret_val;
                   7121:
                   7122:     /* This loop will early-out if the link condition has been met. */
                   7123:     for (i = PHY_FORCE_TIME; i > 0; i--) {
                   7124:         /* Read the MII Status Register and wait for Link Status bit
                   7125:          * to be set.
                   7126:          */
                   7127:
                   7128:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   7129:         if (ret_val)
                   7130:             return ret_val;
                   7131:
                   7132:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
                   7133:         if (ret_val)
                   7134:             return ret_val;
                   7135:
                   7136:         if (mii_status_reg & MII_SR_LINK_STATUS) break;
                   7137:         msec_delay_irq(100);
                   7138:     }
                   7139:     return E1000_SUCCESS;
                   7140: }
                   7141:
                   7142: /***************************************************************************
                   7143:  *
                   7144:  * Disables PCI-Express master access.
                   7145:  *
                   7146:  * hw: Struct containing variables accessed by shared code
                   7147:  *
                   7148:  * returns: - none.
                   7149:  *
                   7150:  ***************************************************************************/
                   7151: STATIC void
                   7152: em_set_pci_express_master_disable(struct em_hw *hw)
                   7153: {
                   7154:     uint32_t ctrl;
                   7155:
                   7156:     DEBUGFUNC("em_set_pci_express_master_disable");
                   7157:
                   7158:     if (hw->bus_type != em_bus_type_pci_express)
                   7159:         return;
                   7160:
                   7161:     ctrl = E1000_READ_REG(hw, CTRL);
                   7162:     ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
                   7163:     E1000_WRITE_REG(hw, CTRL, ctrl);
                   7164: }
                   7165:
                   7166: /*******************************************************************************
                   7167:  *
                   7168:  * Disables PCI-Express master access and verifies there are no pending requests
                   7169:  *
                   7170:  * hw: Struct containing variables accessed by shared code
                   7171:  *
                   7172:  * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
                   7173:  *            caused the master requests to be disabled.
                   7174:  *            E1000_SUCCESS master requests disabled.
                   7175:  *
                   7176:  ******************************************************************************/
                   7177: int32_t
                   7178: em_disable_pciex_master(struct em_hw *hw)
                   7179: {
                   7180:     int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
                   7181:
                   7182:     DEBUGFUNC("em_disable_pciex_master");
                   7183:
                   7184:     if (hw->bus_type != em_bus_type_pci_express)
                   7185:         return E1000_SUCCESS;
                   7186:
                   7187:     em_set_pci_express_master_disable(hw);
                   7188:
                   7189:     while (timeout) {
                   7190:         if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
                   7191:             break;
                   7192:         else
                   7193:             usec_delay(100);
                   7194:         timeout--;
                   7195:     }
                   7196:
                   7197:     if (!timeout) {
                   7198:         DEBUGOUT("Master requests are pending.\n");
                   7199:         return -E1000_ERR_MASTER_REQUESTS_PENDING;
                   7200:     }
                   7201:
                   7202:     return E1000_SUCCESS;
                   7203: }
                   7204:
                   7205: /*******************************************************************************
                   7206:  *
                   7207:  * Check for EEPROM Auto Read bit done.
                   7208:  *
                   7209:  * hw: Struct containing variables accessed by shared code
                   7210:  *
                   7211:  * returns: - E1000_ERR_RESET if fail to reset MAC
                   7212:  *            E1000_SUCCESS at any other case.
                   7213:  *
                   7214:  ******************************************************************************/
                   7215: STATIC int32_t
                   7216: em_get_auto_rd_done(struct em_hw *hw)
                   7217: {
                   7218:     int32_t timeout = AUTO_READ_DONE_TIMEOUT;
                   7219:
                   7220:     DEBUGFUNC("em_get_auto_rd_done");
                   7221:
                   7222:     switch (hw->mac_type) {
                   7223:     default:
                   7224:         msec_delay(5);
                   7225:         break;
                   7226:     case em_82571:
                   7227:     case em_82572:
                   7228:     case em_82573:
                   7229:     case em_80003es2lan:
                   7230:     case em_ich8lan:
                   7231:         while (timeout) {
                   7232:             if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
                   7233:                 break;
                   7234:             else msec_delay(1);
                   7235:             timeout--;
                   7236:         }
                   7237:
                   7238:         if (!timeout) {
                   7239:             DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
                   7240:             return -E1000_ERR_RESET;
                   7241:         }
                   7242:         break;
                   7243:     }
                   7244:
                   7245:     /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
                   7246:      * Need to wait for PHY configuration completion before accessing NVM
                   7247:      * and PHY. */
                   7248:     if (hw->mac_type == em_82573)
                   7249:         msec_delay(25);
                   7250:
                   7251:     return E1000_SUCCESS;
                   7252: }
                   7253:
                   7254: /***************************************************************************
                   7255:  * Checks if the PHY configuration is done
                   7256:  *
                   7257:  * hw: Struct containing variables accessed by shared code
                   7258:  *
                   7259:  * returns: - E1000_ERR_RESET if fail to reset MAC
                   7260:  *            E1000_SUCCESS at any other case.
                   7261:  *
                   7262:  ***************************************************************************/
                   7263: STATIC int32_t
                   7264: em_get_phy_cfg_done(struct em_hw *hw)
                   7265: {
                   7266:     int32_t timeout = PHY_CFG_TIMEOUT;
                   7267:     uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
                   7268:
                   7269:     DEBUGFUNC("em_get_phy_cfg_done");
                   7270:
                   7271:     switch (hw->mac_type) {
                   7272:     default:
                   7273:         msec_delay_irq(10);
                   7274:         break;
                   7275:     case em_80003es2lan:
                   7276:         /* Separate *_CFG_DONE_* bit for each port */
                   7277:         if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
                   7278:             cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
                   7279:         /* FALLTHROUGH */
                   7280:     case em_82571:
                   7281:     case em_82572:
                   7282:         while (timeout) {
                   7283:             if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
                   7284:                 break;
                   7285:             else
                   7286:                 msec_delay(1);
                   7287:             timeout--;
                   7288:         }
                   7289:         if (!timeout) {
                   7290:             DEBUGOUT("MNG configuration cycle has not completed.\n");
                   7291:             return -E1000_ERR_RESET;
                   7292:         }
                   7293:         break;
                   7294:     }
                   7295:
                   7296:     return E1000_SUCCESS;
                   7297: }
                   7298:
                   7299: /***************************************************************************
                   7300:  *
                   7301:  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
                   7302:  * adapter or Eeprom access.
                   7303:  *
                   7304:  * hw: Struct containing variables accessed by shared code
                   7305:  *
                   7306:  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
                   7307:  *            E1000_SUCCESS at any other case.
                   7308:  *
                   7309:  ***************************************************************************/
                   7310: STATIC int32_t
                   7311: em_get_hw_eeprom_semaphore(struct em_hw *hw)
                   7312: {
                   7313:     int32_t timeout;
                   7314:     uint32_t swsm;
                   7315:
                   7316:     DEBUGFUNC("em_get_hw_eeprom_semaphore");
                   7317:
                   7318:     if (!hw->eeprom_semaphore_present)
                   7319:         return E1000_SUCCESS;
                   7320:
                   7321:     if (hw->mac_type == em_80003es2lan) {
                   7322:         /* Get the SW semaphore. */
                   7323:         if (em_get_software_semaphore(hw) != E1000_SUCCESS)
                   7324:             return -E1000_ERR_EEPROM;
                   7325:     }
                   7326:
                   7327:     /* Get the FW semaphore. */
                   7328:     timeout = hw->eeprom.word_size + 1;
                   7329:     while (timeout) {
                   7330:         swsm = E1000_READ_REG(hw, SWSM);
                   7331:         swsm |= E1000_SWSM_SWESMBI;
                   7332:         E1000_WRITE_REG(hw, SWSM, swsm);
                   7333:         /* if we managed to set the bit we got the semaphore. */
                   7334:         swsm = E1000_READ_REG(hw, SWSM);
                   7335:         if (swsm & E1000_SWSM_SWESMBI)
                   7336:             break;
                   7337:
                   7338:         usec_delay(50);
                   7339:         timeout--;
                   7340:     }
                   7341:
                   7342:     if (!timeout) {
                   7343:         /* Release semaphores */
                   7344:         em_put_hw_eeprom_semaphore(hw);
                   7345:         DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
                   7346:         return -E1000_ERR_EEPROM;
                   7347:     }
                   7348:
                   7349:     return E1000_SUCCESS;
                   7350: }
                   7351:
                   7352: /***************************************************************************
                   7353:  * This function clears HW semaphore bits.
                   7354:  *
                   7355:  * hw: Struct containing variables accessed by shared code
                   7356:  *
                   7357:  * returns: - None.
                   7358:  *
                   7359:  ***************************************************************************/
                   7360: STATIC void
                   7361: em_put_hw_eeprom_semaphore(struct em_hw *hw)
                   7362: {
                   7363:     uint32_t swsm;
                   7364:
                   7365:     DEBUGFUNC("em_put_hw_eeprom_semaphore");
                   7366:
                   7367:     if (!hw->eeprom_semaphore_present)
                   7368:         return;
                   7369:
                   7370:     swsm = E1000_READ_REG(hw, SWSM);
                   7371:     if (hw->mac_type == em_80003es2lan) {
                   7372:         /* Release both semaphores. */
                   7373:         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
                   7374:     } else
                   7375:         swsm &= ~(E1000_SWSM_SWESMBI);
                   7376:     E1000_WRITE_REG(hw, SWSM, swsm);
                   7377: }
                   7378:
                   7379: /***************************************************************************
                   7380:  *
                   7381:  * Obtaining software semaphore bit (SMBI) before resetting PHY.
                   7382:  *
                   7383:  * hw: Struct containing variables accessed by shared code
                   7384:  *
                   7385:  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
                   7386:  *            E1000_SUCCESS at any other case.
                   7387:  *
                   7388:  ***************************************************************************/
                   7389: STATIC int32_t
                   7390: em_get_software_semaphore(struct em_hw *hw)
                   7391: {
                   7392:     int32_t timeout = hw->eeprom.word_size + 1;
                   7393:     uint32_t swsm;
                   7394:
                   7395:     DEBUGFUNC("em_get_software_semaphore");
                   7396:
                   7397:     if (hw->mac_type != em_80003es2lan)
                   7398:         return E1000_SUCCESS;
                   7399:
                   7400:     while (timeout) {
                   7401:         swsm = E1000_READ_REG(hw, SWSM);
                   7402:         /* If SMBI bit cleared, it is now set and we hold the semaphore */
                   7403:         if (!(swsm & E1000_SWSM_SMBI))
                   7404:             break;
                   7405:         msec_delay_irq(1);
                   7406:         timeout--;
                   7407:     }
                   7408:
                   7409:     if (!timeout) {
                   7410:         DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
                   7411:         return -E1000_ERR_RESET;
                   7412:     }
                   7413:
                   7414:     return E1000_SUCCESS;
                   7415: }
                   7416:
                   7417: /***************************************************************************
                   7418:  *
                   7419:  * Release semaphore bit (SMBI).
                   7420:  *
                   7421:  * hw: Struct containing variables accessed by shared code
                   7422:  *
                   7423:  ***************************************************************************/
                   7424: STATIC void
                   7425: em_release_software_semaphore(struct em_hw *hw)
                   7426: {
                   7427:     uint32_t swsm;
                   7428:
                   7429:     DEBUGFUNC("em_release_software_semaphore");
                   7430:
                   7431:     if (hw->mac_type != em_80003es2lan)
                   7432:         return;
                   7433:
                   7434:     swsm = E1000_READ_REG(hw, SWSM);
                   7435:     /* Release the SW semaphores.*/
                   7436:     swsm &= ~E1000_SWSM_SMBI;
                   7437:     E1000_WRITE_REG(hw, SWSM, swsm);
                   7438: }
                   7439:
                   7440: /******************************************************************************
                   7441:  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
                   7442:  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
                   7443:  * the caller to figure out how to deal with it.
                   7444:  *
                   7445:  * hw - Struct containing variables accessed by shared code
                   7446:  *
                   7447:  * returns: - E1000_BLK_PHY_RESET
                   7448:  *            E1000_SUCCESS
                   7449:  *
                   7450:  *****************************************************************************/
                   7451: int32_t
                   7452: em_check_phy_reset_block(struct em_hw *hw)
                   7453: {
                   7454:     uint32_t manc = 0;
                   7455:     uint32_t fwsm = 0;
                   7456:
                   7457:     if (hw->mac_type == em_ich8lan) {
                   7458:         fwsm = E1000_READ_REG(hw, FWSM);
                   7459:         return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
                   7460:                                             : E1000_BLK_PHY_RESET;
                   7461:     }
                   7462:
                   7463:     if (hw->mac_type > em_82547_rev_2)
                   7464:         manc = E1000_READ_REG(hw, MANC);
                   7465:     return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
                   7466:         E1000_BLK_PHY_RESET : E1000_SUCCESS;
                   7467: }
                   7468:
                   7469: /******************************************************************************
                   7470:  * Configure PCI-Ex no-snoop
                   7471:  *
                   7472:  * hw - Struct containing variables accessed by shared code.
                   7473:  * no_snoop - Bitmap of no-snoop events.
                   7474:  *
                   7475:  * returns: E1000_SUCCESS
                   7476:  *
                   7477:  *****************************************************************************/
                   7478: STATIC int32_t
                   7479: em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop)
                   7480: {
                   7481:     uint32_t gcr_reg = 0;
                   7482:
                   7483:     DEBUGFUNC("em_set_pci_ex_no_snoop");
                   7484:
                   7485:     if (hw->bus_type == em_bus_type_unknown)
                   7486:         em_get_bus_info(hw);
                   7487:
                   7488:     if (hw->bus_type != em_bus_type_pci_express)
                   7489:         return E1000_SUCCESS;
                   7490:
                   7491:     if (no_snoop) {
                   7492:         gcr_reg = E1000_READ_REG(hw, GCR);
                   7493:         gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
                   7494:         gcr_reg |= no_snoop;
                   7495:         E1000_WRITE_REG(hw, GCR, gcr_reg);
                   7496:     }
                   7497:     if (hw->mac_type == em_ich8lan) {
                   7498:         uint32_t ctrl_ext;
                   7499:
                   7500:         E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
                   7501:
                   7502:         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                   7503:         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
                   7504:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                   7505:     }
                   7506:
                   7507:     return E1000_SUCCESS;
                   7508: }
                   7509:
                   7510: /***************************************************************************
                   7511:  *
                   7512:  * Get software semaphore FLAG bit (SWFLAG).
                   7513:  * SWFLAG is used to synchronize the access to all shared resource between
                   7514:  * SW, FW and HW.
                   7515:  *
                   7516:  * hw: Struct containing variables accessed by shared code
                   7517:  *
                   7518:  ***************************************************************************/
                   7519: STATIC int32_t
                   7520: em_get_software_flag(struct em_hw *hw)
                   7521: {
                   7522:     int32_t timeout = PHY_CFG_TIMEOUT;
                   7523:     uint32_t extcnf_ctrl;
                   7524:
                   7525:     DEBUGFUNC("em_get_software_flag");
                   7526:
                   7527:     if (hw->mac_type == em_ich8lan) {
                   7528:         while (timeout) {
                   7529:             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
                   7530:             extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
                   7531:             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
                   7532:
                   7533:             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
                   7534:             if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
                   7535:                 break;
                   7536:             msec_delay_irq(1);
                   7537:             timeout--;
                   7538:         }
                   7539:
                   7540:         if (!timeout) {
                   7541:             DEBUGOUT("FW or HW locks the resource too long.\n");
                   7542:             return -E1000_ERR_CONFIG;
                   7543:         }
                   7544:     }
                   7545:
                   7546:     return E1000_SUCCESS;
                   7547: }
                   7548:
                   7549: /***************************************************************************
                   7550:  *
                   7551:  * Release software semaphore FLAG bit (SWFLAG).
                   7552:  * SWFLAG is used to synchronize the access to all shared resource between
                   7553:  * SW, FW and HW.
                   7554:  *
                   7555:  * hw: Struct containing variables accessed by shared code
                   7556:  *
                   7557:  ***************************************************************************/
                   7558: STATIC void
                   7559: em_release_software_flag(struct em_hw *hw)
                   7560: {
                   7561:     uint32_t extcnf_ctrl;
                   7562:
                   7563:     DEBUGFUNC("em_release_software_flag");
                   7564:
                   7565:     if (hw->mac_type == em_ich8lan) {
                   7566:         extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
                   7567:         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
                   7568:         E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
                   7569:     }
                   7570:
                   7571:     return;
                   7572: }
                   7573:
                   7574:
                   7575: /******************************************************************************
                   7576:  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
                   7577:  * register.
                   7578:  *
                   7579:  * hw - Struct containing variables accessed by shared code
                   7580:  * offset - offset of word in the EEPROM to read
                   7581:  * data - word read from the EEPROM
                   7582:  * words - number of words to read
                   7583:  *****************************************************************************/
                   7584: STATIC int32_t
                   7585: em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
                   7586:                        uint16_t *data)
                   7587: {
                   7588:     int32_t  error = E1000_SUCCESS;
                   7589:     uint32_t flash_bank = 0;
                   7590:     uint32_t act_offset = 0;
                   7591:     uint32_t bank_offset = 0;
                   7592:     uint16_t word = 0;
                   7593:     uint16_t i = 0;
                   7594:
                   7595:     /* We need to know which is the valid flash bank.  In the event
                   7596:      * that we didn't allocate eeprom_shadow_ram, we may not be
                   7597:      * managing flash_bank.  So it cannot be trusted and needs
                   7598:      * to be updated with each read.
                   7599:      */
                   7600:     /* Value of bit 22 corresponds to the flash bank we're on. */
                   7601:     flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
                   7602:
                   7603:     /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
                   7604:     bank_offset = flash_bank * (hw->flash_bank_size * 2);
                   7605:
                   7606:     error = em_get_software_flag(hw);
                   7607:     if (error != E1000_SUCCESS)
                   7608:         return error;
                   7609:
                   7610:     for (i = 0; i < words; i++) {
                   7611:         if (hw->eeprom_shadow_ram != NULL &&
                   7612:             hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
                   7613:             data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
                   7614:         } else {
                   7615:             /* The NVM part needs a byte offset, hence * 2 */
                   7616:             act_offset = bank_offset + ((offset + i) * 2);
                   7617:             error = em_read_ich8_word(hw, act_offset, &word);
                   7618:             if (error != E1000_SUCCESS)
                   7619:                 break;
                   7620:             data[i] = word;
                   7621:         }
                   7622:     }
                   7623:
                   7624:     em_release_software_flag(hw);
                   7625:
                   7626:     return error;
                   7627: }
                   7628:
                   7629: /******************************************************************************
                   7630:  * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
                   7631:  * register.  Actually, writes are written to the shadow ram cache in the hw
                   7632:  * structure hw->em_shadow_ram.  em_commit_shadow_ram flushes this to
                   7633:  * the NVM, which occurs when the NVM checksum is updated.
                   7634:  *
                   7635:  * hw - Struct containing variables accessed by shared code
                   7636:  * offset - offset of word in the EEPROM to write
                   7637:  * words - number of words to write
                   7638:  * data - words to write to the EEPROM
                   7639:  *****************************************************************************/
                   7640: STATIC int32_t
                   7641: em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
                   7642:                         uint16_t *data)
                   7643: {
                   7644:     uint32_t i = 0;
                   7645:     int32_t error = E1000_SUCCESS;
                   7646:
                   7647:     error = em_get_software_flag(hw);
                   7648:     if (error != E1000_SUCCESS)
                   7649:         return error;
                   7650:
                   7651:     /* A driver can write to the NVM only if it has eeprom_shadow_ram
                   7652:      * allocated.  Subsequent reads to the modified words are read from
                   7653:      * this cached structure as well.  Writes will only go into this
                   7654:      * cached structure unless it's followed by a call to
                   7655:      * em_update_eeprom_checksum() where it will commit the changes
                   7656:      * and clear the "modified" field.
                   7657:      */
                   7658:     if (hw->eeprom_shadow_ram != NULL) {
                   7659:         for (i = 0; i < words; i++) {
                   7660:             if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
                   7661:                 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
                   7662:                 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
                   7663:             } else {
                   7664:                 error = -E1000_ERR_EEPROM;
                   7665:                 break;
                   7666:             }
                   7667:         }
                   7668:     } else {
                   7669:         /* Drivers have the option to not allocate eeprom_shadow_ram as long
                   7670:          * as they don't perform any NVM writes.  An attempt in doing so
                   7671:          * will result in this error.
                   7672:          */
                   7673:         error = -E1000_ERR_EEPROM;
                   7674:     }
                   7675:
                   7676:     em_release_software_flag(hw);
                   7677:
                   7678:     return error;
                   7679: }
                   7680:
                   7681: /******************************************************************************
                   7682:  * This function does initial flash setup so that a new read/write/erase cycle
                   7683:  * can be started.
                   7684:  *
                   7685:  * hw - The pointer to the hw structure
                   7686:  ****************************************************************************/
                   7687: STATIC int32_t
                   7688: em_ich8_cycle_init(struct em_hw *hw)
                   7689: {
                   7690:     union ich8_hws_flash_status hsfsts;
                   7691:     int32_t error = E1000_ERR_EEPROM;
                   7692:     int32_t i     = 0;
                   7693:
                   7694:     DEBUGFUNC("em_ich8_cycle_init");
                   7695:
                   7696:     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
                   7697:
                   7698:     /* May be check the Flash Des Valid bit in Hw status */
                   7699:     if (hsfsts.hsf_status.fldesvalid == 0) {
                   7700:         DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
                   7701:         return error;
                   7702:     }
                   7703:
                   7704:     /* Clear FCERR in Hw status by writing 1 */
                   7705:     /* Clear DAEL in Hw status by writing a 1 */
                   7706:     hsfsts.hsf_status.flcerr = 1;
                   7707:     hsfsts.hsf_status.dael = 1;
                   7708:
                   7709:     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
                   7710:
                   7711:     /* Either we should have a hardware SPI cycle in progress bit to check
                   7712:      * against, in order to start a new cycle or FDONE bit should be changed
                   7713:      * in the hardware so that it is 1 after harware reset, which can then be
                   7714:      * used as an indication whether a cycle is in progress or has been
                   7715:      * completed .. we should also have some software semaphore mechanism to
                   7716:      * guard FDONE or the cycle in progress bit so that two threads access to
                   7717:      * those bits can be sequentiallized or a way so that 2 threads dont
                   7718:      * start the cycle at the same time */
                   7719:
                   7720:     if (hsfsts.hsf_status.flcinprog == 0) {
                   7721:         /* There is no cycle running at present, so we can start a cycle */
                   7722:         /* Begin by setting Flash Cycle Done. */
                   7723:         hsfsts.hsf_status.flcdone = 1;
                   7724:         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
                   7725:         error = E1000_SUCCESS;
                   7726:     } else {
                   7727:         /* otherwise poll for sometime so the current cycle has a chance
                   7728:          * to end before giving up. */
                   7729:         for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
                   7730:             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
                   7731:             if (hsfsts.hsf_status.flcinprog == 0) {
                   7732:                 error = E1000_SUCCESS;
                   7733:                 break;
                   7734:             }
                   7735:             usec_delay(1);
                   7736:         }
                   7737:         if (error == E1000_SUCCESS) {
                   7738:             /* Successful in waiting for previous cycle to timeout,
                   7739:              * now set the Flash Cycle Done. */
                   7740:             hsfsts.hsf_status.flcdone = 1;
                   7741:             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
                   7742:         } else {
                   7743:             DEBUGOUT("Flash controller busy, cannot get access");
                   7744:         }
                   7745:     }
                   7746:     return error;
                   7747: }
                   7748:
                   7749: /******************************************************************************
                   7750:  * This function starts a flash cycle and waits for its completion
                   7751:  *
                   7752:  * hw - The pointer to the hw structure
                   7753:  ****************************************************************************/
                   7754: STATIC int32_t
                   7755: em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout)
                   7756: {
                   7757:     union ich8_hws_flash_ctrl hsflctl;
                   7758:     union ich8_hws_flash_status hsfsts;
                   7759:     int32_t error = E1000_ERR_EEPROM;
                   7760:     uint32_t i = 0;
                   7761:
                   7762:     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
                   7763:     hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
                   7764:     hsflctl.hsf_ctrl.flcgo = 1;
                   7765:     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
                   7766:
                   7767:     /* wait till FDONE bit is set to 1 */
                   7768:     do {
                   7769:         hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
                   7770:         if (hsfsts.hsf_status.flcdone == 1)
                   7771:             break;
                   7772:         usec_delay(1);
                   7773:         i++;
                   7774:     } while (i < timeout);
                   7775:     if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
                   7776:         error = E1000_SUCCESS;
                   7777:     }
                   7778:     return error;
                   7779: }
                   7780:
                   7781: /******************************************************************************
                   7782:  * Reads a byte or word from the NVM using the ICH8 flash access registers.
                   7783:  *
                   7784:  * hw - The pointer to the hw structure
                   7785:  * index - The index of the byte or word to read.
                   7786:  * size - Size of data to read, 1=byte 2=word
                   7787:  * data - Pointer to the word to store the value read.
                   7788:  *****************************************************************************/
                   7789: STATIC int32_t
                   7790: em_read_ich8_data(struct em_hw *hw, uint32_t index,
                   7791:                      uint32_t size, uint16_t* data)
                   7792: {
                   7793:     union ich8_hws_flash_status hsfsts;
                   7794:     union ich8_hws_flash_ctrl hsflctl;
                   7795:     uint32_t flash_linear_address;
                   7796:     uint32_t flash_data = 0;
                   7797:     int32_t error = -E1000_ERR_EEPROM;
                   7798:     int32_t count = 0;
                   7799:
                   7800:     DEBUGFUNC("em_read_ich8_data");
                   7801:
                   7802:     if (size < 1  || size > 2 || data == 0x0 ||
                   7803:         index > ICH_FLASH_LINEAR_ADDR_MASK)
                   7804:         return error;
                   7805:
                   7806:     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
                   7807:                            hw->flash_base_addr;
                   7808:
                   7809:     do {
                   7810:         usec_delay(1);
                   7811:         /* Steps */
                   7812:         error = em_ich8_cycle_init(hw);
                   7813:         if (error != E1000_SUCCESS)
                   7814:             break;
                   7815:
                   7816:         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
                   7817:         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
                   7818:         hsflctl.hsf_ctrl.fldbcount = size - 1;
                   7819:         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
                   7820:         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
                   7821:
                   7822:         /* Write the last 24 bits of index into Flash Linear address field in
                   7823:          * Flash Address */
                   7824:         /* TODO: TBD maybe check the index against the size of flash */
                   7825:
                   7826:         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
                   7827:
                   7828:         error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
                   7829:
                   7830:         /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
                   7831:          * sequence a few more times, else read in (shift in) the Flash Data0,
                   7832:          * the order is least significant byte first msb to lsb */
                   7833:         if (error == E1000_SUCCESS) {
                   7834:             flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
                   7835:             if (size == 1) {
                   7836:                 *data = (uint8_t)(flash_data & 0x000000FF);
                   7837:             } else if (size == 2) {
                   7838:                 *data = (uint16_t)(flash_data & 0x0000FFFF);
                   7839:             }
                   7840:             break;
                   7841:         } else {
                   7842:             /* If we've gotten here, then things are probably completely hosed,
                   7843:              * but if the error condition is detected, it won't hurt to give
                   7844:              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
                   7845:              */
                   7846:             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
                   7847:             if (hsfsts.hsf_status.flcerr == 1) {
                   7848:                 /* Repeat for some time before giving up. */
                   7849:                 continue;
                   7850:             } else if (hsfsts.hsf_status.flcdone == 0) {
                   7851:                 DEBUGOUT("Timeout error - flash cycle did not complete.");
                   7852:                 break;
                   7853:             }
                   7854:         }
                   7855:     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
                   7856:
                   7857:     return error;
                   7858: }
                   7859:
                   7860: /******************************************************************************
                   7861:  * Writes One /two bytes to the NVM using the ICH8 flash access registers.
                   7862:  *
                   7863:  * hw - The pointer to the hw structure
                   7864:  * index - The index of the byte/word to read.
                   7865:  * size - Size of data to read, 1=byte 2=word
                   7866:  * data - The byte(s) to write to the NVM.
                   7867:  *****************************************************************************/
                   7868: STATIC int32_t
                   7869: em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
                   7870:                       uint16_t data)
                   7871: {
                   7872:     union ich8_hws_flash_status hsfsts;
                   7873:     union ich8_hws_flash_ctrl hsflctl;
                   7874:     uint32_t flash_linear_address;
                   7875:     uint32_t flash_data = 0;
                   7876:     int32_t error = -E1000_ERR_EEPROM;
                   7877:     int32_t count = 0;
                   7878:
                   7879:     DEBUGFUNC("em_write_ich8_data");
                   7880:
                   7881:     if (size < 1  || size > 2 || data > size * 0xff ||
                   7882:         index > ICH_FLASH_LINEAR_ADDR_MASK)
                   7883:         return error;
                   7884:
                   7885:     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
                   7886:                            hw->flash_base_addr;
                   7887:
                   7888:     do {
                   7889:         usec_delay(1);
                   7890:         /* Steps */
                   7891:         error = em_ich8_cycle_init(hw);
                   7892:         if (error != E1000_SUCCESS)
                   7893:             break;
                   7894:
                   7895:         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
                   7896:         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
                   7897:         hsflctl.hsf_ctrl.fldbcount = size -1;
                   7898:         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
                   7899:         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
                   7900:
                   7901:         /* Write the last 24 bits of index into Flash Linear address field in
                   7902:          * Flash Address */
                   7903:         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
                   7904:
                   7905:         if (size == 1)
                   7906:             flash_data = (uint32_t)data & 0x00FF;
                   7907:         else
                   7908:             flash_data = (uint32_t)data;
                   7909:
                   7910:         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
                   7911:
                   7912:         /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
                   7913:          * sequence a few more times else done */
                   7914:         error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
                   7915:         if (error == E1000_SUCCESS) {
                   7916:             break;
                   7917:         } else {
                   7918:             /* If we're here, then things are most likely completely hosed,
                   7919:              * but if the error condition is detected, it won't hurt to give
                   7920:              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
                   7921:              */
                   7922:             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
                   7923:             if (hsfsts.hsf_status.flcerr == 1) {
                   7924:                 /* Repeat for some time before giving up. */
                   7925:                 continue;
                   7926:             } else if (hsfsts.hsf_status.flcdone == 0) {
                   7927:                 DEBUGOUT("Timeout error - flash cycle did not complete.");
                   7928:                 break;
                   7929:             }
                   7930:         }
                   7931:     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
                   7932:
                   7933:     return error;
                   7934: }
                   7935:
                   7936: /******************************************************************************
                   7937:  * Reads a single byte from the NVM using the ICH8 flash access registers.
                   7938:  *
                   7939:  * hw - pointer to em_hw structure
                   7940:  * index - The index of the byte to read.
                   7941:  * data - Pointer to a byte to store the value read.
                   7942:  *****************************************************************************/
                   7943: STATIC int32_t
                   7944: em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data)
                   7945: {
                   7946:     int32_t status = E1000_SUCCESS;
                   7947:     uint16_t word = 0;
                   7948:
                   7949:     status = em_read_ich8_data(hw, index, 1, &word);
                   7950:     if (status == E1000_SUCCESS) {
                   7951:         *data = (uint8_t)word;
                   7952:     }
                   7953:
                   7954:     return status;
                   7955: }
                   7956:
                   7957: /******************************************************************************
                   7958:  * Writes a single byte to the NVM using the ICH8 flash access registers.
                   7959:  * Performs verification by reading back the value and then going through
                   7960:  * a retry algorithm before giving up.
                   7961:  *
                   7962:  * hw - pointer to em_hw structure
                   7963:  * index - The index of the byte to write.
                   7964:  * byte - The byte to write to the NVM.
                   7965:  *****************************************************************************/
                   7966: STATIC int32_t
                   7967: em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte)
                   7968: {
                   7969:     int32_t error = E1000_SUCCESS;
                   7970:     int32_t program_retries = 0;
                   7971:
                   7972:     DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
                   7973:
                   7974:     error = em_write_ich8_byte(hw, index, byte);
                   7975:
                   7976:     if (error != E1000_SUCCESS) {
                   7977:         for (program_retries = 0; program_retries < 100; program_retries++) {
                   7978:             DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
                   7979:             error = em_write_ich8_byte(hw, index, byte);
                   7980:             usec_delay(100);
                   7981:             if (error == E1000_SUCCESS)
                   7982:                 break;
                   7983:         }
                   7984:     }
                   7985:
                   7986:     if (program_retries == 100)
                   7987:         error = E1000_ERR_EEPROM;
                   7988:
                   7989:     return error;
                   7990: }
                   7991:
                   7992: /******************************************************************************
                   7993:  * Writes a single byte to the NVM using the ICH8 flash access registers.
                   7994:  *
                   7995:  * hw - pointer to em_hw structure
                   7996:  * index - The index of the byte to read.
                   7997:  * data - The byte to write to the NVM.
                   7998:  *****************************************************************************/
                   7999: STATIC int32_t
                   8000: em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data)
                   8001: {
                   8002:     int32_t status = E1000_SUCCESS;
                   8003:     uint16_t word = (uint16_t)data;
                   8004:
                   8005:     status = em_write_ich8_data(hw, index, 1, word);
                   8006:
                   8007:     return status;
                   8008: }
                   8009:
                   8010: /******************************************************************************
                   8011:  * Reads a word from the NVM using the ICH8 flash access registers.
                   8012:  *
                   8013:  * hw - pointer to em_hw structure
                   8014:  * index - The starting byte index of the word to read.
                   8015:  * data - Pointer to a word to store the value read.
                   8016:  *****************************************************************************/
                   8017: STATIC int32_t
                   8018: em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data)
                   8019: {
                   8020:     int32_t status = E1000_SUCCESS;
                   8021:     status = em_read_ich8_data(hw, index, 2, data);
                   8022:     return status;
                   8023: }
                   8024:
                   8025:
                   8026: /******************************************************************************
                   8027:  * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
                   8028:  * based.
                   8029:  *
                   8030:  * hw - pointer to em_hw structure
                   8031:  * bank - 0 for first bank, 1 for second bank
                   8032:  *
                   8033:  * Note that this function may actually erase as much as 8 or 64 KBytes.  The
                   8034:  * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
                   8035:  * bank size may be 4, 8 or 64 KBytes
                   8036:  *****************************************************************************/
                   8037: int32_t
                   8038: em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank)
                   8039: {
                   8040:     union ich8_hws_flash_status hsfsts;
                   8041:     union ich8_hws_flash_ctrl hsflctl;
                   8042:     uint32_t flash_linear_address;
                   8043:     int32_t  count = 0;
                   8044:     int32_t  error = E1000_ERR_EEPROM;
                   8045:     int32_t  iteration;
                   8046:     int32_t  sub_sector_size = 0;
                   8047:     int32_t  bank_size;
                   8048:     int32_t  j = 0;
                   8049:     int32_t  error_flag = 0;
                   8050:
                   8051:     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
                   8052:
                   8053:     /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
                   8054:     /* 00: The Hw sector is 256 bytes, hence we need to erase 16
                   8055:      *     consecutive sectors.  The start index for the nth Hw sector can be
                   8056:      *     calculated as bank * 4096 + n * 256
                   8057:      * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
                   8058:      *     The start index for the nth Hw sector can be calculated
                   8059:      *     as bank * 4096
                   8060:      * 10: The HW sector is 8K bytes
                   8061:      * 11: The Hw sector size is 64K bytes */
                   8062:     if (hsfsts.hsf_status.berasesz == 0x0) {
                   8063:         /* Hw sector size 256 */
                   8064:         sub_sector_size = ICH_FLASH_SEG_SIZE_256;
                   8065:         bank_size = ICH_FLASH_SECTOR_SIZE;
                   8066:         iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
                   8067:     } else if (hsfsts.hsf_status.berasesz == 0x1) {
                   8068:         bank_size = ICH_FLASH_SEG_SIZE_4K;
                   8069:         iteration = 1;
                   8070:     } else if (hsfsts.hsf_status.berasesz == 0x3) {
                   8071:         bank_size = ICH_FLASH_SEG_SIZE_64K;
                   8072:         iteration = 1;
                   8073:     } else {
                   8074:         return error;
                   8075:     }
                   8076:
                   8077:     for (j = 0; j < iteration ; j++) {
                   8078:         do {
                   8079:             count++;
                   8080:             /* Steps */
                   8081:             error = em_ich8_cycle_init(hw);
                   8082:             if (error != E1000_SUCCESS) {
                   8083:                 error_flag = 1;
                   8084:                 break;
                   8085:             }
                   8086:
                   8087:             /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
                   8088:              * Control */
                   8089:             hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
                   8090:             hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
                   8091:             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
                   8092:
                   8093:             /* Write the last 24 bits of an index within the block into Flash
                   8094:              * Linear address field in Flash Address.  This probably needs to
                   8095:              * be calculated here based off the on-chip erase sector size and
                   8096:              * the software bank size (4, 8 or 64 KBytes) */
                   8097:             flash_linear_address = bank * bank_size + j * sub_sector_size;
                   8098:             flash_linear_address += hw->flash_base_addr;
                   8099:             flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
                   8100:
                   8101:             E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
                   8102:
                   8103:             error = em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
                   8104:             /* Check if FCERR is set to 1.  If 1, clear it and try the whole
                   8105:              * sequence a few more times else Done */
                   8106:             if (error == E1000_SUCCESS) {
                   8107:                 break;
                   8108:             } else {
                   8109:                 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
                   8110:                 if (hsfsts.hsf_status.flcerr == 1) {
                   8111:                     /* repeat for some time before giving up */
                   8112:                     continue;
                   8113:                 } else if (hsfsts.hsf_status.flcdone == 0) {
                   8114:                     error_flag = 1;
                   8115:                     break;
                   8116:                 }
                   8117:             }
                   8118:         } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
                   8119:         if (error_flag == 1)
                   8120:             break;
                   8121:     }
                   8122:     if (error_flag != 1)
                   8123:         error = E1000_SUCCESS;
                   8124:     return error;
                   8125: }
                   8126:
                   8127:
                   8128: STATIC int32_t
                   8129: em_init_lcd_from_nvm_config_region(struct em_hw *hw,
                   8130:                                       uint32_t cnf_base_addr, uint32_t cnf_size)
                   8131: {
                   8132:     uint32_t ret_val = E1000_SUCCESS;
                   8133:     uint16_t word_addr, reg_data, reg_addr;
                   8134:     uint16_t i;
                   8135:
                   8136:     /* cnf_base_addr is in DWORD */
                   8137:     word_addr = (uint16_t)(cnf_base_addr << 1);
                   8138:
                   8139:     /* cnf_size is returned in size of dwords */
                   8140:     for (i = 0; i < cnf_size; i++) {
                   8141:         ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
                   8142:         if (ret_val)
                   8143:             return ret_val;
                   8144:
                   8145:         ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
                   8146:         if (ret_val)
                   8147:             return ret_val;
                   8148:
                   8149:         ret_val = em_get_software_flag(hw);
                   8150:         if (ret_val != E1000_SUCCESS)
                   8151:             return ret_val;
                   8152:
                   8153:         ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
                   8154:
                   8155:         em_release_software_flag(hw);
                   8156:     }
                   8157:
                   8158:     return ret_val;
                   8159: }
                   8160:
                   8161: /******************************************************************************
                   8162:  * This function initializes the PHY from the NVM on ICH8 platforms. This
                   8163:  * is needed due to an issue where the NVM configuration is not properly
                   8164:  * autoloaded after power transitions. Therefore, after each PHY reset, we
                   8165:  * will load the configuration data out of the NVM manually.
                   8166:  *
                   8167:  * hw: Struct containing variables accessed by shared code
                   8168:  *****************************************************************************/
                   8169: STATIC int32_t
                   8170: em_init_lcd_from_nvm(struct em_hw *hw)
                   8171: {
                   8172:     uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
                   8173:
                   8174:     if (hw->phy_type != em_phy_igp_3)
                   8175:           return E1000_SUCCESS;
                   8176:
                   8177:     /* Check if SW needs configure the PHY */
                   8178:     reg_data = E1000_READ_REG(hw, FEXTNVM);
                   8179:     if (!(reg_data & FEXTNVM_SW_CONFIG))
                   8180:         return E1000_SUCCESS;
                   8181:
                   8182:     /* Wait for basic configuration completes before proceeding*/
                   8183:     loop = 0;
                   8184:     do {
                   8185:         reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
                   8186:         usec_delay(100);
                   8187:         loop++;
                   8188:     } while ((!reg_data) && (loop < 50));
                   8189:
                   8190:     /* Clear the Init Done bit for the next init event */
                   8191:     reg_data = E1000_READ_REG(hw, STATUS);
                   8192:     reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
                   8193:     E1000_WRITE_REG(hw, STATUS, reg_data);
                   8194:
                   8195:     /* Make sure HW does not configure LCD from PHY extended configuration
                   8196:        before SW configuration */
                   8197:     reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
                   8198:     if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
                   8199:         reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
                   8200:         cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
                   8201:         cnf_size >>= 16;
                   8202:         if (cnf_size) {
                   8203:             reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
                   8204:             cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
                   8205:             /* cnf_base_addr is in DWORD */
                   8206:             cnf_base_addr >>= 16;
                   8207:
                   8208:             /* Configure LCD from extended configuration region. */
                   8209:             ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
                   8210:                                                             cnf_size);
                   8211:             if (ret_val)
                   8212:                 return ret_val;
                   8213:         }
                   8214:     }
                   8215:
                   8216:     return E1000_SUCCESS;
                   8217: }

CVSweb