[BACK]Return to if_em_hw.c CVS log [TXT][DIR] Up to [local] / sys / dev / pci

Annotation of sys/dev/pci/if_em_hw.c, Revision 1.1

1.1     ! nbrk        1: /*******************************************************************************
        !             2:
        !             3:   Copyright (c) 2001-2005, Intel Corporation
        !             4:   All rights reserved.
        !             5:
        !             6:   Redistribution and use in source and binary forms, with or without
        !             7:   modification, are permitted provided that the following conditions are met:
        !             8:
        !             9:    1. Redistributions of source code must retain the above copyright notice,
        !            10:       this list of conditions and the following disclaimer.
        !            11:
        !            12:    2. Redistributions in binary form must reproduce the above copyright
        !            13:       notice, this list of conditions and the following disclaimer in the
        !            14:       documentation and/or other materials provided with the distribution.
        !            15:
        !            16:    3. Neither the name of the Intel Corporation nor the names of its
        !            17:       contributors may be used to endorse or promote products derived from
        !            18:       this software without specific prior written permission.
        !            19:
        !            20:   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
        !            21:   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
        !            22:   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
        !            23:   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
        !            24:   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
        !            25:   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
        !            26:   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
        !            27:   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
        !            28:   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
        !            29:   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
        !            30:   POSSIBILITY OF SUCH DAMAGE.
        !            31:
        !            32: *******************************************************************************/
        !            33:
        !            34: /* $OpenBSD: if_em_hw.c,v 1.26 2007/05/09 18:02:46 deraadt Exp $ */
        !            35:
        !            36: /* if_em_hw.c
        !            37:  * Shared functions for accessing and configuring the MAC
        !            38:  */
        !            39:
        !            40: #if 0
        !            41: #include <sys/cdefs.h>
        !            42: __FBSDID("$FreeBSD: if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
        !            43: #endif
        !            44:
        !            45: #include <sys/param.h>
        !            46: #include <sys/systm.h>
        !            47: #include <sys/sockio.h>
        !            48: #include <sys/mbuf.h>
        !            49: #include <sys/malloc.h>
        !            50: #include <sys/kernel.h>
        !            51: #include <sys/device.h>
        !            52: #include <sys/socket.h>
        !            53:
        !            54: #include <net/if.h>
        !            55: #include <net/if_dl.h>
        !            56: #include <net/if_media.h>
        !            57:
        !            58: #ifdef INET
        !            59: #include <netinet/in.h>
        !            60: #include <netinet/in_systm.h>
        !            61: #include <netinet/in_var.h>
        !            62: #include <netinet/ip.h>
        !            63: #include <netinet/if_ether.h>
        !            64: #endif
        !            65:
        !            66: #include <uvm/uvm_extern.h>
        !            67:
        !            68: #include <dev/pci/pcireg.h>
        !            69: #include <dev/pci/pcivar.h>
        !            70: #include <dev/pci/pcidevs.h>
        !            71:
        !            72: #include <dev/pci/if_em_hw.h>
        !            73:
        !            74: #define STATIC
        !            75:
        !            76: static int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask);
        !            77: static void em_swfw_sync_release(struct em_hw *hw, uint16_t mask);
        !            78: static int32_t em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data);
        !            79: static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
        !            80: static int32_t em_get_software_semaphore(struct em_hw *hw);
        !            81: static void em_release_software_semaphore(struct em_hw *hw);
        !            82:
        !            83: static int32_t em_check_downshift(struct em_hw *hw);
        !            84: static void em_clear_vfta(struct em_hw *hw);
        !            85: static int32_t em_commit_shadow_ram(struct em_hw *hw);
        !            86: static int32_t em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up);
        !            87: static int32_t em_config_fc_after_link_up(struct em_hw *hw);
        !            88: static int32_t em_detect_gig_phy(struct em_hw *hw);
        !            89: static int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank);
        !            90: static int32_t em_get_auto_rd_done(struct em_hw *hw);
        !            91: static int32_t em_get_cable_length(struct em_hw *hw, uint16_t *min_length, uint16_t *max_length);
        !            92: static int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw);
        !            93: static int32_t em_get_phy_cfg_done(struct em_hw *hw);
        !            94: static int32_t em_get_software_flag(struct em_hw *hw);
        !            95: static int32_t em_ich8_cycle_init(struct em_hw *hw);
        !            96: static int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout);
        !            97: static int32_t em_id_led_init(struct em_hw *hw);
        !            98: static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
        !            99: static int32_t em_init_lcd_from_nvm(struct em_hw *hw);
        !           100: static void em_init_rx_addrs(struct em_hw *hw);
        !           101: static void em_initialize_hardware_bits(struct em_hw *hw);
        !           102: static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw);
        !           103: static int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw);
        !           104: static int32_t em_mng_enable_host_if(struct em_hw *hw);
        !           105: static int32_t em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
        !           106: static int32_t em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
        !           107: static int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd);
        !           108: static void em_put_hw_eeprom_semaphore(struct em_hw *hw);
        !           109: static int32_t em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data);
        !           110: static int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte);
        !           111: static int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte);
        !           112: static int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data);
        !           113: static int32_t em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
        !           114: static int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t data);
        !           115: static int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
        !           116: static int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
        !           117: static void em_release_software_flag(struct em_hw *hw);
        !           118: static int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active);
        !           119: static int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active);
        !           120: static int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop);
        !           121: static void em_set_pci_express_master_disable(struct em_hw *hw);
        !           122: static int32_t em_wait_autoneg(struct em_hw *hw);
        !           123: static void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value);
        !           124: static int32_t em_set_phy_type(struct em_hw *hw);
        !           125: static void em_phy_init_script(struct em_hw *hw);
        !           126: static int32_t em_setup_copper_link(struct em_hw *hw);
        !           127: static int32_t em_setup_fiber_serdes_link(struct em_hw *hw);
        !           128: static int32_t em_adjust_serdes_amplitude(struct em_hw *hw);
        !           129: static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
        !           130: static int32_t em_config_mac_to_phy(struct em_hw *hw);
        !           131: static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
        !           132: static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
        !           133: static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data,
        !           134:                                      uint16_t count);
        !           135: static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
        !           136: static int32_t em_phy_reset_dsp(struct em_hw *hw);
        !           137: static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset,
        !           138:                                       uint16_t words, uint16_t *data);
        !           139: static int32_t em_write_eeprom_microwire(struct em_hw *hw,
        !           140:                                             uint16_t offset, uint16_t words,
        !           141:                                             uint16_t *data);
        !           142: static int32_t em_spi_eeprom_ready(struct em_hw *hw);
        !           143: static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
        !           144: static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
        !           145: static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data,
        !           146:                                     uint16_t count);
        !           147: static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
        !           148:                                       uint16_t phy_data);
        !           149: static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr,
        !           150:                                      uint16_t *phy_data);
        !           151: static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count);
        !           152: static int32_t em_acquire_eeprom(struct em_hw *hw);
        !           153: static void em_release_eeprom(struct em_hw *hw);
        !           154: static void em_standby_eeprom(struct em_hw *hw);
        !           155: static int32_t em_set_vco_speed(struct em_hw *hw);
        !           156: static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
        !           157: static int32_t em_set_phy_mode(struct em_hw *hw);
        !           158: static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
        !           159: static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
        !           160: static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw,
        !           161:                                                uint16_t duplex);
        !           162: static int32_t em_configure_kmrn_for_1000(struct em_hw *hw);
        !           163:
        !           164: /* IGP cable length table */
        !           165: static const
        !           166: uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
        !           167:     { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
        !           168:       5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
        !           169:       25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
        !           170:       40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
        !           171:       60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
        !           172:       90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
        !           173:       100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
        !           174:       110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
        !           175:
        !           176: static const
        !           177: uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
        !           178:     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
        !           179:       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
        !           180:       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
        !           181:       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
        !           182:       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
        !           183:       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
        !           184:       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
        !           185:       104, 109, 114, 118, 121, 124};
        !           186:
        !           187: /******************************************************************************
        !           188:  * Set the phy type member in the hw struct.
        !           189:  *
        !           190:  * hw - Struct containing variables accessed by shared code
        !           191:  *****************************************************************************/
        !           192: STATIC int32_t
        !           193: em_set_phy_type(struct em_hw *hw)
        !           194: {
        !           195:     DEBUGFUNC("em_set_phy_type");
        !           196:
        !           197:     if (hw->mac_type == em_undefined)
        !           198:         return -E1000_ERR_PHY_TYPE;
        !           199:
        !           200:     switch (hw->phy_id) {
        !           201:     case M88E1000_E_PHY_ID:
        !           202:     case M88E1000_I_PHY_ID:
        !           203:     case M88E1011_I_PHY_ID:
        !           204:     case M88E1111_I_PHY_ID:
        !           205:         hw->phy_type = em_phy_m88;
        !           206:         break;
        !           207:     case IGP01E1000_I_PHY_ID:
        !           208:         if (hw->mac_type == em_82541 ||
        !           209:             hw->mac_type == em_82541_rev_2 ||
        !           210:             hw->mac_type == em_82547 ||
        !           211:             hw->mac_type == em_82547_rev_2) {
        !           212:             hw->phy_type = em_phy_igp;
        !           213:             break;
        !           214:         }
        !           215:     case IGP03E1000_E_PHY_ID:
        !           216:         hw->phy_type = em_phy_igp_3;
        !           217:         break;
        !           218:     case IFE_E_PHY_ID:
        !           219:     case IFE_PLUS_E_PHY_ID:
        !           220:     case IFE_C_E_PHY_ID:
        !           221:         hw->phy_type = em_phy_ife;
        !           222:         break;
        !           223:     case GG82563_E_PHY_ID:
        !           224:         if (hw->mac_type == em_80003es2lan) {
        !           225:             hw->phy_type = em_phy_gg82563;
        !           226:             break;
        !           227:         }
        !           228:         /* FALLTHROUGH */
        !           229:     default:
        !           230:         /* Should never have loaded on this device */
        !           231:         hw->phy_type = em_phy_undefined;
        !           232:         return -E1000_ERR_PHY_TYPE;
        !           233:     }
        !           234:
        !           235:     return E1000_SUCCESS;
        !           236: }
        !           237:
        !           238: /******************************************************************************
        !           239:  * IGP phy init script - initializes the GbE PHY
        !           240:  *
        !           241:  * hw - Struct containing variables accessed by shared code
        !           242:  *****************************************************************************/
        !           243: static void
        !           244: em_phy_init_script(struct em_hw *hw)
        !           245: {
        !           246:     uint32_t ret_val;
        !           247:     uint16_t phy_saved_data;
        !           248:
        !           249:     DEBUGFUNC("em_phy_init_script");
        !           250:
        !           251:     if (hw->phy_init_script) {
        !           252:         msec_delay(20);
        !           253:
        !           254:         /* Save off the current value of register 0x2F5B to be restored at
        !           255:          * the end of this routine. */
        !           256:         ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
        !           257:
        !           258:         /* Disabled the PHY transmitter */
        !           259:         em_write_phy_reg(hw, 0x2F5B, 0x0003);
        !           260:
        !           261:         msec_delay(20);
        !           262:
        !           263:         em_write_phy_reg(hw,0x0000,0x0140);
        !           264:
        !           265:         msec_delay(5);
        !           266:
        !           267:         switch (hw->mac_type) {
        !           268:         case em_82541:
        !           269:         case em_82547:
        !           270:             em_write_phy_reg(hw, 0x1F95, 0x0001);
        !           271:
        !           272:             em_write_phy_reg(hw, 0x1F71, 0xBD21);
        !           273:
        !           274:             em_write_phy_reg(hw, 0x1F79, 0x0018);
        !           275:
        !           276:             em_write_phy_reg(hw, 0x1F30, 0x1600);
        !           277:
        !           278:             em_write_phy_reg(hw, 0x1F31, 0x0014);
        !           279:
        !           280:             em_write_phy_reg(hw, 0x1F32, 0x161C);
        !           281:
        !           282:             em_write_phy_reg(hw, 0x1F94, 0x0003);
        !           283:
        !           284:             em_write_phy_reg(hw, 0x1F96, 0x003F);
        !           285:
        !           286:             em_write_phy_reg(hw, 0x2010, 0x0008);
        !           287:             break;
        !           288:
        !           289:         case em_82541_rev_2:
        !           290:         case em_82547_rev_2:
        !           291:             em_write_phy_reg(hw, 0x1F73, 0x0099);
        !           292:             break;
        !           293:         default:
        !           294:             break;
        !           295:         }
        !           296:
        !           297:         em_write_phy_reg(hw, 0x0000, 0x3300);
        !           298:
        !           299:         msec_delay(20);
        !           300:
        !           301:         /* Now enable the transmitter */
        !           302:         em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
        !           303:
        !           304:         if (hw->mac_type == em_82547) {
        !           305:             uint16_t fused, fine, coarse;
        !           306:
        !           307:             /* Move to analog registers page */
        !           308:             em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
        !           309:
        !           310:             if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
        !           311:                 em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
        !           312:
        !           313:                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
        !           314:                 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
        !           315:
        !           316:                 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
        !           317:                     coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
        !           318:                     fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
        !           319:                 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
        !           320:                     fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
        !           321:
        !           322:                 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
        !           323:                         (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
        !           324:                         (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
        !           325:
        !           326:                 em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
        !           327:                 em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
        !           328:                                     IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
        !           329:             }
        !           330:         }
        !           331:     }
        !           332: }
        !           333:
        !           334: /******************************************************************************
        !           335:  * Set the mac type member in the hw struct.
        !           336:  *
        !           337:  * hw - Struct containing variables accessed by shared code
        !           338:  *****************************************************************************/
        !           339: int32_t
        !           340: em_set_mac_type(struct em_hw *hw)
        !           341: {
        !           342:     DEBUGFUNC("em_set_mac_type");
        !           343:
        !           344:     switch (hw->device_id) {
        !           345:     case E1000_DEV_ID_82542:
        !           346:         switch (hw->revision_id) {
        !           347:         case E1000_82542_2_0_REV_ID:
        !           348:             hw->mac_type = em_82542_rev2_0;
        !           349:             break;
        !           350:         case E1000_82542_2_1_REV_ID:
        !           351:             hw->mac_type = em_82542_rev2_1;
        !           352:             break;
        !           353:         default:
        !           354:             /* Invalid 82542 revision ID */
        !           355:             return -E1000_ERR_MAC_TYPE;
        !           356:         }
        !           357:         break;
        !           358:     case E1000_DEV_ID_82543GC_FIBER:
        !           359:     case E1000_DEV_ID_82543GC_COPPER:
        !           360:         hw->mac_type = em_82543;
        !           361:         break;
        !           362:     case E1000_DEV_ID_82544EI_COPPER:
        !           363:     case E1000_DEV_ID_82544EI_FIBER:
        !           364:     case E1000_DEV_ID_82544GC_COPPER:
        !           365:     case E1000_DEV_ID_82544GC_LOM:
        !           366:         hw->mac_type = em_82544;
        !           367:         break;
        !           368:     case E1000_DEV_ID_82540EM:
        !           369:     case E1000_DEV_ID_82540EM_LOM:
        !           370:     case E1000_DEV_ID_82540EP:
        !           371:     case E1000_DEV_ID_82540EP_LOM:
        !           372:     case E1000_DEV_ID_82540EP_LP:
        !           373:         hw->mac_type = em_82540;
        !           374:         break;
        !           375:     case E1000_DEV_ID_82545EM_COPPER:
        !           376:     case E1000_DEV_ID_82545EM_FIBER:
        !           377:         hw->mac_type = em_82545;
        !           378:         break;
        !           379:     case E1000_DEV_ID_82545GM_COPPER:
        !           380:     case E1000_DEV_ID_82545GM_FIBER:
        !           381:     case E1000_DEV_ID_82545GM_SERDES:
        !           382:         hw->mac_type = em_82545_rev_3;
        !           383:         break;
        !           384:     case E1000_DEV_ID_82546EB_COPPER:
        !           385:     case E1000_DEV_ID_82546EB_FIBER:
        !           386:     case E1000_DEV_ID_82546EB_QUAD_COPPER:
        !           387:         hw->mac_type = em_82546;
        !           388:         break;
        !           389:     case E1000_DEV_ID_82546GB_COPPER:
        !           390:     case E1000_DEV_ID_82546GB_FIBER:
        !           391:     case E1000_DEV_ID_82546GB_SERDES:
        !           392:     case E1000_DEV_ID_82546GB_PCIE:
        !           393:     case E1000_DEV_ID_82546GB_QUAD_COPPER:
        !           394:     case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
        !           395:     case E1000_DEV_ID_82546GB_2:
        !           396:         hw->mac_type = em_82546_rev_3;
        !           397:         break;
        !           398:     case E1000_DEV_ID_82541EI:
        !           399:     case E1000_DEV_ID_82541EI_MOBILE:
        !           400:     case E1000_DEV_ID_82541ER_LOM:
        !           401:         hw->mac_type = em_82541;
        !           402:         break;
        !           403:     case E1000_DEV_ID_82541ER:
        !           404:     case E1000_DEV_ID_82541GI:
        !           405:     case E1000_DEV_ID_82541GI_LF:
        !           406:     case E1000_DEV_ID_82541GI_MOBILE:
        !           407:         hw->mac_type = em_82541_rev_2;
        !           408:         break;
        !           409:     case E1000_DEV_ID_82547EI:
        !           410:     case E1000_DEV_ID_82547EI_MOBILE:
        !           411:         hw->mac_type = em_82547;
        !           412:         break;
        !           413:     case E1000_DEV_ID_82547GI:
        !           414:         hw->mac_type = em_82547_rev_2;
        !           415:         break;
        !           416:     case E1000_DEV_ID_82571EB_AF:
        !           417:     case E1000_DEV_ID_82571EB_AT:
        !           418:     case E1000_DEV_ID_82571EB_COPPER:
        !           419:     case E1000_DEV_ID_82571EB_FIBER:
        !           420:     case E1000_DEV_ID_82571EB_SERDES:
        !           421:     case E1000_DEV_ID_82571EB_QUAD_COPPER:
        !           422:     case E1000_DEV_ID_82571EB_QUAD_FIBER:
        !           423:     case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
        !           424:             hw->mac_type = em_82571;
        !           425:         break;
        !           426:     case E1000_DEV_ID_82572EI_COPPER:
        !           427:     case E1000_DEV_ID_82572EI_FIBER:
        !           428:     case E1000_DEV_ID_82572EI_SERDES:
        !           429:     case E1000_DEV_ID_82572EI:
        !           430:         hw->mac_type = em_82572;
        !           431:         break;
        !           432:     case E1000_DEV_ID_82573E:
        !           433:     case E1000_DEV_ID_82573E_IAMT:
        !           434:     case E1000_DEV_ID_82573E_PM:
        !           435:     case E1000_DEV_ID_82573L:
        !           436:     case E1000_DEV_ID_82573L_PL_1:
        !           437:     case E1000_DEV_ID_82573L_PL_2:
        !           438:     case E1000_DEV_ID_82573V_PM:
        !           439:         hw->mac_type = em_82573;
        !           440:         break;
        !           441:     case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
        !           442:     case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
        !           443:     case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
        !           444:     case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
        !           445:         hw->mac_type = em_80003es2lan;
        !           446:         break;
        !           447:     case E1000_DEV_ID_ICH8_IGP_M_AMT:
        !           448:     case E1000_DEV_ID_ICH8_IGP_AMT:
        !           449:     case E1000_DEV_ID_ICH8_IGP_C:
        !           450:     case E1000_DEV_ID_ICH8_IFE:
        !           451:     case E1000_DEV_ID_ICH8_IFE_GT:
        !           452:     case E1000_DEV_ID_ICH8_IFE_G:
        !           453:     case E1000_DEV_ID_ICH8_IGP_M:
        !           454:         hw->mac_type = em_ich8lan;
        !           455:         break;
        !           456:     default:
        !           457:         /* Should never have loaded on this device */
        !           458:         return -E1000_ERR_MAC_TYPE;
        !           459:     }
        !           460:
        !           461:     switch (hw->mac_type) {
        !           462:     case em_ich8lan:
        !           463:         hw->swfwhw_semaphore_present = TRUE;
        !           464:         hw->asf_firmware_present = TRUE;
        !           465:         break;
        !           466:     case em_80003es2lan:
        !           467:         hw->swfw_sync_present = TRUE;
        !           468:         /* FALLTHROUGH */
        !           469:     case em_82571:
        !           470:     case em_82572:
        !           471:     case em_82573:
        !           472:         hw->eeprom_semaphore_present = TRUE;
        !           473:         /* FALLTHROUGH */
        !           474:     case em_82541:
        !           475:     case em_82547:
        !           476:     case em_82541_rev_2:
        !           477:     case em_82547_rev_2:
        !           478:         hw->asf_firmware_present = TRUE;
        !           479:         break;
        !           480:     default:
        !           481:         break;
        !           482:     }
        !           483:
        !           484:     return E1000_SUCCESS;
        !           485: }
        !           486:
        !           487: /*****************************************************************************
        !           488:  * Set media type and TBI compatibility.
        !           489:  *
        !           490:  * hw - Struct containing variables accessed by shared code
        !           491:  * **************************************************************************/
        !           492: void
        !           493: em_set_media_type(struct em_hw *hw)
        !           494: {
        !           495:     uint32_t status;
        !           496:
        !           497:     DEBUGFUNC("em_set_media_type");
        !           498:
        !           499:     if (hw->mac_type != em_82543) {
        !           500:         /* tbi_compatibility is only valid on 82543 */
        !           501:         hw->tbi_compatibility_en = FALSE;
        !           502:     }
        !           503:
        !           504:     switch (hw->device_id) {
        !           505:     case E1000_DEV_ID_82545GM_SERDES:
        !           506:     case E1000_DEV_ID_82546GB_SERDES:
        !           507:     case E1000_DEV_ID_82571EB_SERDES:
        !           508:     case E1000_DEV_ID_82572EI_SERDES:
        !           509:     case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
        !           510:         hw->media_type = em_media_type_internal_serdes;
        !           511:         break;
        !           512:     default:
        !           513:         switch (hw->mac_type) {
        !           514:         case em_82542_rev2_0:
        !           515:         case em_82542_rev2_1:
        !           516:             hw->media_type = em_media_type_fiber;
        !           517:             break;
        !           518:         case em_ich8lan:
        !           519:         case em_82573:
        !           520:             /* The STATUS_TBIMODE bit is reserved or reused for the this
        !           521:              * device.
        !           522:              */
        !           523:             hw->media_type = em_media_type_copper;
        !           524:             break;
        !           525:         default:
        !           526:             status = E1000_READ_REG(hw, STATUS);
        !           527:             if (status & E1000_STATUS_TBIMODE) {
        !           528:                 hw->media_type = em_media_type_fiber;
        !           529:                 /* tbi_compatibility not valid on fiber */
        !           530:                 hw->tbi_compatibility_en = FALSE;
        !           531:             } else {
        !           532:                 hw->media_type = em_media_type_copper;
        !           533:             }
        !           534:             break;
        !           535:         }
        !           536:     }
        !           537: }
        !           538:
        !           539: /******************************************************************************
        !           540:  * Reset the transmit and receive units; mask and clear all interrupts.
        !           541:  *
        !           542:  * hw - Struct containing variables accessed by shared code
        !           543:  *****************************************************************************/
        !           544: int32_t
        !           545: em_reset_hw(struct em_hw *hw)
        !           546: {
        !           547:     uint32_t ctrl;
        !           548:     uint32_t ctrl_ext;
        !           549:     uint32_t icr;
        !           550:     uint32_t manc;
        !           551:     uint32_t led_ctrl;
        !           552:     uint32_t timeout;
        !           553:     uint32_t extcnf_ctrl;
        !           554:     int32_t ret_val;
        !           555:
        !           556:     DEBUGFUNC("em_reset_hw");
        !           557:
        !           558:     /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
        !           559:     if (hw->mac_type == em_82542_rev2_0) {
        !           560:         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        !           561:         em_pci_clear_mwi(hw);
        !           562:     }
        !           563:
        !           564:     if (hw->bus_type == em_bus_type_pci_express) {
        !           565:         /* Prevent the PCI-E bus from sticking if there is no TLP connection
        !           566:          * on the last TLP read/write transaction when MAC is reset.
        !           567:          */
        !           568:         if (em_disable_pciex_master(hw) != E1000_SUCCESS) {
        !           569:             DEBUGOUT("PCI-E Master disable polling has failed.\n");
        !           570:         }
        !           571:     }
        !           572:
        !           573:     /* Clear interrupt mask to stop board from generating interrupts */
        !           574:     DEBUGOUT("Masking off all interrupts\n");
        !           575:     E1000_WRITE_REG(hw, IMC, 0xffffffff);
        !           576:
        !           577:     /* Disable the Transmit and Receive units.  Then delay to allow
        !           578:      * any pending transactions to complete before we hit the MAC with
        !           579:      * the global reset.
        !           580:      */
        !           581:     E1000_WRITE_REG(hw, RCTL, 0);
        !           582:     E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
        !           583:     E1000_WRITE_FLUSH(hw);
        !           584:
        !           585:     /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
        !           586:     hw->tbi_compatibility_on = FALSE;
        !           587:
        !           588:     /* Delay to allow any outstanding PCI transactions to complete before
        !           589:      * resetting the device
        !           590:      */
        !           591:     msec_delay(10);
        !           592:
        !           593:     ctrl = E1000_READ_REG(hw, CTRL);
        !           594:
        !           595:     /* Must reset the PHY before resetting the MAC */
        !           596:     if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
        !           597:         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
        !           598:         msec_delay(5);
        !           599:     }
        !           600:
        !           601:     /* Must acquire the MDIO ownership before MAC reset.
        !           602:      * Ownership defaults to firmware after a reset. */
        !           603:     if (hw->mac_type == em_82573) {
        !           604:         timeout = 10;
        !           605:
        !           606:         extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
        !           607:         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
        !           608:
        !           609:         do {
        !           610:             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
        !           611:             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
        !           612:
        !           613:             if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
        !           614:                 break;
        !           615:             else
        !           616:                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
        !           617:
        !           618:             msec_delay(2);
        !           619:             timeout--;
        !           620:         } while (timeout);
        !           621:     }
        !           622:
        !           623:     /* Workaround for ICH8 bit corruption issue in FIFO memory */
        !           624:     if (hw->mac_type == em_ich8lan) {
        !           625:         /* Set Tx and Rx buffer allocation to 8k apiece. */
        !           626:         E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
        !           627:         /* Set Packet Buffer Size to 16k. */
        !           628:         E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
        !           629:     }
        !           630:
        !           631:     /* Issue a global reset to the MAC.  This will reset the chip's
        !           632:      * transmit, receive, DMA, and link units.  It will not effect
        !           633:      * the current PCI configuration.  The global reset bit is self-
        !           634:      * clearing, and should clear within a microsecond.
        !           635:      */
        !           636:     DEBUGOUT("Issuing a global reset to MAC\n");
        !           637:
        !           638:     switch (hw->mac_type) {
        !           639:         case em_82544:
        !           640:         case em_82540:
        !           641:         case em_82545:
        !           642:         case em_82546:
        !           643:         case em_82541:
        !           644:         case em_82541_rev_2:
        !           645:             /* These controllers can't ack the 64-bit write when issuing the
        !           646:              * reset, so use IO-mapping as a workaround to issue the reset */
        !           647:             E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
        !           648:             break;
        !           649:         case em_82545_rev_3:
        !           650:         case em_82546_rev_3:
        !           651:             /* Reset is performed on a shadow of the control register */
        !           652:             E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
        !           653:             break;
        !           654:         case em_ich8lan:
        !           655:             if (!hw->phy_reset_disable &&
        !           656:                 em_check_phy_reset_block(hw) == E1000_SUCCESS) {
        !           657:                 /* em_ich8lan PHY HW reset requires MAC CORE reset
        !           658:                  * at the same time to make sure the interface between
        !           659:                  * MAC and the external PHY is reset.
        !           660:                  */
        !           661:                 ctrl |= E1000_CTRL_PHY_RST;
        !           662:             }
        !           663:
        !           664:             em_get_software_flag(hw);
        !           665:             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
        !           666:             msec_delay(5);
        !           667:             break;
        !           668:         default:
        !           669:             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
        !           670:             break;
        !           671:     }
        !           672:
        !           673:     /* After MAC reset, force reload of EEPROM to restore power-on settings to
        !           674:      * device.  Later controllers reload the EEPROM automatically, so just wait
        !           675:      * for reload to complete.
        !           676:      */
        !           677:     switch (hw->mac_type) {
        !           678:         case em_82542_rev2_0:
        !           679:         case em_82542_rev2_1:
        !           680:         case em_82543:
        !           681:         case em_82544:
        !           682:             /* Wait for reset to complete */
        !           683:             usec_delay(10);
        !           684:             ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        !           685:             ctrl_ext |= E1000_CTRL_EXT_EE_RST;
        !           686:             E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        !           687:             E1000_WRITE_FLUSH(hw);
        !           688:             /* Wait for EEPROM reload */
        !           689:             msec_delay(2);
        !           690:             break;
        !           691:         case em_82541:
        !           692:         case em_82541_rev_2:
        !           693:         case em_82547:
        !           694:         case em_82547_rev_2:
        !           695:             /* Wait for EEPROM reload */
        !           696:             msec_delay(20);
        !           697:             break;
        !           698:         case em_82573:
        !           699:             if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
        !           700:                 usec_delay(10);
        !           701:                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        !           702:                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
        !           703:                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        !           704:                 E1000_WRITE_FLUSH(hw);
        !           705:             }
        !           706:             /* FALLTHROUGH */
        !           707:         default:
        !           708:             /* Auto read done will delay 5ms or poll based on mac type */
        !           709:             ret_val = em_get_auto_rd_done(hw);
        !           710:             if (ret_val)
        !           711:                 return ret_val;
        !           712:             break;
        !           713:     }
        !           714:
        !           715:     /* Disable HW ARPs on ASF enabled adapters */
        !           716:     if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
        !           717:         manc = E1000_READ_REG(hw, MANC);
        !           718:         manc &= ~(E1000_MANC_ARP_EN);
        !           719:         E1000_WRITE_REG(hw, MANC, manc);
        !           720:     }
        !           721:
        !           722:     if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
        !           723:         em_phy_init_script(hw);
        !           724:
        !           725:         /* Configure activity LED after PHY reset */
        !           726:         led_ctrl = E1000_READ_REG(hw, LEDCTL);
        !           727:         led_ctrl &= IGP_ACTIVITY_LED_MASK;
        !           728:         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        !           729:         E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
        !           730:     }
        !           731:
        !           732:     /* Clear interrupt mask to stop board from generating interrupts */
        !           733:     DEBUGOUT("Masking off all interrupts\n");
        !           734:     E1000_WRITE_REG(hw, IMC, 0xffffffff);
        !           735:
        !           736:     /* Clear any pending interrupt events. */
        !           737:     icr = E1000_READ_REG(hw, ICR);
        !           738:
        !           739:     /* If MWI was previously enabled, reenable it. */
        !           740:     if (hw->mac_type == em_82542_rev2_0) {
        !           741:         if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
        !           742:             em_pci_set_mwi(hw);
        !           743:     }
        !           744:
        !           745:     if (hw->mac_type == em_ich8lan) {
        !           746:         uint32_t kab = E1000_READ_REG(hw, KABGTXD);
        !           747:         kab |= E1000_KABGTXD_BGSQLBIAS;
        !           748:         E1000_WRITE_REG(hw, KABGTXD, kab);
        !           749:     }
        !           750:
        !           751:     return E1000_SUCCESS;
        !           752: }
        !           753:
        !           754: /******************************************************************************
        !           755:  *
        !           756:  * Initialize a number of hardware-dependent bits
        !           757:  *
        !           758:  * hw: Struct containing variables accessed by shared code
        !           759:  *
        !           760:  *****************************************************************************/
        !           761: STATIC void
        !           762: em_initialize_hardware_bits(struct em_hw *hw)
        !           763: {
        !           764:     if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) {
        !           765:         /* Settings common to all silicon */
        !           766:         uint32_t reg_ctrl, reg_ctrl_ext;
        !           767:         uint32_t reg_tarc0, reg_tarc1;
        !           768:         uint32_t reg_tctl;
        !           769:         uint32_t reg_txdctl, reg_txdctl1;
        !           770:
        !           771:         reg_tarc0 = E1000_READ_REG(hw, TARC0);
        !           772:         reg_tarc0 &= ~0x78000000;           /* Clear bits 30, 29, 28, and 27 */
        !           773:
        !           774:         reg_txdctl = E1000_READ_REG(hw, TXDCTL);
        !           775:         reg_txdctl |= E1000_TXDCTL_COUNT_DESC;       /* Set bit 22 */
        !           776:         E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
        !           777:
        !           778:         reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
        !           779:         reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;      /* Set bit 22 */
        !           780:         E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
        !           781:
        !           782:         switch (hw->mac_type) {
        !           783:             case em_82571:
        !           784:             case em_82572:
        !           785:                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
        !           786:                 reg_tctl = E1000_READ_REG(hw, TCTL);
        !           787:
        !           788:                 /* Set the phy Tx compatible mode bits */
        !           789:                 reg_tarc1 &= ~0x60000000;   /* Clear bits 30 and 29 */
        !           790:
        !           791:                 reg_tarc0 |= 0x07800000;    /* Set TARC0 bits 23-26 */
        !           792:                 reg_tarc1 |= 0x07000000;    /* Set TARC1 bits 24-26 */
        !           793:
        !           794:                 if (reg_tctl & E1000_TCTL_MULR)
        !           795:                     reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
        !           796:                 else
        !           797:                     reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
        !           798:
        !           799:                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
        !           800:                 break;
        !           801:             case em_82573:
        !           802:                 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        !           803:                 reg_ctrl = E1000_READ_REG(hw, CTRL);
        !           804:
        !           805:                 reg_ctrl_ext &= ~0x00800000;    /* Clear bit 23 */
        !           806:                 reg_ctrl_ext |= 0x00400000;     /* Set bit 22 */
        !           807:                 reg_ctrl &= ~0x20000000;        /* Clear bit 29 */
        !           808:
        !           809:                 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
        !           810:                 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
        !           811:                 break;
        !           812:             case em_80003es2lan:
        !           813:                 if ((hw->media_type == em_media_type_fiber) ||
        !           814:                     (hw->media_type == em_media_type_internal_serdes)) {
        !           815:                     reg_tarc0 &= ~0x00100000;   /* Clear bit 20 */
        !           816:                 }
        !           817:
        !           818:                 reg_tctl = E1000_READ_REG(hw, TCTL);
        !           819:                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
        !           820:                 if (reg_tctl & E1000_TCTL_MULR)
        !           821:                     reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
        !           822:                 else
        !           823:                     reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
        !           824:
        !           825:                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
        !           826:                 break;
        !           827:             case em_ich8lan:
        !           828:                 if ((hw->revision_id < 3) ||
        !           829:                     ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
        !           830:                      (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
        !           831:                     reg_tarc0 |= 0x30000000;    /* Set TARC0 bits 29 and 28 */
        !           832:                 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        !           833:                 reg_ctrl_ext |= 0x00400000;     /* Set bit 22 */
        !           834:                 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
        !           835:
        !           836:                 reg_tarc0 |= 0x0d800000;    /* Set TARC0 bits 23, 24, 26, 27 */
        !           837:
        !           838:                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
        !           839:                 reg_tctl = E1000_READ_REG(hw, TCTL);
        !           840:
        !           841:                 if (reg_tctl & E1000_TCTL_MULR)
        !           842:                     reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
        !           843:                 else
        !           844:                     reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
        !           845:
        !           846:                 reg_tarc1 |= 0x45000000;        /* Set bit 24, 26 and 30 */
        !           847:
        !           848:                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
        !           849:                 break;
        !           850:             default:
        !           851:                 break;
        !           852:         }
        !           853:
        !           854:         E1000_WRITE_REG(hw, TARC0, reg_tarc0);
        !           855:     }
        !           856: }
        !           857:
        !           858: /******************************************************************************
        !           859:  * Performs basic configuration of the adapter.
        !           860:  *
        !           861:  * hw - Struct containing variables accessed by shared code
        !           862:  *
        !           863:  * Assumes that the controller has previously been reset and is in a
        !           864:  * post-reset uninitialized state. Initializes the receive address registers,
        !           865:  * multicast table, and VLAN filter table. Calls routines to setup link
        !           866:  * configuration and flow control settings. Clears all on-chip counters. Leaves
        !           867:  * the transmit and receive units disabled and uninitialized.
        !           868:  *****************************************************************************/
        !           869: int32_t
        !           870: em_init_hw(struct em_hw *hw)
        !           871: {
        !           872:     uint32_t ctrl;
        !           873:     uint32_t i;
        !           874:     int32_t ret_val;
        !           875:     uint16_t pcix_cmd_word;
        !           876:     uint16_t pcix_stat_hi_word;
        !           877:     uint16_t cmd_mmrbc;
        !           878:     uint16_t stat_mmrbc;
        !           879:     uint32_t mta_size;
        !           880:     uint32_t reg_data;
        !           881:     uint32_t ctrl_ext;
        !           882:
        !           883:     DEBUGFUNC("em_init_hw");
        !           884:
        !           885:     /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
        !           886:     if ((hw->mac_type == em_ich8lan) &&
        !           887:         ((hw->revision_id < 3) ||
        !           888:          ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
        !           889:           (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
        !           890:             reg_data = E1000_READ_REG(hw, STATUS);
        !           891:             reg_data &= ~0x80000000;
        !           892:             E1000_WRITE_REG(hw, STATUS, reg_data);
        !           893:     }
        !           894:
        !           895:     /* Initialize Identification LED */
        !           896:     ret_val = em_id_led_init(hw);
        !           897:     if (ret_val) {
        !           898:         DEBUGOUT("Error Initializing Identification LED\n");
        !           899:         return ret_val;
        !           900:     }
        !           901:
        !           902:     /* Set the media type and TBI compatibility */
        !           903:     em_set_media_type(hw);
        !           904:
        !           905:     /* Must be called after em_set_media_type because media_type is used */
        !           906:     em_initialize_hardware_bits(hw);
        !           907:
        !           908:     /* Disabling VLAN filtering. */
        !           909:     DEBUGOUT("Initializing the IEEE VLAN\n");
        !           910:     /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
        !           911:     if (hw->mac_type != em_ich8lan) {
        !           912:         if (hw->mac_type < em_82545_rev_3)
        !           913:             E1000_WRITE_REG(hw, VET, 0);
        !           914:         em_clear_vfta(hw);
        !           915:     }
        !           916:
        !           917:     /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
        !           918:     if (hw->mac_type == em_82542_rev2_0) {
        !           919:         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        !           920:         em_pci_clear_mwi(hw);
        !           921:         E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
        !           922:         E1000_WRITE_FLUSH(hw);
        !           923:         msec_delay(5);
        !           924:     }
        !           925:
        !           926:     /* Setup the receive address. This involves initializing all of the Receive
        !           927:      * Address Registers (RARs 0 - 15).
        !           928:      */
        !           929:     em_init_rx_addrs(hw);
        !           930:
        !           931:     /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
        !           932:     if (hw->mac_type == em_82542_rev2_0) {
        !           933:         E1000_WRITE_REG(hw, RCTL, 0);
        !           934:         E1000_WRITE_FLUSH(hw);
        !           935:         msec_delay(1);
        !           936:         if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
        !           937:             em_pci_set_mwi(hw);
        !           938:     }
        !           939:
        !           940:     /* Zero out the Multicast HASH table */
        !           941:     DEBUGOUT("Zeroing the MTA\n");
        !           942:     mta_size = E1000_MC_TBL_SIZE;
        !           943:     if (hw->mac_type == em_ich8lan)
        !           944:         mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
        !           945:     for (i = 0; i < mta_size; i++) {
        !           946:         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
        !           947:         /* use write flush to prevent Memory Write Block (MWB) from
        !           948:          * occuring when accessing our register space */
        !           949:         E1000_WRITE_FLUSH(hw);
        !           950:     }
        !           951:
        !           952:     /* Set the PCI priority bit correctly in the CTRL register.  This
        !           953:      * determines if the adapter gives priority to receives, or if it
        !           954:      * gives equal priority to transmits and receives.  Valid only on
        !           955:      * 82542 and 82543 silicon.
        !           956:      */
        !           957:     if (hw->dma_fairness && hw->mac_type <= em_82543) {
        !           958:         ctrl = E1000_READ_REG(hw, CTRL);
        !           959:         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
        !           960:     }
        !           961:
        !           962:     switch (hw->mac_type) {
        !           963:     case em_82545_rev_3:
        !           964:     case em_82546_rev_3:
        !           965:         break;
        !           966:     default:
        !           967:         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
        !           968:         if (hw->bus_type == em_bus_type_pcix) {
        !           969:             em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
        !           970:             em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
        !           971:                 &pcix_stat_hi_word);
        !           972:             cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
        !           973:                 PCIX_COMMAND_MMRBC_SHIFT;
        !           974:             stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
        !           975:                 PCIX_STATUS_HI_MMRBC_SHIFT;
        !           976:             if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
        !           977:                 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
        !           978:             if (cmd_mmrbc > stat_mmrbc) {
        !           979:                 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
        !           980:                 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
        !           981:                 em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
        !           982:                     &pcix_cmd_word);
        !           983:             }
        !           984:         }
        !           985:         break;
        !           986:     }
        !           987:
        !           988:     /* More time needed for PHY to initialize */
        !           989:     if (hw->mac_type == em_ich8lan)
        !           990:         msec_delay(15);
        !           991:
        !           992:     /* Call a subroutine to configure the link and setup flow control. */
        !           993:     ret_val = em_setup_link(hw);
        !           994:
        !           995:     /* Set the transmit descriptor write-back policy */
        !           996:     if (hw->mac_type > em_82544) {
        !           997:         ctrl = E1000_READ_REG(hw, TXDCTL);
        !           998:         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
        !           999:         E1000_WRITE_REG(hw, TXDCTL, ctrl);
        !          1000:     }
        !          1001:
        !          1002:     if (hw->mac_type == em_82573) {
        !          1003:         em_enable_tx_pkt_filtering(hw);
        !          1004:     }
        !          1005:
        !          1006:     switch (hw->mac_type) {
        !          1007:     default:
        !          1008:         break;
        !          1009:     case em_80003es2lan:
        !          1010:         /* Enable retransmit on late collisions */
        !          1011:         reg_data = E1000_READ_REG(hw, TCTL);
        !          1012:         reg_data |= E1000_TCTL_RTLC;
        !          1013:         E1000_WRITE_REG(hw, TCTL, reg_data);
        !          1014:
        !          1015:         /* Configure Gigabit Carry Extend Padding */
        !          1016:         reg_data = E1000_READ_REG(hw, TCTL_EXT);
        !          1017:         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
        !          1018:         reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
        !          1019:         E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
        !          1020:
        !          1021:         /* Configure Transmit Inter-Packet Gap */
        !          1022:         reg_data = E1000_READ_REG(hw, TIPG);
        !          1023:         reg_data &= ~E1000_TIPG_IPGT_MASK;
        !          1024:         reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
        !          1025:         E1000_WRITE_REG(hw, TIPG, reg_data);
        !          1026:
        !          1027:         reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
        !          1028:         reg_data &= ~0x00100000;
        !          1029:         E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
        !          1030:         /* FALLTHROUGH */
        !          1031:     case em_82571:
        !          1032:     case em_82572:
        !          1033:     case em_ich8lan:
        !          1034:         ctrl = E1000_READ_REG(hw, TXDCTL1);
        !          1035:         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
        !          1036:         E1000_WRITE_REG(hw, TXDCTL1, ctrl);
        !          1037:         break;
        !          1038:     }
        !          1039:
        !          1040:     if (hw->mac_type == em_82573) {
        !          1041:         uint32_t gcr = E1000_READ_REG(hw, GCR);
        !          1042:         gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
        !          1043:         E1000_WRITE_REG(hw, GCR, gcr);
        !          1044:     }
        !          1045:
        !          1046:     /* Clear all of the statistics registers (clear on read).  It is
        !          1047:      * important that we do this after we have tried to establish link
        !          1048:      * because the symbol error count will increment wildly if there
        !          1049:      * is no link.
        !          1050:      */
        !          1051:     em_clear_hw_cntrs(hw);
        !          1052:
        !          1053:     /* ICH8 No-snoop bits are opposite polarity.
        !          1054:      * Set to snoop by default after reset. */
        !          1055:     if (hw->mac_type == em_ich8lan)
        !          1056:         em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
        !          1057:
        !          1058:     if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
        !          1059:         hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
        !          1060:         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        !          1061:         /* Relaxed ordering must be disabled to avoid a parity
        !          1062:          * error crash in a PCI slot. */
        !          1063:         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
        !          1064:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        !          1065:     }
        !          1066:
        !          1067:     return ret_val;
        !          1068: }
        !          1069:
        !          1070: /******************************************************************************
        !          1071:  * Adjust SERDES output amplitude based on EEPROM setting.
        !          1072:  *
        !          1073:  * hw - Struct containing variables accessed by shared code.
        !          1074:  *****************************************************************************/
        !          1075: static int32_t
        !          1076: em_adjust_serdes_amplitude(struct em_hw *hw)
        !          1077: {
        !          1078:     uint16_t eeprom_data;
        !          1079:     int32_t  ret_val;
        !          1080:
        !          1081:     DEBUGFUNC("em_adjust_serdes_amplitude");
        !          1082:
        !          1083:     if (hw->media_type != em_media_type_internal_serdes)
        !          1084:         return E1000_SUCCESS;
        !          1085:
        !          1086:     switch (hw->mac_type) {
        !          1087:     case em_82545_rev_3:
        !          1088:     case em_82546_rev_3:
        !          1089:         break;
        !          1090:     default:
        !          1091:         return E1000_SUCCESS;
        !          1092:     }
        !          1093:
        !          1094:     ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
        !          1095:     if (ret_val) {
        !          1096:         return ret_val;
        !          1097:     }
        !          1098:
        !          1099:     if (eeprom_data != EEPROM_RESERVED_WORD) {
        !          1100:         /* Adjust SERDES output amplitude only. */
        !          1101:         eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
        !          1102:         ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
        !          1103:         if (ret_val)
        !          1104:             return ret_val;
        !          1105:     }
        !          1106:
        !          1107:     return E1000_SUCCESS;
        !          1108: }
        !          1109:
        !          1110: /******************************************************************************
        !          1111:  * Configures flow control and link settings.
        !          1112:  *
        !          1113:  * hw - Struct containing variables accessed by shared code
        !          1114:  *
        !          1115:  * Determines which flow control settings to use. Calls the appropriate media-
        !          1116:  * specific link configuration function. Configures the flow control settings.
        !          1117:  * Assuming the adapter has a valid link partner, a valid link should be
        !          1118:  * established. Assumes the hardware has previously been reset and the
        !          1119:  * transmitter and receiver are not enabled.
        !          1120:  *****************************************************************************/
        !          1121: int32_t
        !          1122: em_setup_link(struct em_hw *hw)
        !          1123: {
        !          1124:     uint32_t ctrl_ext;
        !          1125:     int32_t ret_val;
        !          1126:     uint16_t eeprom_data;
        !          1127:
        !          1128:     DEBUGFUNC("em_setup_link");
        !          1129:
        !          1130:     /* In the case of the phy reset being blocked, we already have a link.
        !          1131:      * We do not have to set it up again. */
        !          1132:     if (em_check_phy_reset_block(hw))
        !          1133:         return E1000_SUCCESS;
        !          1134:
        !          1135:     /* Read and store word 0x0F of the EEPROM. This word contains bits
        !          1136:      * that determine the hardware's default PAUSE (flow control) mode,
        !          1137:      * a bit that determines whether the HW defaults to enabling or
        !          1138:      * disabling auto-negotiation, and the direction of the
        !          1139:      * SW defined pins. If there is no SW over-ride of the flow
        !          1140:      * control setting, then the variable hw->fc will
        !          1141:      * be initialized based on a value in the EEPROM.
        !          1142:      */
        !          1143:     if (hw->fc == E1000_FC_DEFAULT) {
        !          1144:         switch (hw->mac_type) {
        !          1145:         case em_ich8lan:
        !          1146:         case em_82573:
        !          1147:             hw->fc = E1000_FC_FULL;
        !          1148:             break;
        !          1149:         default:
        !          1150:             ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
        !          1151:                                         1, &eeprom_data);
        !          1152:             if (ret_val) {
        !          1153:                 DEBUGOUT("EEPROM Read Error\n");
        !          1154:                 return -E1000_ERR_EEPROM;
        !          1155:             }
        !          1156:             if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
        !          1157:                 hw->fc = E1000_FC_NONE;
        !          1158:             else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
        !          1159:                     EEPROM_WORD0F_ASM_DIR)
        !          1160:                 hw->fc = E1000_FC_TX_PAUSE;
        !          1161:             else
        !          1162:                 hw->fc = E1000_FC_FULL;
        !          1163:             break;
        !          1164:         }
        !          1165:     }
        !          1166:
        !          1167:     /* We want to save off the original Flow Control configuration just
        !          1168:      * in case we get disconnected and then reconnected into a different
        !          1169:      * hub or switch with different Flow Control capabilities.
        !          1170:      */
        !          1171:     if (hw->mac_type == em_82542_rev2_0)
        !          1172:         hw->fc &= (~E1000_FC_TX_PAUSE);
        !          1173:
        !          1174:     if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
        !          1175:         hw->fc &= (~E1000_FC_RX_PAUSE);
        !          1176:
        !          1177:     hw->original_fc = hw->fc;
        !          1178:
        !          1179:     DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
        !          1180:
        !          1181:     /* Take the 4 bits from EEPROM word 0x0F that determine the initial
        !          1182:      * polarity value for the SW controlled pins, and setup the
        !          1183:      * Extended Device Control reg with that info.
        !          1184:      * This is needed because one of the SW controlled pins is used for
        !          1185:      * signal detection.  So this should be done before em_setup_pcs_link()
        !          1186:      * or em_phy_setup() is called.
        !          1187:      */
        !          1188:     if (hw->mac_type == em_82543) {
        !          1189:         ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
        !          1190:                                     1, &eeprom_data);
        !          1191:         if (ret_val) {
        !          1192:             DEBUGOUT("EEPROM Read Error\n");
        !          1193:             return -E1000_ERR_EEPROM;
        !          1194:         }
        !          1195:         ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
        !          1196:                     SWDPIO__EXT_SHIFT);
        !          1197:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        !          1198:     }
        !          1199:
        !          1200:     /* Call the necessary subroutine to configure the link. */
        !          1201:     ret_val = (hw->media_type == em_media_type_copper) ?
        !          1202:               em_setup_copper_link(hw) :
        !          1203:               em_setup_fiber_serdes_link(hw);
        !          1204:
        !          1205:     /* Initialize the flow control address, type, and PAUSE timer
        !          1206:      * registers to their default values.  This is done even if flow
        !          1207:      * control is disabled, because it does not hurt anything to
        !          1208:      * initialize these registers.
        !          1209:      */
        !          1210:     DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
        !          1211:
        !          1212:     /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */
        !          1213:     if (hw->mac_type != em_ich8lan) {
        !          1214:         E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
        !          1215:         E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
        !          1216:         E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
        !          1217:     }
        !          1218:
        !          1219:     E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
        !          1220:
        !          1221:     /* Set the flow control receive threshold registers.  Normally,
        !          1222:      * these registers will be set to a default threshold that may be
        !          1223:      * adjusted later by the driver's runtime code.  However, if the
        !          1224:      * ability to transmit pause frames in not enabled, then these
        !          1225:      * registers will be set to 0.
        !          1226:      */
        !          1227:     if (!(hw->fc & E1000_FC_TX_PAUSE)) {
        !          1228:         E1000_WRITE_REG(hw, FCRTL, 0);
        !          1229:         E1000_WRITE_REG(hw, FCRTH, 0);
        !          1230:     } else {
        !          1231:         /* We need to set up the Receive Threshold high and low water marks
        !          1232:          * as well as (optionally) enabling the transmission of XON frames.
        !          1233:          */
        !          1234:         if (hw->fc_send_xon) {
        !          1235:             E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
        !          1236:             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        !          1237:         } else {
        !          1238:             E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
        !          1239:             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        !          1240:         }
        !          1241:     }
        !          1242:     return ret_val;
        !          1243: }
        !          1244:
        !          1245: /******************************************************************************
        !          1246:  * Sets up link for a fiber based or serdes based adapter
        !          1247:  *
        !          1248:  * hw - Struct containing variables accessed by shared code
        !          1249:  *
        !          1250:  * Manipulates Physical Coding Sublayer functions in order to configure
        !          1251:  * link. Assumes the hardware has been previously reset and the transmitter
        !          1252:  * and receiver are not enabled.
        !          1253:  *****************************************************************************/
        !          1254: static int32_t
        !          1255: em_setup_fiber_serdes_link(struct em_hw *hw)
        !          1256: {
        !          1257:     uint32_t ctrl;
        !          1258:     uint32_t status;
        !          1259:     uint32_t txcw = 0;
        !          1260:     uint32_t i;
        !          1261:     uint32_t signal = 0;
        !          1262:     int32_t ret_val;
        !          1263:
        !          1264:     DEBUGFUNC("em_setup_fiber_serdes_link");
        !          1265:
        !          1266:     /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
        !          1267:      * until explicitly turned off or a power cycle is performed.  A read to
        !          1268:      * the register does not indicate its status.  Therefore, we ensure
        !          1269:      * loopback mode is disabled during initialization.
        !          1270:      */
        !          1271:     if (hw->mac_type == em_82571 || hw->mac_type == em_82572)
        !          1272:         E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
        !          1273:
        !          1274:     /* On adapters with a MAC newer than 82544, SWDP 1 will be
        !          1275:      * set when the optics detect a signal. On older adapters, it will be
        !          1276:      * cleared when there is a signal.  This applies to fiber media only.
        !          1277:      * If we're on serdes media, adjust the output amplitude to value
        !          1278:      * set in the EEPROM.
        !          1279:      */
        !          1280:     ctrl = E1000_READ_REG(hw, CTRL);
        !          1281:     if (hw->media_type == em_media_type_fiber)
        !          1282:         signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
        !          1283:
        !          1284:     ret_val = em_adjust_serdes_amplitude(hw);
        !          1285:     if (ret_val)
        !          1286:         return ret_val;
        !          1287:
        !          1288:     /* Take the link out of reset */
        !          1289:     ctrl &= ~(E1000_CTRL_LRST);
        !          1290:
        !          1291:     /* Adjust VCO speed to improve BER performance */
        !          1292:     ret_val = em_set_vco_speed(hw);
        !          1293:     if (ret_val)
        !          1294:         return ret_val;
        !          1295:
        !          1296:     em_config_collision_dist(hw);
        !          1297:
        !          1298:     /* Check for a software override of the flow control settings, and setup
        !          1299:      * the device accordingly.  If auto-negotiation is enabled, then software
        !          1300:      * will have to set the "PAUSE" bits to the correct value in the Tranmsit
        !          1301:      * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
        !          1302:      * auto-negotiation is disabled, then software will have to manually
        !          1303:      * configure the two flow control enable bits in the CTRL register.
        !          1304:      *
        !          1305:      * The possible values of the "fc" parameter are:
        !          1306:      *      0:  Flow control is completely disabled
        !          1307:      *      1:  Rx flow control is enabled (we can receive pause frames, but
        !          1308:      *          not send pause frames).
        !          1309:      *      2:  Tx flow control is enabled (we can send pause frames but we do
        !          1310:      *          not support receiving pause frames).
        !          1311:      *      3:  Both Rx and TX flow control (symmetric) are enabled.
        !          1312:      */
        !          1313:     switch (hw->fc) {
        !          1314:     case E1000_FC_NONE:
        !          1315:         /* Flow control is completely disabled by a software over-ride. */
        !          1316:         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
        !          1317:         break;
        !          1318:     case E1000_FC_RX_PAUSE:
        !          1319:         /* RX Flow control is enabled and TX Flow control is disabled by a
        !          1320:          * software over-ride. Since there really isn't a way to advertise
        !          1321:          * that we are capable of RX Pause ONLY, we will advertise that we
        !          1322:          * support both symmetric and asymmetric RX PAUSE. Later, we will
        !          1323:          *  disable the adapter's ability to send PAUSE frames.
        !          1324:          */
        !          1325:         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        !          1326:         break;
        !          1327:     case E1000_FC_TX_PAUSE:
        !          1328:         /* TX Flow control is enabled, and RX Flow control is disabled, by a
        !          1329:          * software over-ride.
        !          1330:          */
        !          1331:         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
        !          1332:         break;
        !          1333:     case E1000_FC_FULL:
        !          1334:         /* Flow control (both RX and TX) is enabled by a software over-ride. */
        !          1335:         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        !          1336:         break;
        !          1337:     default:
        !          1338:         DEBUGOUT("Flow control param set incorrectly\n");
        !          1339:         return -E1000_ERR_CONFIG;
        !          1340:         break;
        !          1341:     }
        !          1342:
        !          1343:     /* Since auto-negotiation is enabled, take the link out of reset (the link
        !          1344:      * will be in reset, because we previously reset the chip). This will
        !          1345:      * restart auto-negotiation.  If auto-neogtiation is successful then the
        !          1346:      * link-up status bit will be set and the flow control enable bits (RFCE
        !          1347:      * and TFCE) will be set according to their negotiated value.
        !          1348:      */
        !          1349:     DEBUGOUT("Auto-negotiation enabled\n");
        !          1350:
        !          1351:     E1000_WRITE_REG(hw, TXCW, txcw);
        !          1352:     E1000_WRITE_REG(hw, CTRL, ctrl);
        !          1353:     E1000_WRITE_FLUSH(hw);
        !          1354:
        !          1355:     hw->txcw = txcw;
        !          1356:     msec_delay(1);
        !          1357:
        !          1358:     /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
        !          1359:      * indication in the Device Status Register.  Time-out if a link isn't
        !          1360:      * seen in 500 milliseconds seconds (Auto-negotiation should complete in
        !          1361:      * less than 500 milliseconds even if the other end is doing it in SW).
        !          1362:      * For internal serdes, we just assume a signal is present, then poll.
        !          1363:      */
        !          1364:     if (hw->media_type == em_media_type_internal_serdes ||
        !          1365:        (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
        !          1366:         DEBUGOUT("Looking for Link\n");
        !          1367:         for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
        !          1368:             msec_delay(10);
        !          1369:             status = E1000_READ_REG(hw, STATUS);
        !          1370:             if (status & E1000_STATUS_LU) break;
        !          1371:         }
        !          1372:         if (i == (LINK_UP_TIMEOUT / 10)) {
        !          1373:             DEBUGOUT("Never got a valid link from auto-neg!!!\n");
        !          1374:             hw->autoneg_failed = 1;
        !          1375:             /* AutoNeg failed to achieve a link, so we'll call
        !          1376:              * em_check_for_link. This routine will force the link up if
        !          1377:              * we detect a signal. This will allow us to communicate with
        !          1378:              * non-autonegotiating link partners.
        !          1379:              */
        !          1380:             ret_val = em_check_for_link(hw);
        !          1381:             if (ret_val) {
        !          1382:                 DEBUGOUT("Error while checking for link\n");
        !          1383:                 return ret_val;
        !          1384:             }
        !          1385:             hw->autoneg_failed = 0;
        !          1386:         } else {
        !          1387:             hw->autoneg_failed = 0;
        !          1388:             DEBUGOUT("Valid Link Found\n");
        !          1389:         }
        !          1390:     } else {
        !          1391:         DEBUGOUT("No Signal Detected\n");
        !          1392:     }
        !          1393:     return E1000_SUCCESS;
        !          1394: }
        !          1395:
        !          1396: /******************************************************************************
        !          1397: * Make sure we have a valid PHY and change PHY mode before link setup.
        !          1398: *
        !          1399: * hw - Struct containing variables accessed by shared code
        !          1400: ******************************************************************************/
        !          1401: static int32_t
        !          1402: em_copper_link_preconfig(struct em_hw *hw)
        !          1403: {
        !          1404:     uint32_t ctrl;
        !          1405:     int32_t ret_val;
        !          1406:     uint16_t phy_data;
        !          1407:
        !          1408:     DEBUGFUNC("em_copper_link_preconfig");
        !          1409:
        !          1410:     ctrl = E1000_READ_REG(hw, CTRL);
        !          1411:     /* With 82543, we need to force speed and duplex on the MAC equal to what
        !          1412:      * the PHY speed and duplex configuration is. In addition, we need to
        !          1413:      * perform a hardware reset on the PHY to take it out of reset.
        !          1414:      */
        !          1415:     if (hw->mac_type > em_82543) {
        !          1416:         ctrl |= E1000_CTRL_SLU;
        !          1417:         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
        !          1418:         E1000_WRITE_REG(hw, CTRL, ctrl);
        !          1419:     } else {
        !          1420:         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
        !          1421:         E1000_WRITE_REG(hw, CTRL, ctrl);
        !          1422:         ret_val = em_phy_hw_reset(hw);
        !          1423:         if (ret_val)
        !          1424:             return ret_val;
        !          1425:     }
        !          1426:
        !          1427:     /* Make sure we have a valid PHY */
        !          1428:     ret_val = em_detect_gig_phy(hw);
        !          1429:     if (ret_val) {
        !          1430:         DEBUGOUT("Error, did not detect valid phy.\n");
        !          1431:         return ret_val;
        !          1432:     }
        !          1433:     DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
        !          1434:
        !          1435:     /* Set PHY to class A mode (if necessary) */
        !          1436:     ret_val = em_set_phy_mode(hw);
        !          1437:     if (ret_val)
        !          1438:         return ret_val;
        !          1439:
        !          1440:     if ((hw->mac_type == em_82545_rev_3) ||
        !          1441:        (hw->mac_type == em_82546_rev_3)) {
        !          1442:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        !          1443:         phy_data |= 0x00000008;
        !          1444:         ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
        !          1445:     }
        !          1446:
        !          1447:     if (hw->mac_type <= em_82543 ||
        !          1448:         hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
        !          1449:         hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
        !          1450:         hw->phy_reset_disable = FALSE;
        !          1451:
        !          1452:    return E1000_SUCCESS;
        !          1453: }
        !          1454:
        !          1455:
        !          1456: /********************************************************************
        !          1457: * Copper link setup for em_phy_igp series.
        !          1458: *
        !          1459: * hw - Struct containing variables accessed by shared code
        !          1460: *********************************************************************/
        !          1461: static int32_t
        !          1462: em_copper_link_igp_setup(struct em_hw *hw)
        !          1463: {
        !          1464:     uint32_t led_ctrl;
        !          1465:     int32_t ret_val;
        !          1466:     uint16_t phy_data;
        !          1467:
        !          1468:     DEBUGFUNC("em_copper_link_igp_setup");
        !          1469:
        !          1470:     if (hw->phy_reset_disable)
        !          1471:         return E1000_SUCCESS;
        !          1472:
        !          1473:     ret_val = em_phy_reset(hw);
        !          1474:     if (ret_val) {
        !          1475:         DEBUGOUT("Error Resetting the PHY\n");
        !          1476:         return ret_val;
        !          1477:     }
        !          1478:
        !          1479:     /* Wait 15ms for MAC to configure PHY from eeprom settings */
        !          1480:     msec_delay(15);
        !          1481:     if (hw->mac_type != em_ich8lan) {
        !          1482:     /* Configure activity LED after PHY reset */
        !          1483:     led_ctrl = E1000_READ_REG(hw, LEDCTL);
        !          1484:     led_ctrl &= IGP_ACTIVITY_LED_MASK;
        !          1485:     led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        !          1486:     E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
        !          1487:     }
        !          1488:
        !          1489:     /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
        !          1490:     if (hw->phy_type == em_phy_igp) {
        !          1491:         /* disable lplu d3 during driver init */
        !          1492:         ret_val = em_set_d3_lplu_state(hw, FALSE);
        !          1493:         if (ret_val) {
        !          1494:             DEBUGOUT("Error Disabling LPLU D3\n");
        !          1495:             return ret_val;
        !          1496:         }
        !          1497:     }
        !          1498:
        !          1499:     /* disable lplu d0 during driver init */
        !          1500:     ret_val = em_set_d0_lplu_state(hw, FALSE);
        !          1501:     if (ret_val) {
        !          1502:         DEBUGOUT("Error Disabling LPLU D0\n");
        !          1503:         return ret_val;
        !          1504:     }
        !          1505:     /* Configure mdi-mdix settings */
        !          1506:     ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
        !          1507:     if (ret_val)
        !          1508:         return ret_val;
        !          1509:
        !          1510:     if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
        !          1511:         hw->dsp_config_state = em_dsp_config_disabled;
        !          1512:         /* Force MDI for earlier revs of the IGP PHY */
        !          1513:         phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
        !          1514:         hw->mdix = 1;
        !          1515:
        !          1516:     } else {
        !          1517:         hw->dsp_config_state = em_dsp_config_enabled;
        !          1518:         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
        !          1519:
        !          1520:         switch (hw->mdix) {
        !          1521:         case 1:
        !          1522:             phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
        !          1523:             break;
        !          1524:         case 2:
        !          1525:             phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
        !          1526:             break;
        !          1527:         case 0:
        !          1528:         default:
        !          1529:             phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
        !          1530:             break;
        !          1531:         }
        !          1532:     }
        !          1533:     ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
        !          1534:     if (ret_val)
        !          1535:         return ret_val;
        !          1536:
        !          1537:     /* set auto-master slave resolution settings */
        !          1538:     if (hw->autoneg) {
        !          1539:         em_ms_type phy_ms_setting = hw->master_slave;
        !          1540:
        !          1541:         if (hw->ffe_config_state == em_ffe_config_active)
        !          1542:             hw->ffe_config_state = em_ffe_config_enabled;
        !          1543:
        !          1544:         if (hw->dsp_config_state == em_dsp_config_activated)
        !          1545:             hw->dsp_config_state = em_dsp_config_enabled;
        !          1546:
        !          1547:         /* when autonegotiation advertisement is only 1000Mbps then we
        !          1548:           * should disable SmartSpeed and enable Auto MasterSlave
        !          1549:           * resolution as hardware default. */
        !          1550:         if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
        !          1551:             /* Disable SmartSpeed */
        !          1552:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          1553:                                          &phy_data);
        !          1554:             if (ret_val)
        !          1555:                 return ret_val;
        !          1556:             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        !          1557:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          1558:                                           phy_data);
        !          1559:             if (ret_val)
        !          1560:                 return ret_val;
        !          1561:             /* Set auto Master/Slave resolution process */
        !          1562:             ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
        !          1563:             if (ret_val)
        !          1564:                 return ret_val;
        !          1565:             phy_data &= ~CR_1000T_MS_ENABLE;
        !          1566:             ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
        !          1567:             if (ret_val)
        !          1568:                 return ret_val;
        !          1569:         }
        !          1570:
        !          1571:         ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
        !          1572:         if (ret_val)
        !          1573:             return ret_val;
        !          1574:
        !          1575:         /* load defaults for future use */
        !          1576:         hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
        !          1577:                                         ((phy_data & CR_1000T_MS_VALUE) ?
        !          1578:                                          em_ms_force_master :
        !          1579:                                          em_ms_force_slave) :
        !          1580:                                          em_ms_auto;
        !          1581:
        !          1582:         switch (phy_ms_setting) {
        !          1583:         case em_ms_force_master:
        !          1584:             phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
        !          1585:             break;
        !          1586:         case em_ms_force_slave:
        !          1587:             phy_data |= CR_1000T_MS_ENABLE;
        !          1588:             phy_data &= ~(CR_1000T_MS_VALUE);
        !          1589:             break;
        !          1590:         case em_ms_auto:
        !          1591:             phy_data &= ~CR_1000T_MS_ENABLE;
        !          1592:             break;
        !          1593:         default:
        !          1594:             break;
        !          1595:         }
        !          1596:         ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
        !          1597:         if (ret_val)
        !          1598:             return ret_val;
        !          1599:     }
        !          1600:
        !          1601:     return E1000_SUCCESS;
        !          1602: }
        !          1603:
        !          1604: /********************************************************************
        !          1605: * Copper link setup for em_phy_gg82563 series.
        !          1606: *
        !          1607: * hw - Struct containing variables accessed by shared code
        !          1608: *********************************************************************/
        !          1609: static int32_t
        !          1610: em_copper_link_ggp_setup(struct em_hw *hw)
        !          1611: {
        !          1612:     int32_t ret_val;
        !          1613:     uint16_t phy_data;
        !          1614:     uint32_t reg_data;
        !          1615:
        !          1616:     DEBUGFUNC("em_copper_link_ggp_setup");
        !          1617:
        !          1618:     if (!hw->phy_reset_disable) {
        !          1619:
        !          1620:         /* Enable CRS on TX for half-duplex operation. */
        !          1621:         ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
        !          1622:                                      &phy_data);
        !          1623:         if (ret_val)
        !          1624:             return ret_val;
        !          1625:
        !          1626:         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
        !          1627:         /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
        !          1628:         phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
        !          1629:
        !          1630:         ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
        !          1631:                                       phy_data);
        !          1632:         if (ret_val)
        !          1633:             return ret_val;
        !          1634:
        !          1635:         /* Options:
        !          1636:          *   MDI/MDI-X = 0 (default)
        !          1637:          *   0 - Auto for all speeds
        !          1638:          *   1 - MDI mode
        !          1639:          *   2 - MDI-X mode
        !          1640:          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
        !          1641:          */
        !          1642:         ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
        !          1643:         if (ret_val)
        !          1644:             return ret_val;
        !          1645:
        !          1646:         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
        !          1647:
        !          1648:         switch (hw->mdix) {
        !          1649:         case 1:
        !          1650:             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
        !          1651:             break;
        !          1652:         case 2:
        !          1653:             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
        !          1654:             break;
        !          1655:         case 0:
        !          1656:         default:
        !          1657:             phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
        !          1658:             break;
        !          1659:         }
        !          1660:
        !          1661:         /* Options:
        !          1662:          *   disable_polarity_correction = 0 (default)
        !          1663:          *       Automatic Correction for Reversed Cable Polarity
        !          1664:          *   0 - Disabled
        !          1665:          *   1 - Enabled
        !          1666:          */
        !          1667:         phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
        !          1668:         if (hw->disable_polarity_correction == 1)
        !          1669:             phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
        !          1670:         ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
        !          1671:
        !          1672:         if (ret_val)
        !          1673:             return ret_val;
        !          1674:
        !          1675:         /* SW Reset the PHY so all changes take effect */
        !          1676:         ret_val = em_phy_reset(hw);
        !          1677:         if (ret_val) {
        !          1678:             DEBUGOUT("Error Resetting the PHY\n");
        !          1679:             return ret_val;
        !          1680:         }
        !          1681:     } /* phy_reset_disable */
        !          1682:
        !          1683:     if (hw->mac_type == em_80003es2lan) {
        !          1684:         /* Bypass RX and TX FIFO's */
        !          1685:         ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
        !          1686:                                        E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
        !          1687:                                        E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
        !          1688:         if (ret_val)
        !          1689:             return ret_val;
        !          1690:
        !          1691:         ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
        !          1692:         if (ret_val)
        !          1693:             return ret_val;
        !          1694:
        !          1695:         phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
        !          1696:         ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
        !          1697:
        !          1698:         if (ret_val)
        !          1699:             return ret_val;
        !          1700:
        !          1701:         reg_data = E1000_READ_REG(hw, CTRL_EXT);
        !          1702:         reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
        !          1703:         E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
        !          1704:
        !          1705:         ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
        !          1706:                                           &phy_data);
        !          1707:         if (ret_val)
        !          1708:             return ret_val;
        !          1709:
        !          1710:         /* Do not init these registers when the HW is in IAMT mode, since the
        !          1711:          * firmware will have already initialized them.  We only initialize
        !          1712:          * them if the HW is not in IAMT mode.
        !          1713:          */
        !          1714:         if (em_check_mng_mode(hw) == FALSE) {
        !          1715:             /* Enable Electrical Idle on the PHY */
        !          1716:             phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
        !          1717:             ret_val = em_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
        !          1718:                                           phy_data);
        !          1719:             if (ret_val)
        !          1720:                 return ret_val;
        !          1721:
        !          1722:             ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
        !          1723:                                          &phy_data);
        !          1724:             if (ret_val)
        !          1725:                 return ret_val;
        !          1726:
        !          1727:             phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
        !          1728:             ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
        !          1729:                                           phy_data);
        !          1730:
        !          1731:             if (ret_val)
        !          1732:                 return ret_val;
        !          1733:         }
        !          1734:
        !          1735:         /* Workaround: Disable padding in Kumeran interface in the MAC
        !          1736:          * and in the PHY to avoid CRC errors.
        !          1737:          */
        !          1738:         ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
        !          1739:                                      &phy_data);
        !          1740:         if (ret_val)
        !          1741:             return ret_val;
        !          1742:         phy_data |= GG82563_ICR_DIS_PADDING;
        !          1743:         ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
        !          1744:                                       phy_data);
        !          1745:         if (ret_val)
        !          1746:             return ret_val;
        !          1747:     }
        !          1748:
        !          1749:     return E1000_SUCCESS;
        !          1750: }
        !          1751:
        !          1752: /********************************************************************
        !          1753: * Copper link setup for em_phy_m88 series.
        !          1754: *
        !          1755: * hw - Struct containing variables accessed by shared code
        !          1756: *********************************************************************/
        !          1757: static int32_t
        !          1758: em_copper_link_mgp_setup(struct em_hw *hw)
        !          1759: {
        !          1760:     int32_t ret_val;
        !          1761:     uint16_t phy_data;
        !          1762:
        !          1763:     DEBUGFUNC("em_copper_link_mgp_setup");
        !          1764:
        !          1765:     if (hw->phy_reset_disable)
        !          1766:         return E1000_SUCCESS;
        !          1767:
        !          1768:     /* Enable CRS on TX. This must be set for half-duplex operation. */
        !          1769:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        !          1770:     if (ret_val)
        !          1771:         return ret_val;
        !          1772:
        !          1773:     phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
        !          1774:
        !          1775:     /* Options:
        !          1776:      *   MDI/MDI-X = 0 (default)
        !          1777:      *   0 - Auto for all speeds
        !          1778:      *   1 - MDI mode
        !          1779:      *   2 - MDI-X mode
        !          1780:      *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
        !          1781:      */
        !          1782:     phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
        !          1783:
        !          1784:     switch (hw->mdix) {
        !          1785:     case 1:
        !          1786:         phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
        !          1787:         break;
        !          1788:     case 2:
        !          1789:         phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
        !          1790:         break;
        !          1791:     case 3:
        !          1792:         phy_data |= M88E1000_PSCR_AUTO_X_1000T;
        !          1793:         break;
        !          1794:     case 0:
        !          1795:     default:
        !          1796:         phy_data |= M88E1000_PSCR_AUTO_X_MODE;
        !          1797:         break;
        !          1798:     }
        !          1799:
        !          1800:     /* Options:
        !          1801:      *   disable_polarity_correction = 0 (default)
        !          1802:      *       Automatic Correction for Reversed Cable Polarity
        !          1803:      *   0 - Disabled
        !          1804:      *   1 - Enabled
        !          1805:      */
        !          1806:     phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
        !          1807:     if (hw->disable_polarity_correction == 1)
        !          1808:         phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
        !          1809:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
        !          1810:     if (ret_val)
        !          1811:         return ret_val;
        !          1812:
        !          1813:     if (hw->phy_revision < M88E1011_I_REV_4) {
        !          1814:         /* Force TX_CLK in the Extended PHY Specific Control Register
        !          1815:          * to 25MHz clock.
        !          1816:          */
        !          1817:         ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
        !          1818:         if (ret_val)
        !          1819:             return ret_val;
        !          1820:
        !          1821:         phy_data |= M88E1000_EPSCR_TX_CLK_25;
        !          1822:
        !          1823:         if ((hw->phy_revision == E1000_REVISION_2) &&
        !          1824:             (hw->phy_id == M88E1111_I_PHY_ID)) {
        !          1825:             /* Vidalia Phy, set the downshift counter to 5x */
        !          1826:             phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
        !          1827:             phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
        !          1828:             ret_val = em_write_phy_reg(hw,
        !          1829:                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
        !          1830:             if (ret_val)
        !          1831:                 return ret_val;
        !          1832:         } else {
        !          1833:             /* Configure Master and Slave downshift values */
        !          1834:             phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
        !          1835:                               M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
        !          1836:             phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
        !          1837:                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
        !          1838:             ret_val = em_write_phy_reg(hw,
        !          1839:                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
        !          1840:             if (ret_val)
        !          1841:                return ret_val;
        !          1842:         }
        !          1843:     }
        !          1844:
        !          1845:     /* SW Reset the PHY so all changes take effect */
        !          1846:     ret_val = em_phy_reset(hw);
        !          1847:     if (ret_val) {
        !          1848:         DEBUGOUT("Error Resetting the PHY\n");
        !          1849:         return ret_val;
        !          1850:     }
        !          1851:
        !          1852:    return E1000_SUCCESS;
        !          1853: }
        !          1854:
        !          1855: /********************************************************************
        !          1856: * Setup auto-negotiation and flow control advertisements,
        !          1857: * and then perform auto-negotiation.
        !          1858: *
        !          1859: * hw - Struct containing variables accessed by shared code
        !          1860: *********************************************************************/
        !          1861: static int32_t
        !          1862: em_copper_link_autoneg(struct em_hw *hw)
        !          1863: {
        !          1864:     int32_t ret_val;
        !          1865:     uint16_t phy_data;
        !          1866:
        !          1867:     DEBUGFUNC("em_copper_link_autoneg");
        !          1868:
        !          1869:     /* Perform some bounds checking on the hw->autoneg_advertised
        !          1870:      * parameter.  If this variable is zero, then set it to the default.
        !          1871:      */
        !          1872:     hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
        !          1873:
        !          1874:     /* If autoneg_advertised is zero, we assume it was not defaulted
        !          1875:      * by the calling code so we set to advertise full capability.
        !          1876:      */
        !          1877:     if (hw->autoneg_advertised == 0)
        !          1878:         hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
        !          1879:
        !          1880:     /* IFE phy only supports 10/100 */
        !          1881:     if (hw->phy_type == em_phy_ife)
        !          1882:         hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
        !          1883:
        !          1884:     DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
        !          1885:     ret_val = em_phy_setup_autoneg(hw);
        !          1886:     if (ret_val) {
        !          1887:         DEBUGOUT("Error Setting up Auto-Negotiation\n");
        !          1888:         return ret_val;
        !          1889:     }
        !          1890:     DEBUGOUT("Restarting Auto-Neg\n");
        !          1891:
        !          1892:     /* Restart auto-negotiation by setting the Auto Neg Enable bit and
        !          1893:      * the Auto Neg Restart bit in the PHY control register.
        !          1894:      */
        !          1895:     ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
        !          1896:     if (ret_val)
        !          1897:         return ret_val;
        !          1898:
        !          1899:     phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
        !          1900:     ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
        !          1901:     if (ret_val)
        !          1902:         return ret_val;
        !          1903:
        !          1904:     /* Does the user want to wait for Auto-Neg to complete here, or
        !          1905:      * check at a later time (for example, callback routine).
        !          1906:      */
        !          1907:     if (hw->wait_autoneg_complete) {
        !          1908:         ret_val = em_wait_autoneg(hw);
        !          1909:         if (ret_val) {
        !          1910:             DEBUGOUT("Error while waiting for autoneg to complete\n");
        !          1911:             return ret_val;
        !          1912:         }
        !          1913:     }
        !          1914:
        !          1915:     hw->get_link_status = TRUE;
        !          1916:
        !          1917:     return E1000_SUCCESS;
        !          1918: }
        !          1919:
        !          1920: /******************************************************************************
        !          1921: * Config the MAC and the PHY after link is up.
        !          1922: *   1) Set up the MAC to the current PHY speed/duplex
        !          1923: *      if we are on 82543.  If we
        !          1924: *      are on newer silicon, we only need to configure
        !          1925: *      collision distance in the Transmit Control Register.
        !          1926: *   2) Set up flow control on the MAC to that established with
        !          1927: *      the link partner.
        !          1928: *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
        !          1929: *
        !          1930: * hw - Struct containing variables accessed by shared code
        !          1931: ******************************************************************************/
        !          1932: static int32_t
        !          1933: em_copper_link_postconfig(struct em_hw *hw)
        !          1934: {
        !          1935:     int32_t ret_val;
        !          1936:     DEBUGFUNC("em_copper_link_postconfig");
        !          1937:
        !          1938:     if (hw->mac_type >= em_82544) {
        !          1939:         em_config_collision_dist(hw);
        !          1940:     } else {
        !          1941:         ret_val = em_config_mac_to_phy(hw);
        !          1942:         if (ret_val) {
        !          1943:             DEBUGOUT("Error configuring MAC to PHY settings\n");
        !          1944:             return ret_val;
        !          1945:         }
        !          1946:     }
        !          1947:     ret_val = em_config_fc_after_link_up(hw);
        !          1948:     if (ret_val) {
        !          1949:         DEBUGOUT("Error Configuring Flow Control\n");
        !          1950:         return ret_val;
        !          1951:     }
        !          1952:
        !          1953:     /* Config DSP to improve Giga link quality */
        !          1954:     if (hw->phy_type == em_phy_igp) {
        !          1955:         ret_val = em_config_dsp_after_link_change(hw, TRUE);
        !          1956:         if (ret_val) {
        !          1957:             DEBUGOUT("Error Configuring DSP after link up\n");
        !          1958:             return ret_val;
        !          1959:         }
        !          1960:     }
        !          1961:
        !          1962:     return E1000_SUCCESS;
        !          1963: }
        !          1964:
        !          1965: /******************************************************************************
        !          1966: * Detects which PHY is present and setup the speed and duplex
        !          1967: *
        !          1968: * hw - Struct containing variables accessed by shared code
        !          1969: ******************************************************************************/
        !          1970: static int32_t
        !          1971: em_setup_copper_link(struct em_hw *hw)
        !          1972: {
        !          1973:     int32_t ret_val;
        !          1974:     uint16_t i;
        !          1975:     uint16_t phy_data;
        !          1976:     uint16_t reg_data;
        !          1977:
        !          1978:     DEBUGFUNC("em_setup_copper_link");
        !          1979:
        !          1980:     switch (hw->mac_type) {
        !          1981:     case em_80003es2lan:
        !          1982:     case em_ich8lan:
        !          1983:         /* Set the mac to wait the maximum time between each
        !          1984:          * iteration and increase the max iterations when
        !          1985:          * polling the phy; this fixes erroneous timeouts at 10Mbps. */
        !          1986:         ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
        !          1987:         if (ret_val)
        !          1988:             return ret_val;
        !          1989:         ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
        !          1990:         if (ret_val)
        !          1991:             return ret_val;
        !          1992:         reg_data |= 0x3F;
        !          1993:         ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
        !          1994:         if (ret_val)
        !          1995:             return ret_val;
        !          1996:     default:
        !          1997:         break;
        !          1998:     }
        !          1999:
        !          2000:     /* Check if it is a valid PHY and set PHY mode if necessary. */
        !          2001:     ret_val = em_copper_link_preconfig(hw);
        !          2002:     if (ret_val)
        !          2003:         return ret_val;
        !          2004:
        !          2005:     switch (hw->mac_type) {
        !          2006:     case em_80003es2lan:
        !          2007:         /* Kumeran registers are written-only */
        !          2008:         reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
        !          2009:         reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
        !          2010:         ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
        !          2011:                                        reg_data);
        !          2012:         if (ret_val)
        !          2013:             return ret_val;
        !          2014:         break;
        !          2015:     default:
        !          2016:         break;
        !          2017:     }
        !          2018:
        !          2019:     if (hw->phy_type == em_phy_igp ||
        !          2020:         hw->phy_type == em_phy_igp_3 ||
        !          2021:         hw->phy_type == em_phy_igp_2) {
        !          2022:         ret_val = em_copper_link_igp_setup(hw);
        !          2023:         if (ret_val)
        !          2024:             return ret_val;
        !          2025:     } else if (hw->phy_type == em_phy_m88) {
        !          2026:         ret_val = em_copper_link_mgp_setup(hw);
        !          2027:         if (ret_val)
        !          2028:             return ret_val;
        !          2029:     } else if (hw->phy_type == em_phy_gg82563) {
        !          2030:         ret_val = em_copper_link_ggp_setup(hw);
        !          2031:         if (ret_val)
        !          2032:             return ret_val;
        !          2033:     }
        !          2034:
        !          2035:     if (hw->autoneg) {
        !          2036:         /* Setup autoneg and flow control advertisement
        !          2037:           * and perform autonegotiation */
        !          2038:         ret_val = em_copper_link_autoneg(hw);
        !          2039:         if (ret_val)
        !          2040:             return ret_val;
        !          2041:     } else {
        !          2042:         /* PHY will be set to 10H, 10F, 100H,or 100F
        !          2043:           * depending on value from forced_speed_duplex. */
        !          2044:         DEBUGOUT("Forcing speed and duplex\n");
        !          2045:         ret_val = em_phy_force_speed_duplex(hw);
        !          2046:         if (ret_val) {
        !          2047:             DEBUGOUT("Error Forcing Speed and Duplex\n");
        !          2048:             return ret_val;
        !          2049:         }
        !          2050:     }
        !          2051:
        !          2052:     /* Check link status. Wait up to 100 microseconds for link to become
        !          2053:      * valid.
        !          2054:      */
        !          2055:     for (i = 0; i < 10; i++) {
        !          2056:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
        !          2057:         if (ret_val)
        !          2058:             return ret_val;
        !          2059:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
        !          2060:         if (ret_val)
        !          2061:             return ret_val;
        !          2062:
        !          2063:         if (phy_data & MII_SR_LINK_STATUS) {
        !          2064:             /* Config the MAC and PHY after link is up */
        !          2065:             ret_val = em_copper_link_postconfig(hw);
        !          2066:             if (ret_val)
        !          2067:                 return ret_val;
        !          2068:
        !          2069:             DEBUGOUT("Valid link established!!!\n");
        !          2070:             return E1000_SUCCESS;
        !          2071:         }
        !          2072:         usec_delay(10);
        !          2073:     }
        !          2074:
        !          2075:     DEBUGOUT("Unable to establish link!!!\n");
        !          2076:     return E1000_SUCCESS;
        !          2077: }
        !          2078:
        !          2079: /******************************************************************************
        !          2080: * Configure the MAC-to-PHY interface for 10/100Mbps
        !          2081: *
        !          2082: * hw - Struct containing variables accessed by shared code
        !          2083: ******************************************************************************/
        !          2084: static int32_t
        !          2085: em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex)
        !          2086: {
        !          2087:     int32_t ret_val = E1000_SUCCESS;
        !          2088:     uint32_t tipg;
        !          2089:     uint16_t reg_data;
        !          2090:
        !          2091:     DEBUGFUNC("em_configure_kmrn_for_10_100");
        !          2092:
        !          2093:     reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
        !          2094:     ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
        !          2095:                                    reg_data);
        !          2096:     if (ret_val)
        !          2097:         return ret_val;
        !          2098:
        !          2099:     /* Configure Transmit Inter-Packet Gap */
        !          2100:     tipg = E1000_READ_REG(hw, TIPG);
        !          2101:     tipg &= ~E1000_TIPG_IPGT_MASK;
        !          2102:     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
        !          2103:     E1000_WRITE_REG(hw, TIPG, tipg);
        !          2104:
        !          2105:     ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
        !          2106:
        !          2107:     if (ret_val)
        !          2108:         return ret_val;
        !          2109:
        !          2110:     if (duplex == HALF_DUPLEX)
        !          2111:         reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
        !          2112:     else
        !          2113:         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
        !          2114:
        !          2115:     ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
        !          2116:
        !          2117:     return ret_val;
        !          2118: }
        !          2119:
        !          2120: static int32_t
        !          2121: em_configure_kmrn_for_1000(struct em_hw *hw)
        !          2122: {
        !          2123:     int32_t ret_val = E1000_SUCCESS;
        !          2124:     uint16_t reg_data;
        !          2125:     uint32_t tipg;
        !          2126:
        !          2127:     DEBUGFUNC("em_configure_kmrn_for_1000");
        !          2128:
        !          2129:     reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
        !          2130:     ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
        !          2131:                                    reg_data);
        !          2132:     if (ret_val)
        !          2133:         return ret_val;
        !          2134:
        !          2135:     /* Configure Transmit Inter-Packet Gap */
        !          2136:     tipg = E1000_READ_REG(hw, TIPG);
        !          2137:     tipg &= ~E1000_TIPG_IPGT_MASK;
        !          2138:     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
        !          2139:     E1000_WRITE_REG(hw, TIPG, tipg);
        !          2140:
        !          2141:     ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
        !          2142:
        !          2143:     if (ret_val)
        !          2144:         return ret_val;
        !          2145:
        !          2146:     reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
        !          2147:     ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
        !          2148:
        !          2149:     return ret_val;
        !          2150: }
        !          2151:
        !          2152: /******************************************************************************
        !          2153: * Configures PHY autoneg and flow control advertisement settings
        !          2154: *
        !          2155: * hw - Struct containing variables accessed by shared code
        !          2156: ******************************************************************************/
        !          2157: int32_t
        !          2158: em_phy_setup_autoneg(struct em_hw *hw)
        !          2159: {
        !          2160:     int32_t ret_val;
        !          2161:     uint16_t mii_autoneg_adv_reg;
        !          2162:     uint16_t mii_1000t_ctrl_reg;
        !          2163:
        !          2164:     DEBUGFUNC("em_phy_setup_autoneg");
        !          2165:
        !          2166:     /* Read the MII Auto-Neg Advertisement Register (Address 4). */
        !          2167:     ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
        !          2168:     if (ret_val)
        !          2169:         return ret_val;
        !          2170:
        !          2171:     if (hw->phy_type != em_phy_ife) {
        !          2172:         /* Read the MII 1000Base-T Control Register (Address 9). */
        !          2173:         ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
        !          2174:         if (ret_val)
        !          2175:             return ret_val;
        !          2176:     } else
        !          2177:         mii_1000t_ctrl_reg=0;
        !          2178:
        !          2179:     /* Need to parse both autoneg_advertised and fc and set up
        !          2180:      * the appropriate PHY registers.  First we will parse for
        !          2181:      * autoneg_advertised software override.  Since we can advertise
        !          2182:      * a plethora of combinations, we need to check each bit
        !          2183:      * individually.
        !          2184:      */
        !          2185:
        !          2186:     /* First we clear all the 10/100 mb speed bits in the Auto-Neg
        !          2187:      * Advertisement Register (Address 4) and the 1000 mb speed bits in
        !          2188:      * the  1000Base-T Control Register (Address 9).
        !          2189:      */
        !          2190:     mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
        !          2191:     mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
        !          2192:
        !          2193:     DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
        !          2194:
        !          2195:     /* Do we want to advertise 10 Mb Half Duplex? */
        !          2196:     if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
        !          2197:         DEBUGOUT("Advertise 10mb Half duplex\n");
        !          2198:         mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
        !          2199:     }
        !          2200:
        !          2201:     /* Do we want to advertise 10 Mb Full Duplex? */
        !          2202:     if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
        !          2203:         DEBUGOUT("Advertise 10mb Full duplex\n");
        !          2204:         mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
        !          2205:     }
        !          2206:
        !          2207:     /* Do we want to advertise 100 Mb Half Duplex? */
        !          2208:     if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
        !          2209:         DEBUGOUT("Advertise 100mb Half duplex\n");
        !          2210:         mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
        !          2211:     }
        !          2212:
        !          2213:     /* Do we want to advertise 100 Mb Full Duplex? */
        !          2214:     if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
        !          2215:         DEBUGOUT("Advertise 100mb Full duplex\n");
        !          2216:         mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
        !          2217:     }
        !          2218:
        !          2219:     /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
        !          2220:     if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
        !          2221:         DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
        !          2222:     }
        !          2223:
        !          2224:     /* Do we want to advertise 1000 Mb Full Duplex? */
        !          2225:     if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
        !          2226:         DEBUGOUT("Advertise 1000mb Full duplex\n");
        !          2227:         mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
        !          2228:         if (hw->phy_type == em_phy_ife) {
        !          2229:             DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
        !          2230:         }
        !          2231:     }
        !          2232:
        !          2233:     /* Check for a software override of the flow control settings, and
        !          2234:      * setup the PHY advertisement registers accordingly.  If
        !          2235:      * auto-negotiation is enabled, then software will have to set the
        !          2236:      * "PAUSE" bits to the correct value in the Auto-Negotiation
        !          2237:      * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
        !          2238:      *
        !          2239:      * The possible values of the "fc" parameter are:
        !          2240:      *      0:  Flow control is completely disabled
        !          2241:      *      1:  Rx flow control is enabled (we can receive pause frames
        !          2242:      *          but not send pause frames).
        !          2243:      *      2:  Tx flow control is enabled (we can send pause frames
        !          2244:      *          but we do not support receiving pause frames).
        !          2245:      *      3:  Both Rx and TX flow control (symmetric) are enabled.
        !          2246:      *  other:  No software override.  The flow control configuration
        !          2247:      *          in the EEPROM is used.
        !          2248:      */
        !          2249:     switch (hw->fc) {
        !          2250:     case E1000_FC_NONE: /* 0 */
        !          2251:         /* Flow control (RX & TX) is completely disabled by a
        !          2252:          * software over-ride.
        !          2253:          */
        !          2254:         mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        !          2255:         break;
        !          2256:     case E1000_FC_RX_PAUSE: /* 1 */
        !          2257:         /* RX Flow control is enabled, and TX Flow control is
        !          2258:          * disabled, by a software over-ride.
        !          2259:          */
        !          2260:         /* Since there really isn't a way to advertise that we are
        !          2261:          * capable of RX Pause ONLY, we will advertise that we
        !          2262:          * support both symmetric and asymmetric RX PAUSE.  Later
        !          2263:          * (in em_config_fc_after_link_up) we will disable the
        !          2264:          *hw's ability to send PAUSE frames.
        !          2265:          */
        !          2266:         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        !          2267:         break;
        !          2268:     case E1000_FC_TX_PAUSE: /* 2 */
        !          2269:         /* TX Flow control is enabled, and RX Flow control is
        !          2270:          * disabled, by a software over-ride.
        !          2271:          */
        !          2272:         mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
        !          2273:         mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
        !          2274:         break;
        !          2275:     case E1000_FC_FULL: /* 3 */
        !          2276:         /* Flow control (both RX and TX) is enabled by a software
        !          2277:          * over-ride.
        !          2278:          */
        !          2279:         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        !          2280:         break;
        !          2281:     default:
        !          2282:         DEBUGOUT("Flow control param set incorrectly\n");
        !          2283:         return -E1000_ERR_CONFIG;
        !          2284:     }
        !          2285:
        !          2286:     ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
        !          2287:     if (ret_val)
        !          2288:         return ret_val;
        !          2289:
        !          2290:     DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
        !          2291:
        !          2292:     if (hw->phy_type != em_phy_ife) {
        !          2293:         ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
        !          2294:         if (ret_val)
        !          2295:             return ret_val;
        !          2296:     }
        !          2297:
        !          2298:     return E1000_SUCCESS;
        !          2299: }
        !          2300:
        !          2301: /******************************************************************************
        !          2302: * Force PHY speed and duplex settings to hw->forced_speed_duplex
        !          2303: *
        !          2304: * hw - Struct containing variables accessed by shared code
        !          2305: ******************************************************************************/
        !          2306: static int32_t
        !          2307: em_phy_force_speed_duplex(struct em_hw *hw)
        !          2308: {
        !          2309:     uint32_t ctrl;
        !          2310:     int32_t ret_val;
        !          2311:     uint16_t mii_ctrl_reg;
        !          2312:     uint16_t mii_status_reg;
        !          2313:     uint16_t phy_data;
        !          2314:     uint16_t i;
        !          2315:
        !          2316:     DEBUGFUNC("em_phy_force_speed_duplex");
        !          2317:
        !          2318:     /* Turn off Flow control if we are forcing speed and duplex. */
        !          2319:     hw->fc = E1000_FC_NONE;
        !          2320:
        !          2321:     DEBUGOUT1("hw->fc = %d\n", hw->fc);
        !          2322:
        !          2323:     /* Read the Device Control Register. */
        !          2324:     ctrl = E1000_READ_REG(hw, CTRL);
        !          2325:
        !          2326:     /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
        !          2327:     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
        !          2328:     ctrl &= ~(DEVICE_SPEED_MASK);
        !          2329:
        !          2330:     /* Clear the Auto Speed Detect Enable bit. */
        !          2331:     ctrl &= ~E1000_CTRL_ASDE;
        !          2332:
        !          2333:     /* Read the MII Control Register. */
        !          2334:     ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
        !          2335:     if (ret_val)
        !          2336:         return ret_val;
        !          2337:
        !          2338:     /* We need to disable autoneg in order to force link and duplex. */
        !          2339:
        !          2340:     mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
        !          2341:
        !          2342:     /* Are we forcing Full or Half Duplex? */
        !          2343:     if (hw->forced_speed_duplex == em_100_full ||
        !          2344:         hw->forced_speed_duplex == em_10_full) {
        !          2345:         /* We want to force full duplex so we SET the full duplex bits in the
        !          2346:          * Device and MII Control Registers.
        !          2347:          */
        !          2348:         ctrl |= E1000_CTRL_FD;
        !          2349:         mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
        !          2350:         DEBUGOUT("Full Duplex\n");
        !          2351:     } else {
        !          2352:         /* We want to force half duplex so we CLEAR the full duplex bits in
        !          2353:          * the Device and MII Control Registers.
        !          2354:          */
        !          2355:         ctrl &= ~E1000_CTRL_FD;
        !          2356:         mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
        !          2357:         DEBUGOUT("Half Duplex\n");
        !          2358:     }
        !          2359:
        !          2360:     /* Are we forcing 100Mbps??? */
        !          2361:     if (hw->forced_speed_duplex == em_100_full ||
        !          2362:        hw->forced_speed_duplex == em_100_half) {
        !          2363:         /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
        !          2364:         ctrl |= E1000_CTRL_SPD_100;
        !          2365:         mii_ctrl_reg |= MII_CR_SPEED_100;
        !          2366:         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
        !          2367:         DEBUGOUT("Forcing 100mb ");
        !          2368:     } else {
        !          2369:         /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
        !          2370:         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
        !          2371:         mii_ctrl_reg |= MII_CR_SPEED_10;
        !          2372:         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
        !          2373:         DEBUGOUT("Forcing 10mb ");
        !          2374:     }
        !          2375:
        !          2376:     em_config_collision_dist(hw);
        !          2377:
        !          2378:     /* Write the configured values back to the Device Control Reg. */
        !          2379:     E1000_WRITE_REG(hw, CTRL, ctrl);
        !          2380:
        !          2381:     if ((hw->phy_type == em_phy_m88) ||
        !          2382:         (hw->phy_type == em_phy_gg82563)) {
        !          2383:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        !          2384:         if (ret_val)
        !          2385:             return ret_val;
        !          2386:
        !          2387:         /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
        !          2388:          * forced whenever speed are duplex are forced.
        !          2389:          */
        !          2390:         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
        !          2391:         ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
        !          2392:         if (ret_val)
        !          2393:             return ret_val;
        !          2394:
        !          2395:         DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
        !          2396:
        !          2397:         /* Need to reset the PHY or these changes will be ignored */
        !          2398:         mii_ctrl_reg |= MII_CR_RESET;
        !          2399:     /* Disable MDI-X support for 10/100 */
        !          2400:     } else if (hw->phy_type == em_phy_ife) {
        !          2401:         ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
        !          2402:         if (ret_val)
        !          2403:             return ret_val;
        !          2404:
        !          2405:         phy_data &= ~IFE_PMC_AUTO_MDIX;
        !          2406:         phy_data &= ~IFE_PMC_FORCE_MDIX;
        !          2407:
        !          2408:         ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
        !          2409:         if (ret_val)
        !          2410:             return ret_val;
        !          2411:     } else {
        !          2412:         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
        !          2413:          * forced whenever speed or duplex are forced.
        !          2414:          */
        !          2415:         ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
        !          2416:         if (ret_val)
        !          2417:             return ret_val;
        !          2418:
        !          2419:         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
        !          2420:         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
        !          2421:
        !          2422:         ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
        !          2423:         if (ret_val)
        !          2424:             return ret_val;
        !          2425:     }
        !          2426:
        !          2427:     /* Write back the modified PHY MII control register. */
        !          2428:     ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
        !          2429:     if (ret_val)
        !          2430:         return ret_val;
        !          2431:
        !          2432:     usec_delay(1);
        !          2433:
        !          2434:     /* The wait_autoneg_complete flag may be a little misleading here.
        !          2435:      * Since we are forcing speed and duplex, Auto-Neg is not enabled.
        !          2436:      * But we do want to delay for a period while forcing only so we
        !          2437:      * don't generate false No Link messages.  So we will wait here
        !          2438:      * only if the user has set wait_autoneg_complete to 1, which is
        !          2439:      * the default.
        !          2440:      */
        !          2441:     if (hw->wait_autoneg_complete) {
        !          2442:         /* We will wait for autoneg to complete. */
        !          2443:         DEBUGOUT("Waiting for forced speed/duplex link.\n");
        !          2444:         mii_status_reg = 0;
        !          2445:
        !          2446:         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
        !          2447:         for (i = PHY_FORCE_TIME; i > 0; i--) {
        !          2448:             /* Read the MII Status Register and wait for Auto-Neg Complete bit
        !          2449:              * to be set.
        !          2450:              */
        !          2451:             ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          2452:             if (ret_val)
        !          2453:                 return ret_val;
        !          2454:
        !          2455:             ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          2456:             if (ret_val)
        !          2457:                 return ret_val;
        !          2458:
        !          2459:             if (mii_status_reg & MII_SR_LINK_STATUS) break;
        !          2460:             msec_delay(100);
        !          2461:         }
        !          2462:         if ((i == 0) &&
        !          2463:            ((hw->phy_type == em_phy_m88) ||
        !          2464:             (hw->phy_type == em_phy_gg82563))) {
        !          2465:             /* We didn't get link.  Reset the DSP and wait again for link. */
        !          2466:             ret_val = em_phy_reset_dsp(hw);
        !          2467:             if (ret_val) {
        !          2468:                 DEBUGOUT("Error Resetting PHY DSP\n");
        !          2469:                 return ret_val;
        !          2470:             }
        !          2471:         }
        !          2472:         /* This loop will early-out if the link condition has been met.  */
        !          2473:         for (i = PHY_FORCE_TIME; i > 0; i--) {
        !          2474:             if (mii_status_reg & MII_SR_LINK_STATUS) break;
        !          2475:             msec_delay(100);
        !          2476:             /* Read the MII Status Register and wait for Auto-Neg Complete bit
        !          2477:              * to be set.
        !          2478:              */
        !          2479:             ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          2480:             if (ret_val)
        !          2481:                 return ret_val;
        !          2482:
        !          2483:             ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          2484:             if (ret_val)
        !          2485:                 return ret_val;
        !          2486:         }
        !          2487:     }
        !          2488:
        !          2489:     if (hw->phy_type == em_phy_m88) {
        !          2490:         /* Because we reset the PHY above, we need to re-force TX_CLK in the
        !          2491:          * Extended PHY Specific Control Register to 25MHz clock.  This value
        !          2492:          * defaults back to a 2.5MHz clock when the PHY is reset.
        !          2493:          */
        !          2494:         ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
        !          2495:         if (ret_val)
        !          2496:             return ret_val;
        !          2497:
        !          2498:         phy_data |= M88E1000_EPSCR_TX_CLK_25;
        !          2499:         ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
        !          2500:         if (ret_val)
        !          2501:             return ret_val;
        !          2502:
        !          2503:         /* In addition, because of the s/w reset above, we need to enable CRS on
        !          2504:          * TX.  This must be set for both full and half duplex operation.
        !          2505:          */
        !          2506:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        !          2507:         if (ret_val)
        !          2508:             return ret_val;
        !          2509:
        !          2510:         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
        !          2511:         ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
        !          2512:         if (ret_val)
        !          2513:             return ret_val;
        !          2514:
        !          2515:         if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
        !          2516:             (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full ||
        !          2517:              hw->forced_speed_duplex == em_10_half)) {
        !          2518:             ret_val = em_polarity_reversal_workaround(hw);
        !          2519:             if (ret_val)
        !          2520:                 return ret_val;
        !          2521:         }
        !          2522:     } else if (hw->phy_type == em_phy_gg82563) {
        !          2523:         /* The TX_CLK of the Extended PHY Specific Control Register defaults
        !          2524:          * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
        !          2525:          * we're not in a forced 10/duplex configuration. */
        !          2526:         ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
        !          2527:         if (ret_val)
        !          2528:             return ret_val;
        !          2529:
        !          2530:         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
        !          2531:         if ((hw->forced_speed_duplex == em_10_full) ||
        !          2532:             (hw->forced_speed_duplex == em_10_half))
        !          2533:             phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
        !          2534:         else
        !          2535:             phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
        !          2536:
        !          2537:         /* Also due to the reset, we need to enable CRS on Tx. */
        !          2538:         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
        !          2539:
        !          2540:         ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
        !          2541:         if (ret_val)
        !          2542:             return ret_val;
        !          2543:     }
        !          2544:     return E1000_SUCCESS;
        !          2545: }
        !          2546:
        !          2547: /******************************************************************************
        !          2548: * Sets the collision distance in the Transmit Control register
        !          2549: *
        !          2550: * hw - Struct containing variables accessed by shared code
        !          2551: *
        !          2552: * Link should have been established previously. Reads the speed and duplex
        !          2553: * information from the Device Status register.
        !          2554: ******************************************************************************/
        !          2555: void
        !          2556: em_config_collision_dist(struct em_hw *hw)
        !          2557: {
        !          2558:     uint32_t tctl, coll_dist;
        !          2559:
        !          2560:     DEBUGFUNC("em_config_collision_dist");
        !          2561:
        !          2562:     if (hw->mac_type < em_82543)
        !          2563:         coll_dist = E1000_COLLISION_DISTANCE_82542;
        !          2564:     else
        !          2565:         coll_dist = E1000_COLLISION_DISTANCE;
        !          2566:
        !          2567:     tctl = E1000_READ_REG(hw, TCTL);
        !          2568:
        !          2569:     tctl &= ~E1000_TCTL_COLD;
        !          2570:     tctl |= coll_dist << E1000_COLD_SHIFT;
        !          2571:
        !          2572:     E1000_WRITE_REG(hw, TCTL, tctl);
        !          2573:     E1000_WRITE_FLUSH(hw);
        !          2574: }
        !          2575:
        !          2576: /******************************************************************************
        !          2577: * Sets MAC speed and duplex settings to reflect the those in the PHY
        !          2578: *
        !          2579: * hw - Struct containing variables accessed by shared code
        !          2580: * mii_reg - data to write to the MII control register
        !          2581: *
        !          2582: * The contents of the PHY register containing the needed information need to
        !          2583: * be passed in.
        !          2584: ******************************************************************************/
        !          2585: static int32_t
        !          2586: em_config_mac_to_phy(struct em_hw *hw)
        !          2587: {
        !          2588:     uint32_t ctrl;
        !          2589:     int32_t ret_val;
        !          2590:     uint16_t phy_data;
        !          2591:
        !          2592:     DEBUGFUNC("em_config_mac_to_phy");
        !          2593:
        !          2594:     /* 82544 or newer MAC, Auto Speed Detection takes care of
        !          2595:     * MAC speed/duplex configuration.*/
        !          2596:     if (hw->mac_type >= em_82544)
        !          2597:         return E1000_SUCCESS;
        !          2598:
        !          2599:     /* Read the Device Control Register and set the bits to Force Speed
        !          2600:      * and Duplex.
        !          2601:      */
        !          2602:     ctrl = E1000_READ_REG(hw, CTRL);
        !          2603:     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
        !          2604:     ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
        !          2605:
        !          2606:     /* Set up duplex in the Device Control and Transmit Control
        !          2607:      * registers depending on negotiated values.
        !          2608:      */
        !          2609:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
        !          2610:     if (ret_val)
        !          2611:         return ret_val;
        !          2612:
        !          2613:     if (phy_data & M88E1000_PSSR_DPLX)
        !          2614:         ctrl |= E1000_CTRL_FD;
        !          2615:     else
        !          2616:         ctrl &= ~E1000_CTRL_FD;
        !          2617:
        !          2618:     em_config_collision_dist(hw);
        !          2619:
        !          2620:     /* Set up speed in the Device Control register depending on
        !          2621:      * negotiated values.
        !          2622:      */
        !          2623:     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
        !          2624:         ctrl |= E1000_CTRL_SPD_1000;
        !          2625:     else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
        !          2626:         ctrl |= E1000_CTRL_SPD_100;
        !          2627:
        !          2628:     /* Write the configured values back to the Device Control Reg. */
        !          2629:     E1000_WRITE_REG(hw, CTRL, ctrl);
        !          2630:     return E1000_SUCCESS;
        !          2631: }
        !          2632:
        !          2633: /******************************************************************************
        !          2634:  * Forces the MAC's flow control settings.
        !          2635:  *
        !          2636:  * hw - Struct containing variables accessed by shared code
        !          2637:  *
        !          2638:  * Sets the TFCE and RFCE bits in the device control register to reflect
        !          2639:  * the adapter settings. TFCE and RFCE need to be explicitly set by
        !          2640:  * software when a Copper PHY is used because autonegotiation is managed
        !          2641:  * by the PHY rather than the MAC. Software must also configure these
        !          2642:  * bits when link is forced on a fiber connection.
        !          2643:  *****************************************************************************/
        !          2644: int32_t
        !          2645: em_force_mac_fc(struct em_hw *hw)
        !          2646: {
        !          2647:     uint32_t ctrl;
        !          2648:
        !          2649:     DEBUGFUNC("em_force_mac_fc");
        !          2650:
        !          2651:     /* Get the current configuration of the Device Control Register */
        !          2652:     ctrl = E1000_READ_REG(hw, CTRL);
        !          2653:
        !          2654:     /* Because we didn't get link via the internal auto-negotiation
        !          2655:      * mechanism (we either forced link or we got link via PHY
        !          2656:      * auto-neg), we have to manually enable/disable transmit an
        !          2657:      * receive flow control.
        !          2658:      *
        !          2659:      * The "Case" statement below enables/disable flow control
        !          2660:      * according to the "hw->fc" parameter.
        !          2661:      *
        !          2662:      * The possible values of the "fc" parameter are:
        !          2663:      *      0:  Flow control is completely disabled
        !          2664:      *      1:  Rx flow control is enabled (we can receive pause
        !          2665:      *          frames but not send pause frames).
        !          2666:      *      2:  Tx flow control is enabled (we can send pause frames
        !          2667:      *          frames but we do not receive pause frames).
        !          2668:      *      3:  Both Rx and TX flow control (symmetric) is enabled.
        !          2669:      *  other:  No other values should be possible at this point.
        !          2670:      */
        !          2671:
        !          2672:     switch (hw->fc) {
        !          2673:     case E1000_FC_NONE:
        !          2674:         ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
        !          2675:         break;
        !          2676:     case E1000_FC_RX_PAUSE:
        !          2677:         ctrl &= (~E1000_CTRL_TFCE);
        !          2678:         ctrl |= E1000_CTRL_RFCE;
        !          2679:         break;
        !          2680:     case E1000_FC_TX_PAUSE:
        !          2681:         ctrl &= (~E1000_CTRL_RFCE);
        !          2682:         ctrl |= E1000_CTRL_TFCE;
        !          2683:         break;
        !          2684:     case E1000_FC_FULL:
        !          2685:         ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
        !          2686:         break;
        !          2687:     default:
        !          2688:         DEBUGOUT("Flow control param set incorrectly\n");
        !          2689:         return -E1000_ERR_CONFIG;
        !          2690:     }
        !          2691:
        !          2692:     /* Disable TX Flow Control for 82542 (rev 2.0) */
        !          2693:     if (hw->mac_type == em_82542_rev2_0)
        !          2694:         ctrl &= (~E1000_CTRL_TFCE);
        !          2695:
        !          2696:     E1000_WRITE_REG(hw, CTRL, ctrl);
        !          2697:     return E1000_SUCCESS;
        !          2698: }
        !          2699:
        !          2700: /******************************************************************************
        !          2701:  * Configures flow control settings after link is established
        !          2702:  *
        !          2703:  * hw - Struct containing variables accessed by shared code
        !          2704:  *
        !          2705:  * Should be called immediately after a valid link has been established.
        !          2706:  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
        !          2707:  * and autonegotiation is enabled, the MAC flow control settings will be set
        !          2708:  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
        !          2709:  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
        !          2710:  *****************************************************************************/
        !          2711: STATIC int32_t
        !          2712: em_config_fc_after_link_up(struct em_hw *hw)
        !          2713: {
        !          2714:     int32_t ret_val;
        !          2715:     uint16_t mii_status_reg;
        !          2716:     uint16_t mii_nway_adv_reg;
        !          2717:     uint16_t mii_nway_lp_ability_reg;
        !          2718:     uint16_t speed;
        !          2719:     uint16_t duplex;
        !          2720:
        !          2721:     DEBUGFUNC("em_config_fc_after_link_up");
        !          2722:
        !          2723:     /* Check for the case where we have fiber media and auto-neg failed
        !          2724:      * so we had to force link.  In this case, we need to force the
        !          2725:      * configuration of the MAC to match the "fc" parameter.
        !          2726:      */
        !          2727:     if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
        !          2728:         ((hw->media_type == em_media_type_internal_serdes) &&
        !          2729:          (hw->autoneg_failed)) ||
        !          2730:         ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
        !          2731:         ret_val = em_force_mac_fc(hw);
        !          2732:         if (ret_val) {
        !          2733:             DEBUGOUT("Error forcing flow control settings\n");
        !          2734:             return ret_val;
        !          2735:         }
        !          2736:     }
        !          2737:
        !          2738:     /* Check for the case where we have copper media and auto-neg is
        !          2739:      * enabled.  In this case, we need to check and see if Auto-Neg
        !          2740:      * has completed, and if so, how the PHY and link partner has
        !          2741:      * flow control configured.
        !          2742:      */
        !          2743:     if ((hw->media_type == em_media_type_copper) && hw->autoneg) {
        !          2744:         /* Read the MII Status Register and check to see if AutoNeg
        !          2745:          * has completed.  We read this twice because this reg has
        !          2746:          * some "sticky" (latched) bits.
        !          2747:          */
        !          2748:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          2749:         if (ret_val)
        !          2750:             return ret_val;
        !          2751:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          2752:         if (ret_val)
        !          2753:             return ret_val;
        !          2754:
        !          2755:         if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
        !          2756:             /* The AutoNeg process has completed, so we now need to
        !          2757:              * read both the Auto Negotiation Advertisement Register
        !          2758:              * (Address 4) and the Auto_Negotiation Base Page Ability
        !          2759:              * Register (Address 5) to determine how flow control was
        !          2760:              * negotiated.
        !          2761:              */
        !          2762:             ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
        !          2763:                                          &mii_nway_adv_reg);
        !          2764:             if (ret_val)
        !          2765:                 return ret_val;
        !          2766:             ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
        !          2767:                                          &mii_nway_lp_ability_reg);
        !          2768:             if (ret_val)
        !          2769:                 return ret_val;
        !          2770:
        !          2771:             /* Two bits in the Auto Negotiation Advertisement Register
        !          2772:              * (Address 4) and two bits in the Auto Negotiation Base
        !          2773:              * Page Ability Register (Address 5) determine flow control
        !          2774:              * for both the PHY and the link partner.  The following
        !          2775:              * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
        !          2776:              * 1999, describes these PAUSE resolution bits and how flow
        !          2777:              * control is determined based upon these settings.
        !          2778:              * NOTE:  DC = Don't Care
        !          2779:              *
        !          2780:              *   LOCAL DEVICE  |   LINK PARTNER
        !          2781:              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
        !          2782:              *-------|---------|-------|---------|--------------------
        !          2783:              *   0   |    0    |  DC   |   DC    | em_fc_none
        !          2784:              *   0   |    1    |   0   |   DC    | em_fc_none
        !          2785:              *   0   |    1    |   1   |    0    | em_fc_none
        !          2786:              *   0   |    1    |   1   |    1    | em_fc_tx_pause
        !          2787:              *   1   |    0    |   0   |   DC    | em_fc_none
        !          2788:              *   1   |   DC    |   1   |   DC    | em_fc_full
        !          2789:              *   1   |    1    |   0   |    0    | em_fc_none
        !          2790:              *   1   |    1    |   0   |    1    | em_fc_rx_pause
        !          2791:              *
        !          2792:              */
        !          2793:             /* Are both PAUSE bits set to 1?  If so, this implies
        !          2794:              * Symmetric Flow Control is enabled at both ends.  The
        !          2795:              * ASM_DIR bits are irrelevant per the spec.
        !          2796:              *
        !          2797:              * For Symmetric Flow Control:
        !          2798:              *
        !          2799:              *   LOCAL DEVICE  |   LINK PARTNER
        !          2800:              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
        !          2801:              *-------|---------|-------|---------|--------------------
        !          2802:              *   1   |   DC    |   1   |   DC    | em_fc_full
        !          2803:              *
        !          2804:              */
        !          2805:             if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
        !          2806:                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
        !          2807:                 /* Now we need to check if the user selected RX ONLY
        !          2808:                  * of pause frames.  In this case, we had to advertise
        !          2809:                  * FULL flow control because we could not advertise RX
        !          2810:                  * ONLY. Hence, we must now check to see if we need to
        !          2811:                  * turn OFF  the TRANSMISSION of PAUSE frames.
        !          2812:                  */
        !          2813:                 if (hw->original_fc == E1000_FC_FULL) {
        !          2814:                     hw->fc = E1000_FC_FULL;
        !          2815:                     DEBUGOUT("Flow Control = FULL.\n");
        !          2816:                 } else {
        !          2817:                     hw->fc = E1000_FC_RX_PAUSE;
        !          2818:                     DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
        !          2819:                 }
        !          2820:             }
        !          2821:             /* For receiving PAUSE frames ONLY.
        !          2822:              *
        !          2823:              *   LOCAL DEVICE  |   LINK PARTNER
        !          2824:              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
        !          2825:              *-------|---------|-------|---------|--------------------
        !          2826:              *   0   |    1    |   1   |    1    | em_fc_tx_pause
        !          2827:              *
        !          2828:              */
        !          2829:             else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
        !          2830:                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
        !          2831:                      (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
        !          2832:                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
        !          2833:                 hw->fc = E1000_FC_TX_PAUSE;
        !          2834:                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
        !          2835:             }
        !          2836:             /* For transmitting PAUSE frames ONLY.
        !          2837:              *
        !          2838:              *   LOCAL DEVICE  |   LINK PARTNER
        !          2839:              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
        !          2840:              *-------|---------|-------|---------|--------------------
        !          2841:              *   1   |    1    |   0   |    1    | em_fc_rx_pause
        !          2842:              *
        !          2843:              */
        !          2844:             else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
        !          2845:                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
        !          2846:                      !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
        !          2847:                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
        !          2848:                 hw->fc = E1000_FC_RX_PAUSE;
        !          2849:                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
        !          2850:             }
        !          2851:             /* Per the IEEE spec, at this point flow control should be
        !          2852:              * disabled.  However, we want to consider that we could
        !          2853:              * be connected to a legacy switch that doesn't advertise
        !          2854:              * desired flow control, but can be forced on the link
        !          2855:              * partner.  So if we advertised no flow control, that is
        !          2856:              * what we will resolve to.  If we advertised some kind of
        !          2857:              * receive capability (Rx Pause Only or Full Flow Control)
        !          2858:              * and the link partner advertised none, we will configure
        !          2859:              * ourselves to enable Rx Flow Control only.  We can do
        !          2860:              * this safely for two reasons:  If the link partner really
        !          2861:              * didn't want flow control enabled, and we enable Rx, no
        !          2862:              * harm done since we won't be receiving any PAUSE frames
        !          2863:              * anyway.  If the intent on the link partner was to have
        !          2864:              * flow control enabled, then by us enabling RX only, we
        !          2865:              * can at least receive pause frames and process them.
        !          2866:              * This is a good idea because in most cases, since we are
        !          2867:              * predominantly a server NIC, more times than not we will
        !          2868:              * be asked to delay transmission of packets than asking
        !          2869:              * our link partner to pause transmission of frames.
        !          2870:              */
        !          2871:             else if ((hw->original_fc == E1000_FC_NONE||
        !          2872:                       hw->original_fc == E1000_FC_TX_PAUSE) ||
        !          2873:                       hw->fc_strict_ieee) {
        !          2874:                 hw->fc = E1000_FC_NONE;
        !          2875:                 DEBUGOUT("Flow Control = NONE.\n");
        !          2876:             } else {
        !          2877:                 hw->fc = E1000_FC_RX_PAUSE;
        !          2878:                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
        !          2879:             }
        !          2880:
        !          2881:             /* Now we need to do one last check...  If we auto-
        !          2882:              * negotiated to HALF DUPLEX, flow control should not be
        !          2883:              * enabled per IEEE 802.3 spec.
        !          2884:              */
        !          2885:             ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
        !          2886:             if (ret_val) {
        !          2887:                 DEBUGOUT("Error getting link speed and duplex\n");
        !          2888:                 return ret_val;
        !          2889:             }
        !          2890:
        !          2891:             if (duplex == HALF_DUPLEX)
        !          2892:                 hw->fc = E1000_FC_NONE;
        !          2893:
        !          2894:             /* Now we call a subroutine to actually force the MAC
        !          2895:              * controller to use the correct flow control settings.
        !          2896:              */
        !          2897:             ret_val = em_force_mac_fc(hw);
        !          2898:             if (ret_val) {
        !          2899:                 DEBUGOUT("Error forcing flow control settings\n");
        !          2900:                 return ret_val;
        !          2901:             }
        !          2902:         } else {
        !          2903:             DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
        !          2904:         }
        !          2905:     }
        !          2906:     return E1000_SUCCESS;
        !          2907: }
        !          2908:
        !          2909: /******************************************************************************
        !          2910:  * Checks to see if the link status of the hardware has changed.
        !          2911:  *
        !          2912:  * hw - Struct containing variables accessed by shared code
        !          2913:  *
        !          2914:  * Called by any function that needs to check the link status of the adapter.
        !          2915:  *****************************************************************************/
        !          2916: int32_t
        !          2917: em_check_for_link(struct em_hw *hw)
        !          2918: {
        !          2919:     uint32_t rxcw = 0;
        !          2920:     uint32_t ctrl;
        !          2921:     uint32_t status;
        !          2922:     uint32_t rctl;
        !          2923:     uint32_t icr;
        !          2924:     uint32_t signal = 0;
        !          2925:     int32_t ret_val;
        !          2926:     uint16_t phy_data;
        !          2927:
        !          2928:     DEBUGFUNC("em_check_for_link");
        !          2929:
        !          2930:     ctrl = E1000_READ_REG(hw, CTRL);
        !          2931:     status = E1000_READ_REG(hw, STATUS);
        !          2932:
        !          2933:     /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
        !          2934:      * set when the optics detect a signal. On older adapters, it will be
        !          2935:      * cleared when there is a signal.  This applies to fiber media only.
        !          2936:      */
        !          2937:     if ((hw->media_type == em_media_type_fiber) ||
        !          2938:         (hw->media_type == em_media_type_internal_serdes)) {
        !          2939:         rxcw = E1000_READ_REG(hw, RXCW);
        !          2940:
        !          2941:         if (hw->media_type == em_media_type_fiber) {
        !          2942:             signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
        !          2943:             if (status & E1000_STATUS_LU)
        !          2944:                 hw->get_link_status = FALSE;
        !          2945:         }
        !          2946:     }
        !          2947:
        !          2948:     /* If we have a copper PHY then we only want to go out to the PHY
        !          2949:      * registers to see if Auto-Neg has completed and/or if our link
        !          2950:      * status has changed.  The get_link_status flag will be set if we
        !          2951:      * receive a Link Status Change interrupt or we have Rx Sequence
        !          2952:      * Errors.
        !          2953:      */
        !          2954:     if ((hw->media_type == em_media_type_copper) && hw->get_link_status) {
        !          2955:         /* First we want to see if the MII Status Register reports
        !          2956:          * link.  If so, then we want to get the current speed/duplex
        !          2957:          * of the PHY.
        !          2958:          * Read the register twice since the link bit is sticky.
        !          2959:          */
        !          2960:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
        !          2961:         if (ret_val)
        !          2962:             return ret_val;
        !          2963:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
        !          2964:         if (ret_val)
        !          2965:             return ret_val;
        !          2966:
        !          2967:         if (phy_data & MII_SR_LINK_STATUS) {
        !          2968:             hw->get_link_status = FALSE;
        !          2969:             /* Check if there was DownShift, must be checked immediately after
        !          2970:              * link-up */
        !          2971:             em_check_downshift(hw);
        !          2972:
        !          2973:             /* If we are on 82544 or 82543 silicon and speed/duplex
        !          2974:              * are forced to 10H or 10F, then we will implement the polarity
        !          2975:              * reversal workaround.  We disable interrupts first, and upon
        !          2976:              * returning, place the devices interrupt state to its previous
        !          2977:              * value except for the link status change interrupt which will
        !          2978:              * happen due to the execution of this workaround.
        !          2979:              */
        !          2980:
        !          2981:             if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
        !          2982:                 (!hw->autoneg) &&
        !          2983:                 (hw->forced_speed_duplex == em_10_full ||
        !          2984:                  hw->forced_speed_duplex == em_10_half)) {
        !          2985:                 E1000_WRITE_REG(hw, IMC, 0xffffffff);
        !          2986:                 ret_val = em_polarity_reversal_workaround(hw);
        !          2987:                 icr = E1000_READ_REG(hw, ICR);
        !          2988:                 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
        !          2989:                 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
        !          2990:             }
        !          2991:
        !          2992:         } else {
        !          2993:             /* No link detected */
        !          2994:             em_config_dsp_after_link_change(hw, FALSE);
        !          2995:             return 0;
        !          2996:         }
        !          2997:
        !          2998:         /* If we are forcing speed/duplex, then we simply return since
        !          2999:          * we have already determined whether we have link or not.
        !          3000:          */
        !          3001:         if (!hw->autoneg) return -E1000_ERR_CONFIG;
        !          3002:
        !          3003:         /* optimize the dsp settings for the igp phy */
        !          3004:         em_config_dsp_after_link_change(hw, TRUE);
        !          3005:
        !          3006:         /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
        !          3007:          * have Si on board that is 82544 or newer, Auto
        !          3008:          * Speed Detection takes care of MAC speed/duplex
        !          3009:          * configuration.  So we only need to configure Collision
        !          3010:          * Distance in the MAC.  Otherwise, we need to force
        !          3011:          * speed/duplex on the MAC to the current PHY speed/duplex
        !          3012:          * settings.
        !          3013:          */
        !          3014:         if (hw->mac_type >= em_82544)
        !          3015:             em_config_collision_dist(hw);
        !          3016:         else {
        !          3017:             ret_val = em_config_mac_to_phy(hw);
        !          3018:             if (ret_val) {
        !          3019:                 DEBUGOUT("Error configuring MAC to PHY settings\n");
        !          3020:                 return ret_val;
        !          3021:             }
        !          3022:         }
        !          3023:
        !          3024:         /* Configure Flow Control now that Auto-Neg has completed. First, we
        !          3025:          * need to restore the desired flow control settings because we may
        !          3026:          * have had to re-autoneg with a different link partner.
        !          3027:          */
        !          3028:         ret_val = em_config_fc_after_link_up(hw);
        !          3029:         if (ret_val) {
        !          3030:             DEBUGOUT("Error configuring flow control\n");
        !          3031:             return ret_val;
        !          3032:         }
        !          3033:
        !          3034:         /* At this point we know that we are on copper and we have
        !          3035:          * auto-negotiated link.  These are conditions for checking the link
        !          3036:          * partner capability register.  We use the link speed to determine if
        !          3037:          * TBI compatibility needs to be turned on or off.  If the link is not
        !          3038:          * at gigabit speed, then TBI compatibility is not needed.  If we are
        !          3039:          * at gigabit speed, we turn on TBI compatibility.
        !          3040:          */
        !          3041:         if (hw->tbi_compatibility_en) {
        !          3042:             uint16_t speed, duplex;
        !          3043:             ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
        !          3044:             if (ret_val) {
        !          3045:                 DEBUGOUT("Error getting link speed and duplex\n");
        !          3046:                 return ret_val;
        !          3047:             }
        !          3048:             if (speed != SPEED_1000) {
        !          3049:                 /* If link speed is not set to gigabit speed, we do not need
        !          3050:                  * to enable TBI compatibility.
        !          3051:                  */
        !          3052:                 if (hw->tbi_compatibility_on) {
        !          3053:                     /* If we previously were in the mode, turn it off. */
        !          3054:                     rctl = E1000_READ_REG(hw, RCTL);
        !          3055:                     rctl &= ~E1000_RCTL_SBP;
        !          3056:                     E1000_WRITE_REG(hw, RCTL, rctl);
        !          3057:                     hw->tbi_compatibility_on = FALSE;
        !          3058:                 }
        !          3059:             } else {
        !          3060:                 /* If TBI compatibility is was previously off, turn it on. For
        !          3061:                  * compatibility with a TBI link partner, we will store bad
        !          3062:                  * packets. Some frames have an additional byte on the end and
        !          3063:                  * will look like CRC errors to to the hardware.
        !          3064:                  */
        !          3065:                 if (!hw->tbi_compatibility_on) {
        !          3066:                     hw->tbi_compatibility_on = TRUE;
        !          3067:                     rctl = E1000_READ_REG(hw, RCTL);
        !          3068:                     rctl |= E1000_RCTL_SBP;
        !          3069:                     E1000_WRITE_REG(hw, RCTL, rctl);
        !          3070:                 }
        !          3071:             }
        !          3072:         }
        !          3073:     }
        !          3074:     /* If we don't have link (auto-negotiation failed or link partner cannot
        !          3075:      * auto-negotiate), the cable is plugged in (we have signal), and our
        !          3076:      * link partner is not trying to auto-negotiate with us (we are receiving
        !          3077:      * idles or data), we need to force link up. We also need to give
        !          3078:      * auto-negotiation time to complete, in case the cable was just plugged
        !          3079:      * in. The autoneg_failed flag does this.
        !          3080:      */
        !          3081:     else if ((((hw->media_type == em_media_type_fiber) &&
        !          3082:               ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
        !          3083:               (hw->media_type == em_media_type_internal_serdes)) &&
        !          3084:               (!(status & E1000_STATUS_LU)) &&
        !          3085:               (!(rxcw & E1000_RXCW_C))) {
        !          3086:         if (hw->autoneg_failed == 0) {
        !          3087:             hw->autoneg_failed = 1;
        !          3088:             return 0;
        !          3089:         }
        !          3090:         DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
        !          3091:
        !          3092:         /* Disable auto-negotiation in the TXCW register */
        !          3093:         E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
        !          3094:
        !          3095:         /* Force link-up and also force full-duplex. */
        !          3096:         ctrl = E1000_READ_REG(hw, CTRL);
        !          3097:         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
        !          3098:         E1000_WRITE_REG(hw, CTRL, ctrl);
        !          3099:
        !          3100:         /* Configure Flow Control after forcing link up. */
        !          3101:         ret_val = em_config_fc_after_link_up(hw);
        !          3102:         if (ret_val) {
        !          3103:             DEBUGOUT("Error configuring flow control\n");
        !          3104:             return ret_val;
        !          3105:         }
        !          3106:     }
        !          3107:     /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
        !          3108:      * auto-negotiation in the TXCW register and disable forced link in the
        !          3109:      * Device Control register in an attempt to auto-negotiate with our link
        !          3110:      * partner.
        !          3111:      */
        !          3112:     else if (((hw->media_type == em_media_type_fiber) ||
        !          3113:               (hw->media_type == em_media_type_internal_serdes)) &&
        !          3114:               (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
        !          3115:         DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
        !          3116:         E1000_WRITE_REG(hw, TXCW, hw->txcw);
        !          3117:         E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
        !          3118:
        !          3119:         hw->serdes_link_down = FALSE;
        !          3120:     }
        !          3121:     /* If we force link for non-auto-negotiation switch, check link status
        !          3122:      * based on MAC synchronization for internal serdes media type.
        !          3123:      */
        !          3124:     else if ((hw->media_type == em_media_type_internal_serdes) &&
        !          3125:              !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
        !          3126:         /* SYNCH bit and IV bit are sticky. */
        !          3127:         usec_delay(10);
        !          3128:         if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
        !          3129:             if (!(rxcw & E1000_RXCW_IV)) {
        !          3130:                 hw->serdes_link_down = FALSE;
        !          3131:                 DEBUGOUT("SERDES: Link is up.\n");
        !          3132:             }
        !          3133:         } else {
        !          3134:             hw->serdes_link_down = TRUE;
        !          3135:             DEBUGOUT("SERDES: Link is down.\n");
        !          3136:         }
        !          3137:     }
        !          3138:     if ((hw->media_type == em_media_type_internal_serdes) &&
        !          3139:         (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
        !          3140:         hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
        !          3141:     }
        !          3142:     return E1000_SUCCESS;
        !          3143: }
        !          3144:
        !          3145: /******************************************************************************
        !          3146:  * Detects the current speed and duplex settings of the hardware.
        !          3147:  *
        !          3148:  * hw - Struct containing variables accessed by shared code
        !          3149:  * speed - Speed of the connection
        !          3150:  * duplex - Duplex setting of the connection
        !          3151:  *****************************************************************************/
        !          3152: int32_t
        !          3153: em_get_speed_and_duplex(struct em_hw *hw,
        !          3154:                            uint16_t *speed,
        !          3155:                            uint16_t *duplex)
        !          3156: {
        !          3157:     uint32_t status;
        !          3158:     int32_t ret_val;
        !          3159:     uint16_t phy_data;
        !          3160:
        !          3161:     DEBUGFUNC("em_get_speed_and_duplex");
        !          3162:
        !          3163:     if (hw->mac_type >= em_82543) {
        !          3164:         status = E1000_READ_REG(hw, STATUS);
        !          3165:         if (status & E1000_STATUS_SPEED_1000) {
        !          3166:             *speed = SPEED_1000;
        !          3167:             DEBUGOUT("1000 Mbs, ");
        !          3168:         } else if (status & E1000_STATUS_SPEED_100) {
        !          3169:             *speed = SPEED_100;
        !          3170:             DEBUGOUT("100 Mbs, ");
        !          3171:         } else {
        !          3172:             *speed = SPEED_10;
        !          3173:             DEBUGOUT("10 Mbs, ");
        !          3174:         }
        !          3175:
        !          3176:         if (status & E1000_STATUS_FD) {
        !          3177:             *duplex = FULL_DUPLEX;
        !          3178:             DEBUGOUT("Full Duplex\n");
        !          3179:         } else {
        !          3180:             *duplex = HALF_DUPLEX;
        !          3181:             DEBUGOUT(" Half Duplex\n");
        !          3182:         }
        !          3183:     } else {
        !          3184:         DEBUGOUT("1000 Mbs, Full Duplex\n");
        !          3185:         *speed = SPEED_1000;
        !          3186:         *duplex = FULL_DUPLEX;
        !          3187:     }
        !          3188:
        !          3189:     /* IGP01 PHY may advertise full duplex operation after speed downgrade even
        !          3190:      * if it is operating at half duplex.  Here we set the duplex settings to
        !          3191:      * match the duplex in the link partner's capabilities.
        !          3192:      */
        !          3193:     if (hw->phy_type == em_phy_igp && hw->speed_downgraded) {
        !          3194:         ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
        !          3195:         if (ret_val)
        !          3196:             return ret_val;
        !          3197:
        !          3198:         if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
        !          3199:             *duplex = HALF_DUPLEX;
        !          3200:         else {
        !          3201:             ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
        !          3202:             if (ret_val)
        !          3203:                 return ret_val;
        !          3204:             if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
        !          3205:                (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
        !          3206:                 *duplex = HALF_DUPLEX;
        !          3207:         }
        !          3208:     }
        !          3209:
        !          3210:     if ((hw->mac_type == em_80003es2lan) &&
        !          3211:         (hw->media_type == em_media_type_copper)) {
        !          3212:         if (*speed == SPEED_1000)
        !          3213:             ret_val = em_configure_kmrn_for_1000(hw);
        !          3214:         else
        !          3215:             ret_val = em_configure_kmrn_for_10_100(hw, *duplex);
        !          3216:         if (ret_val)
        !          3217:             return ret_val;
        !          3218:     }
        !          3219:
        !          3220:     if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) {
        !          3221:         ret_val = em_kumeran_lock_loss_workaround(hw);
        !          3222:         if (ret_val)
        !          3223:             return ret_val;
        !          3224:     }
        !          3225:
        !          3226:     return E1000_SUCCESS;
        !          3227: }
        !          3228:
        !          3229: /******************************************************************************
        !          3230: * Blocks until autoneg completes or times out (~4.5 seconds)
        !          3231: *
        !          3232: * hw - Struct containing variables accessed by shared code
        !          3233: ******************************************************************************/
        !          3234: STATIC int32_t
        !          3235: em_wait_autoneg(struct em_hw *hw)
        !          3236: {
        !          3237:     int32_t ret_val;
        !          3238:     uint16_t i;
        !          3239:     uint16_t phy_data;
        !          3240:
        !          3241:     DEBUGFUNC("em_wait_autoneg");
        !          3242:     DEBUGOUT("Waiting for Auto-Neg to complete.\n");
        !          3243:
        !          3244:     /* We will wait for autoneg to complete or 4.5 seconds to expire. */
        !          3245:     for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
        !          3246:         /* Read the MII Status Register and wait for Auto-Neg
        !          3247:          * Complete bit to be set.
        !          3248:          */
        !          3249:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
        !          3250:         if (ret_val)
        !          3251:             return ret_val;
        !          3252:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
        !          3253:         if (ret_val)
        !          3254:             return ret_val;
        !          3255:         if (phy_data & MII_SR_AUTONEG_COMPLETE) {
        !          3256:             return E1000_SUCCESS;
        !          3257:         }
        !          3258:         msec_delay(100);
        !          3259:     }
        !          3260:     return E1000_SUCCESS;
        !          3261: }
        !          3262:
        !          3263: /******************************************************************************
        !          3264: * Raises the Management Data Clock
        !          3265: *
        !          3266: * hw - Struct containing variables accessed by shared code
        !          3267: * ctrl - Device control register's current value
        !          3268: ******************************************************************************/
        !          3269: static void
        !          3270: em_raise_mdi_clk(struct em_hw *hw,
        !          3271:                     uint32_t *ctrl)
        !          3272: {
        !          3273:     /* Raise the clock input to the Management Data Clock (by setting the MDC
        !          3274:      * bit), and then delay 10 microseconds.
        !          3275:      */
        !          3276:     E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
        !          3277:     E1000_WRITE_FLUSH(hw);
        !          3278:     usec_delay(10);
        !          3279: }
        !          3280:
        !          3281: /******************************************************************************
        !          3282: * Lowers the Management Data Clock
        !          3283: *
        !          3284: * hw - Struct containing variables accessed by shared code
        !          3285: * ctrl - Device control register's current value
        !          3286: ******************************************************************************/
        !          3287: static void
        !          3288: em_lower_mdi_clk(struct em_hw *hw,
        !          3289:                     uint32_t *ctrl)
        !          3290: {
        !          3291:     /* Lower the clock input to the Management Data Clock (by clearing the MDC
        !          3292:      * bit), and then delay 10 microseconds.
        !          3293:      */
        !          3294:     E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
        !          3295:     E1000_WRITE_FLUSH(hw);
        !          3296:     usec_delay(10);
        !          3297: }
        !          3298:
        !          3299: /******************************************************************************
        !          3300: * Shifts data bits out to the PHY
        !          3301: *
        !          3302: * hw - Struct containing variables accessed by shared code
        !          3303: * data - Data to send out to the PHY
        !          3304: * count - Number of bits to shift out
        !          3305: *
        !          3306: * Bits are shifted out in MSB to LSB order.
        !          3307: ******************************************************************************/
        !          3308: static void
        !          3309: em_shift_out_mdi_bits(struct em_hw *hw,
        !          3310:                          uint32_t data,
        !          3311:                          uint16_t count)
        !          3312: {
        !          3313:     uint32_t ctrl;
        !          3314:     uint32_t mask;
        !          3315:
        !          3316:     /* We need to shift "count" number of bits out to the PHY. So, the value
        !          3317:      * in the "data" parameter will be shifted out to the PHY one bit at a
        !          3318:      * time. In order to do this, "data" must be broken down into bits.
        !          3319:      */
        !          3320:     mask = 0x01;
        !          3321:     mask <<= (count - 1);
        !          3322:
        !          3323:     ctrl = E1000_READ_REG(hw, CTRL);
        !          3324:
        !          3325:     /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
        !          3326:     ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
        !          3327:
        !          3328:     while (mask) {
        !          3329:         /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
        !          3330:          * then raising and lowering the Management Data Clock. A "0" is
        !          3331:          * shifted out to the PHY by setting the MDIO bit to "0" and then
        !          3332:          * raising and lowering the clock.
        !          3333:          */
        !          3334:         if (data & mask)
        !          3335:             ctrl |= E1000_CTRL_MDIO;
        !          3336:         else
        !          3337:             ctrl &= ~E1000_CTRL_MDIO;
        !          3338:
        !          3339:         E1000_WRITE_REG(hw, CTRL, ctrl);
        !          3340:         E1000_WRITE_FLUSH(hw);
        !          3341:
        !          3342:         usec_delay(10);
        !          3343:
        !          3344:         em_raise_mdi_clk(hw, &ctrl);
        !          3345:         em_lower_mdi_clk(hw, &ctrl);
        !          3346:
        !          3347:         mask = mask >> 1;
        !          3348:     }
        !          3349: }
        !          3350:
        !          3351: /******************************************************************************
        !          3352: * Shifts data bits in from the PHY
        !          3353: *
        !          3354: * hw - Struct containing variables accessed by shared code
        !          3355: *
        !          3356: * Bits are shifted in in MSB to LSB order.
        !          3357: ******************************************************************************/
        !          3358: static uint16_t
        !          3359: em_shift_in_mdi_bits(struct em_hw *hw)
        !          3360: {
        !          3361:     uint32_t ctrl;
        !          3362:     uint16_t data = 0;
        !          3363:     uint8_t i;
        !          3364:
        !          3365:     /* In order to read a register from the PHY, we need to shift in a total
        !          3366:      * of 18 bits from the PHY. The first two bit (turnaround) times are used
        !          3367:      * to avoid contention on the MDIO pin when a read operation is performed.
        !          3368:      * These two bits are ignored by us and thrown away. Bits are "shifted in"
        !          3369:      * by raising the input to the Management Data Clock (setting the MDC bit),
        !          3370:      * and then reading the value of the MDIO bit.
        !          3371:      */
        !          3372:     ctrl = E1000_READ_REG(hw, CTRL);
        !          3373:
        !          3374:     /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
        !          3375:     ctrl &= ~E1000_CTRL_MDIO_DIR;
        !          3376:     ctrl &= ~E1000_CTRL_MDIO;
        !          3377:
        !          3378:     E1000_WRITE_REG(hw, CTRL, ctrl);
        !          3379:     E1000_WRITE_FLUSH(hw);
        !          3380:
        !          3381:     /* Raise and Lower the clock before reading in the data. This accounts for
        !          3382:      * the turnaround bits. The first clock occurred when we clocked out the
        !          3383:      * last bit of the Register Address.
        !          3384:      */
        !          3385:     em_raise_mdi_clk(hw, &ctrl);
        !          3386:     em_lower_mdi_clk(hw, &ctrl);
        !          3387:
        !          3388:     for (data = 0, i = 0; i < 16; i++) {
        !          3389:         data = data << 1;
        !          3390:         em_raise_mdi_clk(hw, &ctrl);
        !          3391:         ctrl = E1000_READ_REG(hw, CTRL);
        !          3392:         /* Check to see if we shifted in a "1". */
        !          3393:         if (ctrl & E1000_CTRL_MDIO)
        !          3394:             data |= 1;
        !          3395:         em_lower_mdi_clk(hw, &ctrl);
        !          3396:     }
        !          3397:
        !          3398:     em_raise_mdi_clk(hw, &ctrl);
        !          3399:     em_lower_mdi_clk(hw, &ctrl);
        !          3400:
        !          3401:     return data;
        !          3402: }
        !          3403:
        !          3404: STATIC int32_t
        !          3405: em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask)
        !          3406: {
        !          3407:     uint32_t swfw_sync = 0;
        !          3408:     uint32_t swmask = mask;
        !          3409:     uint32_t fwmask = mask << 16;
        !          3410:     int32_t timeout = 200;
        !          3411:
        !          3412:     DEBUGFUNC("em_swfw_sync_acquire");
        !          3413:
        !          3414:     if (hw->swfwhw_semaphore_present)
        !          3415:         return em_get_software_flag(hw);
        !          3416:
        !          3417:     if (!hw->swfw_sync_present)
        !          3418:         return em_get_hw_eeprom_semaphore(hw);
        !          3419:
        !          3420:     while (timeout) {
        !          3421:             if (em_get_hw_eeprom_semaphore(hw))
        !          3422:                 return -E1000_ERR_SWFW_SYNC;
        !          3423:
        !          3424:             swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
        !          3425:             if (!(swfw_sync & (fwmask | swmask))) {
        !          3426:                 break;
        !          3427:             }
        !          3428:
        !          3429:             /* firmware currently using resource (fwmask) */
        !          3430:             /* or other software thread currently using resource (swmask) */
        !          3431:             em_put_hw_eeprom_semaphore(hw);
        !          3432:             msec_delay_irq(5);
        !          3433:             timeout--;
        !          3434:     }
        !          3435:
        !          3436:     if (!timeout) {
        !          3437:         DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
        !          3438:         return -E1000_ERR_SWFW_SYNC;
        !          3439:     }
        !          3440:
        !          3441:     swfw_sync |= swmask;
        !          3442:     E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
        !          3443:
        !          3444:     em_put_hw_eeprom_semaphore(hw);
        !          3445:     return E1000_SUCCESS;
        !          3446: }
        !          3447:
        !          3448: STATIC void
        !          3449: em_swfw_sync_release(struct em_hw *hw, uint16_t mask)
        !          3450: {
        !          3451:     uint32_t swfw_sync;
        !          3452:     uint32_t swmask = mask;
        !          3453:
        !          3454:     DEBUGFUNC("em_swfw_sync_release");
        !          3455:
        !          3456:     if (hw->swfwhw_semaphore_present) {
        !          3457:         em_release_software_flag(hw);
        !          3458:         return;
        !          3459:     }
        !          3460:
        !          3461:     if (!hw->swfw_sync_present) {
        !          3462:         em_put_hw_eeprom_semaphore(hw);
        !          3463:         return;
        !          3464:     }
        !          3465:
        !          3466:     /* if (em_get_hw_eeprom_semaphore(hw))
        !          3467:      *    return -E1000_ERR_SWFW_SYNC; */
        !          3468:     while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
        !          3469:         /* empty */
        !          3470:
        !          3471:     swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
        !          3472:     swfw_sync &= ~swmask;
        !          3473:     E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
        !          3474:
        !          3475:     em_put_hw_eeprom_semaphore(hw);
        !          3476: }
        !          3477:
        !          3478: /*****************************************************************************
        !          3479: * Reads the value from a PHY register, if the value is on a specific non zero
        !          3480: * page, sets the page first.
        !          3481: * hw - Struct containing variables accessed by shared code
        !          3482: * reg_addr - address of the PHY register to read
        !          3483: ******************************************************************************/
        !          3484: int32_t
        !          3485: em_read_phy_reg(struct em_hw *hw,
        !          3486:                    uint32_t reg_addr,
        !          3487:                    uint16_t *phy_data)
        !          3488: {
        !          3489:     uint32_t ret_val;
        !          3490:     uint16_t swfw;
        !          3491:
        !          3492:     DEBUGFUNC("em_read_phy_reg");
        !          3493:
        !          3494:     if ((hw->mac_type == em_80003es2lan) &&
        !          3495:         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        !          3496:         swfw = E1000_SWFW_PHY1_SM;
        !          3497:     } else {
        !          3498:         swfw = E1000_SWFW_PHY0_SM;
        !          3499:     }
        !          3500:     if (em_swfw_sync_acquire(hw, swfw))
        !          3501:         return -E1000_ERR_SWFW_SYNC;
        !          3502:
        !          3503:     if ((hw->phy_type == em_phy_igp ||
        !          3504:         hw->phy_type == em_phy_igp_3 ||
        !          3505:         hw->phy_type == em_phy_igp_2) &&
        !          3506:        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
        !          3507:         ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
        !          3508:                                          (uint16_t)reg_addr);
        !          3509:         if (ret_val) {
        !          3510:             em_swfw_sync_release(hw, swfw);
        !          3511:             return ret_val;
        !          3512:         }
        !          3513:     } else if (hw->phy_type == em_phy_gg82563) {
        !          3514:         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
        !          3515:             (hw->mac_type == em_80003es2lan)) {
        !          3516:             /* Select Configuration Page */
        !          3517:             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
        !          3518:                 ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
        !          3519:                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
        !          3520:             } else {
        !          3521:                 /* Use Alternative Page Select register to access
        !          3522:                  * registers 30 and 31
        !          3523:                  */
        !          3524:                 ret_val = em_write_phy_reg_ex(hw,
        !          3525:                                                  GG82563_PHY_PAGE_SELECT_ALT,
        !          3526:                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
        !          3527:             }
        !          3528:
        !          3529:             if (ret_val) {
        !          3530:                 em_swfw_sync_release(hw, swfw);
        !          3531:                 return ret_val;
        !          3532:             }
        !          3533:         }
        !          3534:     }
        !          3535:
        !          3536:     ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
        !          3537:                                     phy_data);
        !          3538:
        !          3539:     em_swfw_sync_release(hw, swfw);
        !          3540:     return ret_val;
        !          3541: }
        !          3542:
        !          3543: STATIC int32_t
        !          3544: em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
        !          3545:                       uint16_t *phy_data)
        !          3546: {
        !          3547:     uint32_t i;
        !          3548:     uint32_t mdic = 0;
        !          3549:     const uint32_t phy_addr = 1;
        !          3550:
        !          3551:     DEBUGFUNC("em_read_phy_reg_ex");
        !          3552:
        !          3553:     if (reg_addr > MAX_PHY_REG_ADDRESS) {
        !          3554:         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        !          3555:         return -E1000_ERR_PARAM;
        !          3556:     }
        !          3557:
        !          3558:     if (hw->mac_type > em_82543) {
        !          3559:         /* Set up Op-code, Phy Address, and register address in the MDI
        !          3560:          * Control register.  The MAC will take care of interfacing with the
        !          3561:          * PHY to retrieve the desired data.
        !          3562:          */
        !          3563:         mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
        !          3564:                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
        !          3565:                 (E1000_MDIC_OP_READ));
        !          3566:
        !          3567:         E1000_WRITE_REG(hw, MDIC, mdic);
        !          3568:
        !          3569:         /* Poll the ready bit to see if the MDI read completed */
        !          3570:         for (i = 0; i < 64; i++) {
        !          3571:             usec_delay(50);
        !          3572:             mdic = E1000_READ_REG(hw, MDIC);
        !          3573:             if (mdic & E1000_MDIC_READY) break;
        !          3574:         }
        !          3575:         if (!(mdic & E1000_MDIC_READY)) {
        !          3576:             DEBUGOUT("MDI Read did not complete\n");
        !          3577:             return -E1000_ERR_PHY;
        !          3578:         }
        !          3579:         if (mdic & E1000_MDIC_ERROR) {
        !          3580:             DEBUGOUT("MDI Error\n");
        !          3581:             return -E1000_ERR_PHY;
        !          3582:         }
        !          3583:         *phy_data = (uint16_t) mdic;
        !          3584:     } else {
        !          3585:         /* We must first send a preamble through the MDIO pin to signal the
        !          3586:          * beginning of an MII instruction.  This is done by sending 32
        !          3587:          * consecutive "1" bits.
        !          3588:          */
        !          3589:         em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
        !          3590:
        !          3591:         /* Now combine the next few fields that are required for a read
        !          3592:          * operation.  We use this method instead of calling the
        !          3593:          * em_shift_out_mdi_bits routine five different times. The format of
        !          3594:          * a MII read instruction consists of a shift out of 14 bits and is
        !          3595:          * defined as follows:
        !          3596:          *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
        !          3597:          * followed by a shift in of 18 bits.  This first two bits shifted in
        !          3598:          * are TurnAround bits used to avoid contention on the MDIO pin when a
        !          3599:          * READ operation is performed.  These two bits are thrown away
        !          3600:          * followed by a shift in of 16 bits which contains the desired data.
        !          3601:          */
        !          3602:         mdic = ((reg_addr) | (phy_addr << 5) |
        !          3603:                 (PHY_OP_READ << 10) | (PHY_SOF << 12));
        !          3604:
        !          3605:         em_shift_out_mdi_bits(hw, mdic, 14);
        !          3606:
        !          3607:         /* Now that we've shifted out the read command to the MII, we need to
        !          3608:          * "shift in" the 16-bit value (18 total bits) of the requested PHY
        !          3609:          * register address.
        !          3610:          */
        !          3611:         *phy_data = em_shift_in_mdi_bits(hw);
        !          3612:     }
        !          3613:     return E1000_SUCCESS;
        !          3614: }
        !          3615:
        !          3616: /******************************************************************************
        !          3617: * Writes a value to a PHY register
        !          3618: *
        !          3619: * hw - Struct containing variables accessed by shared code
        !          3620: * reg_addr - address of the PHY register to write
        !          3621: * data - data to write to the PHY
        !          3622: ******************************************************************************/
        !          3623: int32_t
        !          3624: em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr,
        !          3625:                     uint16_t phy_data)
        !          3626: {
        !          3627:     uint32_t ret_val;
        !          3628:     uint16_t swfw;
        !          3629:
        !          3630:     DEBUGFUNC("em_write_phy_reg");
        !          3631:
        !          3632:     if ((hw->mac_type == em_80003es2lan) &&
        !          3633:         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        !          3634:         swfw = E1000_SWFW_PHY1_SM;
        !          3635:     } else {
        !          3636:         swfw = E1000_SWFW_PHY0_SM;
        !          3637:     }
        !          3638:     if (em_swfw_sync_acquire(hw, swfw))
        !          3639:         return -E1000_ERR_SWFW_SYNC;
        !          3640:
        !          3641:     if ((hw->phy_type == em_phy_igp ||
        !          3642:         hw->phy_type == em_phy_igp_3 ||
        !          3643:         hw->phy_type == em_phy_igp_2) &&
        !          3644:        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
        !          3645:         ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
        !          3646:                                          (uint16_t)reg_addr);
        !          3647:         if (ret_val) {
        !          3648:             em_swfw_sync_release(hw, swfw);
        !          3649:             return ret_val;
        !          3650:         }
        !          3651:     } else if (hw->phy_type == em_phy_gg82563) {
        !          3652:         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
        !          3653:             (hw->mac_type == em_80003es2lan)) {
        !          3654:             /* Select Configuration Page */
        !          3655:             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
        !          3656:                 ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
        !          3657:                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
        !          3658:             } else {
        !          3659:                 /* Use Alternative Page Select register to access
        !          3660:                  * registers 30 and 31
        !          3661:                  */
        !          3662:                 ret_val = em_write_phy_reg_ex(hw,
        !          3663:                                                  GG82563_PHY_PAGE_SELECT_ALT,
        !          3664:                           (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
        !          3665:             }
        !          3666:
        !          3667:             if (ret_val) {
        !          3668:                 em_swfw_sync_release(hw, swfw);
        !          3669:                 return ret_val;
        !          3670:             }
        !          3671:         }
        !          3672:     }
        !          3673:
        !          3674:     ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
        !          3675:                                      phy_data);
        !          3676:
        !          3677:     em_swfw_sync_release(hw, swfw);
        !          3678:     return ret_val;
        !          3679: }
        !          3680:
        !          3681: STATIC int32_t
        !          3682: em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
        !          3683:                        uint16_t phy_data)
        !          3684: {
        !          3685:     uint32_t i;
        !          3686:     uint32_t mdic = 0;
        !          3687:     const uint32_t phy_addr = 1;
        !          3688:
        !          3689:     DEBUGFUNC("em_write_phy_reg_ex");
        !          3690:
        !          3691:     if (reg_addr > MAX_PHY_REG_ADDRESS) {
        !          3692:         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        !          3693:         return -E1000_ERR_PARAM;
        !          3694:     }
        !          3695:
        !          3696:     if (hw->mac_type > em_82543) {
        !          3697:         /* Set up Op-code, Phy Address, register address, and data intended
        !          3698:          * for the PHY register in the MDI Control register.  The MAC will take
        !          3699:          * care of interfacing with the PHY to send the desired data.
        !          3700:          */
        !          3701:         mdic = (((uint32_t) phy_data) |
        !          3702:                 (reg_addr << E1000_MDIC_REG_SHIFT) |
        !          3703:                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
        !          3704:                 (E1000_MDIC_OP_WRITE));
        !          3705:
        !          3706:         E1000_WRITE_REG(hw, MDIC, mdic);
        !          3707:
        !          3708:         /* Poll the ready bit to see if the MDI read completed */
        !          3709:         for (i = 0; i < 641; i++) {
        !          3710:             usec_delay(5);
        !          3711:             mdic = E1000_READ_REG(hw, MDIC);
        !          3712:             if (mdic & E1000_MDIC_READY) break;
        !          3713:         }
        !          3714:         if (!(mdic & E1000_MDIC_READY)) {
        !          3715:             DEBUGOUT("MDI Write did not complete\n");
        !          3716:             return -E1000_ERR_PHY;
        !          3717:         }
        !          3718:     } else {
        !          3719:         /* We'll need to use the SW defined pins to shift the write command
        !          3720:          * out to the PHY. We first send a preamble to the PHY to signal the
        !          3721:          * beginning of the MII instruction.  This is done by sending 32
        !          3722:          * consecutive "1" bits.
        !          3723:          */
        !          3724:         em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
        !          3725:
        !          3726:         /* Now combine the remaining required fields that will indicate a
        !          3727:          * write operation. We use this method instead of calling the
        !          3728:          * em_shift_out_mdi_bits routine for each field in the command. The
        !          3729:          * format of a MII write instruction is as follows:
        !          3730:          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
        !          3731:          */
        !          3732:         mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
        !          3733:                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
        !          3734:         mdic <<= 16;
        !          3735:         mdic |= (uint32_t) phy_data;
        !          3736:
        !          3737:         em_shift_out_mdi_bits(hw, mdic, 32);
        !          3738:     }
        !          3739:
        !          3740:     return E1000_SUCCESS;
        !          3741: }
        !          3742:
        !          3743: STATIC int32_t
        !          3744: em_read_kmrn_reg(struct em_hw *hw,
        !          3745:                     uint32_t reg_addr,
        !          3746:                     uint16_t *data)
        !          3747: {
        !          3748:     uint32_t reg_val;
        !          3749:     uint16_t swfw;
        !          3750:     DEBUGFUNC("em_read_kmrn_reg");
        !          3751:
        !          3752:     if ((hw->mac_type == em_80003es2lan) &&
        !          3753:         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        !          3754:         swfw = E1000_SWFW_PHY1_SM;
        !          3755:     } else {
        !          3756:         swfw = E1000_SWFW_PHY0_SM;
        !          3757:     }
        !          3758:     if (em_swfw_sync_acquire(hw, swfw))
        !          3759:         return -E1000_ERR_SWFW_SYNC;
        !          3760:
        !          3761:     /* Write register address */
        !          3762:     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
        !          3763:               E1000_KUMCTRLSTA_OFFSET) |
        !          3764:               E1000_KUMCTRLSTA_REN;
        !          3765:     E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
        !          3766:     usec_delay(2);
        !          3767:
        !          3768:     /* Read the data returned */
        !          3769:     reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
        !          3770:     *data = (uint16_t)reg_val;
        !          3771:
        !          3772:     em_swfw_sync_release(hw, swfw);
        !          3773:     return E1000_SUCCESS;
        !          3774: }
        !          3775:
        !          3776: STATIC int32_t
        !          3777: em_write_kmrn_reg(struct em_hw *hw,
        !          3778:                      uint32_t reg_addr,
        !          3779:                      uint16_t data)
        !          3780: {
        !          3781:     uint32_t reg_val;
        !          3782:     uint16_t swfw;
        !          3783:     DEBUGFUNC("em_write_kmrn_reg");
        !          3784:
        !          3785:     if ((hw->mac_type == em_80003es2lan) &&
        !          3786:         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        !          3787:         swfw = E1000_SWFW_PHY1_SM;
        !          3788:     } else {
        !          3789:         swfw = E1000_SWFW_PHY0_SM;
        !          3790:     }
        !          3791:     if (em_swfw_sync_acquire(hw, swfw))
        !          3792:         return -E1000_ERR_SWFW_SYNC;
        !          3793:
        !          3794:     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
        !          3795:               E1000_KUMCTRLSTA_OFFSET) | data;
        !          3796:     E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
        !          3797:     usec_delay(2);
        !          3798:
        !          3799:     em_swfw_sync_release(hw, swfw);
        !          3800:     return E1000_SUCCESS;
        !          3801: }
        !          3802:
        !          3803: /******************************************************************************
        !          3804: * Returns the PHY to the power-on reset state
        !          3805: *
        !          3806: * hw - Struct containing variables accessed by shared code
        !          3807: ******************************************************************************/
        !          3808: int32_t
        !          3809: em_phy_hw_reset(struct em_hw *hw)
        !          3810: {
        !          3811:     uint32_t ctrl, ctrl_ext;
        !          3812:     uint32_t led_ctrl;
        !          3813:     int32_t ret_val;
        !          3814:     uint16_t swfw;
        !          3815:
        !          3816:     DEBUGFUNC("em_phy_hw_reset");
        !          3817:
        !          3818:     /* In the case of the phy reset being blocked, it's not an error, we
        !          3819:      * simply return success without performing the reset. */
        !          3820:     ret_val = em_check_phy_reset_block(hw);
        !          3821:     if (ret_val)
        !          3822:         return E1000_SUCCESS;
        !          3823:
        !          3824:     DEBUGOUT("Resetting Phy...\n");
        !          3825:
        !          3826:     if (hw->mac_type > em_82543) {
        !          3827:         if ((hw->mac_type == em_80003es2lan) &&
        !          3828:             (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        !          3829:             swfw = E1000_SWFW_PHY1_SM;
        !          3830:         } else {
        !          3831:             swfw = E1000_SWFW_PHY0_SM;
        !          3832:         }
        !          3833:         if (em_swfw_sync_acquire(hw, swfw)) {
        !          3834:             DEBUGOUT("Unable to acquire swfw sync\n");
        !          3835:             return -E1000_ERR_SWFW_SYNC;
        !          3836:         }
        !          3837:         /* Read the device control register and assert the E1000_CTRL_PHY_RST
        !          3838:          * bit. Then, take it out of reset.
        !          3839:          * For pre-em_82571 hardware, we delay for 10ms between the assert
        !          3840:          * and deassert.  For em_82571 hardware and later, we instead delay
        !          3841:          * for 50us between and 10ms after the deassertion.
        !          3842:          */
        !          3843:         ctrl = E1000_READ_REG(hw, CTRL);
        !          3844:         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
        !          3845:         E1000_WRITE_FLUSH(hw);
        !          3846:
        !          3847:         if (hw->mac_type < em_82571)
        !          3848:             msec_delay(10);
        !          3849:         else
        !          3850:             usec_delay(100);
        !          3851:
        !          3852:         E1000_WRITE_REG(hw, CTRL, ctrl);
        !          3853:         E1000_WRITE_FLUSH(hw);
        !          3854:
        !          3855:         if (hw->mac_type >= em_82571)
        !          3856:             msec_delay_irq(10);
        !          3857:         em_swfw_sync_release(hw, swfw);
        !          3858:     } else {
        !          3859:         /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
        !          3860:          * bit to put the PHY into reset. Then, take it out of reset.
        !          3861:          */
        !          3862:         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        !          3863:         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
        !          3864:         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
        !          3865:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        !          3866:         E1000_WRITE_FLUSH(hw);
        !          3867:         msec_delay(10);
        !          3868:         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
        !          3869:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        !          3870:         E1000_WRITE_FLUSH(hw);
        !          3871:     }
        !          3872:     usec_delay(150);
        !          3873:
        !          3874:     if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
        !          3875:         /* Configure activity LED after PHY reset */
        !          3876:         led_ctrl = E1000_READ_REG(hw, LEDCTL);
        !          3877:         led_ctrl &= IGP_ACTIVITY_LED_MASK;
        !          3878:         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        !          3879:         E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
        !          3880:     }
        !          3881:
        !          3882:     /* Wait for FW to finish PHY configuration. */
        !          3883:     ret_val = em_get_phy_cfg_done(hw);
        !          3884:     if (ret_val != E1000_SUCCESS)
        !          3885:         return ret_val;
        !          3886:     em_release_software_semaphore(hw);
        !          3887:
        !          3888:     if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3))
        !          3889:         ret_val = em_init_lcd_from_nvm(hw);
        !          3890:
        !          3891:     return ret_val;
        !          3892: }
        !          3893:
        !          3894: /******************************************************************************
        !          3895: * Resets the PHY
        !          3896: *
        !          3897: * hw - Struct containing variables accessed by shared code
        !          3898: *
        !          3899: * Sets bit 15 of the MII Control regiser
        !          3900: ******************************************************************************/
        !          3901: int32_t
        !          3902: em_phy_reset(struct em_hw *hw)
        !          3903: {
        !          3904:     int32_t ret_val;
        !          3905:     uint16_t phy_data;
        !          3906:
        !          3907:     DEBUGFUNC("em_phy_reset");
        !          3908:
        !          3909:     /* In the case of the phy reset being blocked, it's not an error, we
        !          3910:      * simply return success without performing the reset. */
        !          3911:     ret_val = em_check_phy_reset_block(hw);
        !          3912:     if (ret_val)
        !          3913:         return E1000_SUCCESS;
        !          3914:
        !          3915:     switch (hw->phy_type) {
        !          3916:     case em_phy_igp:
        !          3917:     case em_phy_igp_2:
        !          3918:     case em_phy_igp_3:
        !          3919:     case em_phy_ife:
        !          3920:         ret_val = em_phy_hw_reset(hw);
        !          3921:         if (ret_val)
        !          3922:             return ret_val;
        !          3923:         break;
        !          3924:     default:
        !          3925:         ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
        !          3926:         if (ret_val)
        !          3927:             return ret_val;
        !          3928:
        !          3929:         phy_data |= MII_CR_RESET;
        !          3930:         ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
        !          3931:         if (ret_val)
        !          3932:             return ret_val;
        !          3933:
        !          3934:         usec_delay(1);
        !          3935:         break;
        !          3936:     }
        !          3937:
        !          3938:     if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
        !          3939:         em_phy_init_script(hw);
        !          3940:
        !          3941:     return E1000_SUCCESS;
        !          3942: }
        !          3943:
        !          3944: /******************************************************************************
        !          3945: * Work-around for 82566 Kumeran PCS lock loss:
        !          3946: * On link status change (i.e. PCI reset, speed change) and link is up and
        !          3947: * speed is gigabit-
        !          3948: * 0) if workaround is optionally disabled do nothing
        !          3949: * 1) wait 1ms for Kumeran link to come up
        !          3950: * 2) check Kumeran Diagnostic register PCS lock loss bit
        !          3951: * 3) if not set the link is locked (all is good), otherwise...
        !          3952: * 4) reset the PHY
        !          3953: * 5) repeat up to 10 times
        !          3954: * Note: this is only called for IGP3 copper when speed is 1gb.
        !          3955: *
        !          3956: * hw - struct containing variables accessed by shared code
        !          3957: ******************************************************************************/
        !          3958: STATIC int32_t
        !          3959: em_kumeran_lock_loss_workaround(struct em_hw *hw)
        !          3960: {
        !          3961:     int32_t ret_val;
        !          3962:     int32_t reg;
        !          3963:     int32_t cnt;
        !          3964:     uint16_t phy_data;
        !          3965:
        !          3966:     if (hw->kmrn_lock_loss_workaround_disabled)
        !          3967:         return E1000_SUCCESS;
        !          3968:
        !          3969:     /* Make sure link is up before proceeding.  If not just return.
        !          3970:      * Attempting this while link is negotiating fouled up link
        !          3971:      * stability */
        !          3972:     ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
        !          3973:     ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
        !          3974:
        !          3975:     if (phy_data & MII_SR_LINK_STATUS) {
        !          3976:         for (cnt = 0; cnt < 10; cnt++) {
        !          3977:             /* read once to clear */
        !          3978:             ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
        !          3979:             if (ret_val)
        !          3980:                 return ret_val;
        !          3981:             /* and again to get new status */
        !          3982:             ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
        !          3983:             if (ret_val)
        !          3984:                 return ret_val;
        !          3985:
        !          3986:             /* check for PCS lock */
        !          3987:             if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
        !          3988:                 return E1000_SUCCESS;
        !          3989:
        !          3990:             /* Issue PHY reset */
        !          3991:             em_phy_hw_reset(hw);
        !          3992:             msec_delay_irq(5);
        !          3993:         }
        !          3994:         /* Disable GigE link negotiation */
        !          3995:         reg = E1000_READ_REG(hw, PHY_CTRL);
        !          3996:         E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
        !          3997:                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
        !          3998:
        !          3999:         /* unable to acquire PCS lock */
        !          4000:         return E1000_ERR_PHY;
        !          4001:     }
        !          4002:
        !          4003:     return E1000_SUCCESS;
        !          4004: }
        !          4005:
        !          4006: /******************************************************************************
        !          4007: * Probes the expected PHY address for known PHY IDs
        !          4008: *
        !          4009: * hw - Struct containing variables accessed by shared code
        !          4010: ******************************************************************************/
        !          4011: STATIC int32_t
        !          4012: em_detect_gig_phy(struct em_hw *hw)
        !          4013: {
        !          4014:     int32_t phy_init_status, ret_val;
        !          4015:     uint16_t phy_id_high, phy_id_low;
        !          4016:     boolean_t match = FALSE;
        !          4017:
        !          4018:     DEBUGFUNC("em_detect_gig_phy");
        !          4019:
        !          4020:     if (hw->phy_id != 0)
        !          4021:         return E1000_SUCCESS;
        !          4022:
        !          4023:     /* The 82571 firmware may still be configuring the PHY.  In this
        !          4024:      * case, we cannot access the PHY until the configuration is done.  So
        !          4025:      * we explicitly set the PHY values. */
        !          4026:     if (hw->mac_type == em_82571 ||
        !          4027:         hw->mac_type == em_82572) {
        !          4028:         hw->phy_id = IGP01E1000_I_PHY_ID;
        !          4029:         hw->phy_type = em_phy_igp_2;
        !          4030:         return E1000_SUCCESS;
        !          4031:     }
        !          4032:
        !          4033:     /* ESB-2 PHY reads require em_phy_gg82563 to be set because of a work-
        !          4034:      * around that forces PHY page 0 to be set or the reads fail.  The rest of
        !          4035:      * the code in this routine uses em_read_phy_reg to read the PHY ID.
        !          4036:      * So for ESB-2 we need to have this set so our reads won't fail.  If the
        !          4037:      * attached PHY is not a em_phy_gg82563, the routines below will figure
        !          4038:      * this out as well. */
        !          4039:     if (hw->mac_type == em_80003es2lan)
        !          4040:         hw->phy_type = em_phy_gg82563;
        !          4041:
        !          4042:     /* Read the PHY ID Registers to identify which PHY is onboard. */
        !          4043:     ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
        !          4044:     if (ret_val)
        !          4045:         return ret_val;
        !          4046:
        !          4047:     hw->phy_id = (uint32_t) (phy_id_high << 16);
        !          4048:     usec_delay(20);
        !          4049:     ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
        !          4050:     if (ret_val)
        !          4051:         return ret_val;
        !          4052:
        !          4053:     hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
        !          4054:     hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
        !          4055:
        !          4056:     switch (hw->mac_type) {
        !          4057:     case em_82543:
        !          4058:         if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
        !          4059:         break;
        !          4060:     case em_82544:
        !          4061:         if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
        !          4062:         break;
        !          4063:     case em_82540:
        !          4064:     case em_82545:
        !          4065:     case em_82545_rev_3:
        !          4066:     case em_82546:
        !          4067:     case em_82546_rev_3:
        !          4068:         if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
        !          4069:         break;
        !          4070:     case em_82541:
        !          4071:     case em_82541_rev_2:
        !          4072:     case em_82547:
        !          4073:     case em_82547_rev_2:
        !          4074:         if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
        !          4075:         break;
        !          4076:     case em_82573:
        !          4077:         if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
        !          4078:         break;
        !          4079:     case em_80003es2lan:
        !          4080:         if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
        !          4081:         break;
        !          4082:     case em_ich8lan:
        !          4083:         if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
        !          4084:         if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
        !          4085:         if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
        !          4086:         if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
        !          4087:         break;
        !          4088:     default:
        !          4089:         DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
        !          4090:         return -E1000_ERR_CONFIG;
        !          4091:     }
        !          4092:     phy_init_status = em_set_phy_type(hw);
        !          4093:
        !          4094:     if ((match) && (phy_init_status == E1000_SUCCESS)) {
        !          4095:         DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
        !          4096:         return E1000_SUCCESS;
        !          4097:     }
        !          4098:     DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
        !          4099:     return -E1000_ERR_PHY;
        !          4100: }
        !          4101:
        !          4102: /******************************************************************************
        !          4103: * Resets the PHY's DSP
        !          4104: *
        !          4105: * hw - Struct containing variables accessed by shared code
        !          4106: ******************************************************************************/
        !          4107: static int32_t
        !          4108: em_phy_reset_dsp(struct em_hw *hw)
        !          4109: {
        !          4110:     int32_t ret_val;
        !          4111:     DEBUGFUNC("em_phy_reset_dsp");
        !          4112:
        !          4113:     do {
        !          4114:         if (hw->phy_type != em_phy_gg82563) {
        !          4115:             ret_val = em_write_phy_reg(hw, 29, 0x001d);
        !          4116:             if (ret_val) break;
        !          4117:         }
        !          4118:         ret_val = em_write_phy_reg(hw, 30, 0x00c1);
        !          4119:         if (ret_val) break;
        !          4120:         ret_val = em_write_phy_reg(hw, 30, 0x0000);
        !          4121:         if (ret_val) break;
        !          4122:         ret_val = E1000_SUCCESS;
        !          4123:     } while (0);
        !          4124:
        !          4125:     return ret_val;
        !          4126: }
        !          4127:
        !          4128: /******************************************************************************
        !          4129:  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
        !          4130:  * is configured.  Additionally, if this is ICH8, the flash controller GbE
        !          4131:  * registers must be mapped, or this will crash.
        !          4132:  *
        !          4133:  * hw - Struct containing variables accessed by shared code
        !          4134:  *****************************************************************************/
        !          4135: int32_t
        !          4136: em_init_eeprom_params(struct em_hw *hw)
        !          4137: {
        !          4138:     struct em_eeprom_info *eeprom = &hw->eeprom;
        !          4139:     uint32_t eecd = E1000_READ_REG(hw, EECD);
        !          4140:     int32_t ret_val = E1000_SUCCESS;
        !          4141:     uint16_t eeprom_size;
        !          4142:
        !          4143:     DEBUGFUNC("em_init_eeprom_params");
        !          4144:
        !          4145:     switch (hw->mac_type) {
        !          4146:     case em_82542_rev2_0:
        !          4147:     case em_82542_rev2_1:
        !          4148:     case em_82543:
        !          4149:     case em_82544:
        !          4150:         eeprom->type = em_eeprom_microwire;
        !          4151:         eeprom->word_size = 64;
        !          4152:         eeprom->opcode_bits = 3;
        !          4153:         eeprom->address_bits = 6;
        !          4154:         eeprom->delay_usec = 50;
        !          4155:         eeprom->use_eerd = FALSE;
        !          4156:         eeprom->use_eewr = FALSE;
        !          4157:         break;
        !          4158:     case em_82540:
        !          4159:     case em_82545:
        !          4160:     case em_82545_rev_3:
        !          4161:     case em_82546:
        !          4162:     case em_82546_rev_3:
        !          4163:         eeprom->type = em_eeprom_microwire;
        !          4164:         eeprom->opcode_bits = 3;
        !          4165:         eeprom->delay_usec = 50;
        !          4166:         if (eecd & E1000_EECD_SIZE) {
        !          4167:             eeprom->word_size = 256;
        !          4168:             eeprom->address_bits = 8;
        !          4169:         } else {
        !          4170:             eeprom->word_size = 64;
        !          4171:             eeprom->address_bits = 6;
        !          4172:         }
        !          4173:         eeprom->use_eerd = FALSE;
        !          4174:         eeprom->use_eewr = FALSE;
        !          4175:         break;
        !          4176:     case em_82541:
        !          4177:     case em_82541_rev_2:
        !          4178:     case em_82547:
        !          4179:     case em_82547_rev_2:
        !          4180:         if (eecd & E1000_EECD_TYPE) {
        !          4181:             eeprom->type = em_eeprom_spi;
        !          4182:             eeprom->opcode_bits = 8;
        !          4183:             eeprom->delay_usec = 1;
        !          4184:             if (eecd & E1000_EECD_ADDR_BITS) {
        !          4185:                 eeprom->page_size = 32;
        !          4186:                 eeprom->address_bits = 16;
        !          4187:             } else {
        !          4188:                 eeprom->page_size = 8;
        !          4189:                 eeprom->address_bits = 8;
        !          4190:             }
        !          4191:         } else {
        !          4192:             eeprom->type = em_eeprom_microwire;
        !          4193:             eeprom->opcode_bits = 3;
        !          4194:             eeprom->delay_usec = 50;
        !          4195:             if (eecd & E1000_EECD_ADDR_BITS) {
        !          4196:                 eeprom->word_size = 256;
        !          4197:                 eeprom->address_bits = 8;
        !          4198:             } else {
        !          4199:                 eeprom->word_size = 64;
        !          4200:                 eeprom->address_bits = 6;
        !          4201:             }
        !          4202:         }
        !          4203:         eeprom->use_eerd = FALSE;
        !          4204:         eeprom->use_eewr = FALSE;
        !          4205:         break;
        !          4206:     case em_82571:
        !          4207:     case em_82572:
        !          4208:         eeprom->type = em_eeprom_spi;
        !          4209:         eeprom->opcode_bits = 8;
        !          4210:         eeprom->delay_usec = 1;
        !          4211:         if (eecd & E1000_EECD_ADDR_BITS) {
        !          4212:             eeprom->page_size = 32;
        !          4213:             eeprom->address_bits = 16;
        !          4214:         } else {
        !          4215:             eeprom->page_size = 8;
        !          4216:             eeprom->address_bits = 8;
        !          4217:         }
        !          4218:         eeprom->use_eerd = FALSE;
        !          4219:         eeprom->use_eewr = FALSE;
        !          4220:         break;
        !          4221:     case em_82573:
        !          4222:         eeprom->type = em_eeprom_spi;
        !          4223:         eeprom->opcode_bits = 8;
        !          4224:         eeprom->delay_usec = 1;
        !          4225:         if (eecd & E1000_EECD_ADDR_BITS) {
        !          4226:             eeprom->page_size = 32;
        !          4227:             eeprom->address_bits = 16;
        !          4228:         } else {
        !          4229:             eeprom->page_size = 8;
        !          4230:             eeprom->address_bits = 8;
        !          4231:         }
        !          4232:         eeprom->use_eerd = TRUE;
        !          4233:         eeprom->use_eewr = TRUE;
        !          4234:         if (em_is_onboard_nvm_eeprom(hw) == FALSE) {
        !          4235:             eeprom->type = em_eeprom_flash;
        !          4236:             eeprom->word_size = 2048;
        !          4237:
        !          4238:             /* Ensure that the Autonomous FLASH update bit is cleared due to
        !          4239:              * Flash update issue on parts which use a FLASH for NVM. */
        !          4240:             eecd &= ~E1000_EECD_AUPDEN;
        !          4241:             E1000_WRITE_REG(hw, EECD, eecd);
        !          4242:         }
        !          4243:         break;
        !          4244:     case em_80003es2lan:
        !          4245:         eeprom->type = em_eeprom_spi;
        !          4246:         eeprom->opcode_bits = 8;
        !          4247:         eeprom->delay_usec = 1;
        !          4248:         if (eecd & E1000_EECD_ADDR_BITS) {
        !          4249:             eeprom->page_size = 32;
        !          4250:             eeprom->address_bits = 16;
        !          4251:         } else {
        !          4252:             eeprom->page_size = 8;
        !          4253:             eeprom->address_bits = 8;
        !          4254:         }
        !          4255:         eeprom->use_eerd = TRUE;
        !          4256:         eeprom->use_eewr = FALSE;
        !          4257:         break;
        !          4258:     case em_ich8lan:
        !          4259:     {
        !          4260:         int32_t  i = 0;
        !          4261:         uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
        !          4262:
        !          4263:         eeprom->type = em_eeprom_ich8;
        !          4264:         eeprom->use_eerd = FALSE;
        !          4265:         eeprom->use_eewr = FALSE;
        !          4266:         eeprom->word_size = E1000_SHADOW_RAM_WORDS;
        !          4267:
        !          4268:         /* Zero the shadow RAM structure. But don't load it from NVM
        !          4269:          * so as to save time for driver init */
        !          4270:         if (hw->eeprom_shadow_ram != NULL) {
        !          4271:             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
        !          4272:                 hw->eeprom_shadow_ram[i].modified = FALSE;
        !          4273:                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
        !          4274:             }
        !          4275:         }
        !          4276:
        !          4277:         hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
        !          4278:                               ICH_FLASH_SECTOR_SIZE;
        !          4279:
        !          4280:         hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
        !          4281:         hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
        !          4282:
        !          4283:         hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
        !          4284:
        !          4285:         hw->flash_bank_size /= 2 * sizeof(uint16_t);
        !          4286:
        !          4287:         break;
        !          4288:     }
        !          4289:     default:
        !          4290:         break;
        !          4291:     }
        !          4292:
        !          4293:     if (eeprom->type == em_eeprom_spi) {
        !          4294:         /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
        !          4295:          * 32KB (incremented by powers of 2).
        !          4296:          */
        !          4297:         if (hw->mac_type <= em_82547_rev_2) {
        !          4298:             /* Set to default value for initial eeprom read. */
        !          4299:             eeprom->word_size = 64;
        !          4300:             ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
        !          4301:             if (ret_val)
        !          4302:                 return ret_val;
        !          4303:             eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
        !          4304:             /* 256B eeprom size was not supported in earlier hardware, so we
        !          4305:              * bump eeprom_size up one to ensure that "1" (which maps to 256B)
        !          4306:              * is never the result used in the shifting logic below. */
        !          4307:             if (eeprom_size)
        !          4308:                 eeprom_size++;
        !          4309:         } else {
        !          4310:             eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
        !          4311:                           E1000_EECD_SIZE_EX_SHIFT);
        !          4312:         }
        !          4313:
        !          4314:         eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
        !          4315:     }
        !          4316:     return ret_val;
        !          4317: }
        !          4318:
        !          4319: /******************************************************************************
        !          4320:  * Raises the EEPROM's clock input.
        !          4321:  *
        !          4322:  * hw - Struct containing variables accessed by shared code
        !          4323:  * eecd - EECD's current value
        !          4324:  *****************************************************************************/
        !          4325: static void
        !          4326: em_raise_ee_clk(struct em_hw *hw,
        !          4327:                    uint32_t *eecd)
        !          4328: {
        !          4329:     /* Raise the clock input to the EEPROM (by setting the SK bit), and then
        !          4330:      * wait <delay> microseconds.
        !          4331:      */
        !          4332:     *eecd = *eecd | E1000_EECD_SK;
        !          4333:     E1000_WRITE_REG(hw, EECD, *eecd);
        !          4334:     E1000_WRITE_FLUSH(hw);
        !          4335:     usec_delay(hw->eeprom.delay_usec);
        !          4336: }
        !          4337:
        !          4338: /******************************************************************************
        !          4339:  * Lowers the EEPROM's clock input.
        !          4340:  *
        !          4341:  * hw - Struct containing variables accessed by shared code
        !          4342:  * eecd - EECD's current value
        !          4343:  *****************************************************************************/
        !          4344: static void
        !          4345: em_lower_ee_clk(struct em_hw *hw,
        !          4346:                    uint32_t *eecd)
        !          4347: {
        !          4348:     /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
        !          4349:      * wait 50 microseconds.
        !          4350:      */
        !          4351:     *eecd = *eecd & ~E1000_EECD_SK;
        !          4352:     E1000_WRITE_REG(hw, EECD, *eecd);
        !          4353:     E1000_WRITE_FLUSH(hw);
        !          4354:     usec_delay(hw->eeprom.delay_usec);
        !          4355: }
        !          4356:
        !          4357: /******************************************************************************
        !          4358:  * Shift data bits out to the EEPROM.
        !          4359:  *
        !          4360:  * hw - Struct containing variables accessed by shared code
        !          4361:  * data - data to send to the EEPROM
        !          4362:  * count - number of bits to shift out
        !          4363:  *****************************************************************************/
        !          4364: static void
        !          4365: em_shift_out_ee_bits(struct em_hw *hw,
        !          4366:                         uint16_t data,
        !          4367:                         uint16_t count)
        !          4368: {
        !          4369:     struct em_eeprom_info *eeprom = &hw->eeprom;
        !          4370:     uint32_t eecd;
        !          4371:     uint32_t mask;
        !          4372:
        !          4373:     /* We need to shift "count" bits out to the EEPROM. So, value in the
        !          4374:      * "data" parameter will be shifted out to the EEPROM one bit at a time.
        !          4375:      * In order to do this, "data" must be broken down into bits.
        !          4376:      */
        !          4377:     mask = 0x01 << (count - 1);
        !          4378:     eecd = E1000_READ_REG(hw, EECD);
        !          4379:     if (eeprom->type == em_eeprom_microwire) {
        !          4380:         eecd &= ~E1000_EECD_DO;
        !          4381:     } else if (eeprom->type == em_eeprom_spi) {
        !          4382:         eecd |= E1000_EECD_DO;
        !          4383:     }
        !          4384:     do {
        !          4385:         /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
        !          4386:          * and then raising and then lowering the clock (the SK bit controls
        !          4387:          * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
        !          4388:          * by setting "DI" to "0" and then raising and then lowering the clock.
        !          4389:          */
        !          4390:         eecd &= ~E1000_EECD_DI;
        !          4391:
        !          4392:         if (data & mask)
        !          4393:             eecd |= E1000_EECD_DI;
        !          4394:
        !          4395:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4396:         E1000_WRITE_FLUSH(hw);
        !          4397:
        !          4398:         usec_delay(eeprom->delay_usec);
        !          4399:
        !          4400:         em_raise_ee_clk(hw, &eecd);
        !          4401:         em_lower_ee_clk(hw, &eecd);
        !          4402:
        !          4403:         mask = mask >> 1;
        !          4404:
        !          4405:     } while (mask);
        !          4406:
        !          4407:     /* We leave the "DI" bit set to "0" when we leave this routine. */
        !          4408:     eecd &= ~E1000_EECD_DI;
        !          4409:     E1000_WRITE_REG(hw, EECD, eecd);
        !          4410: }
        !          4411:
        !          4412: /******************************************************************************
        !          4413:  * Shift data bits in from the EEPROM
        !          4414:  *
        !          4415:  * hw - Struct containing variables accessed by shared code
        !          4416:  *****************************************************************************/
        !          4417: static uint16_t
        !          4418: em_shift_in_ee_bits(struct em_hw *hw,
        !          4419:                        uint16_t count)
        !          4420: {
        !          4421:     uint32_t eecd;
        !          4422:     uint32_t i;
        !          4423:     uint16_t data;
        !          4424:
        !          4425:     /* In order to read a register from the EEPROM, we need to shift 'count'
        !          4426:      * bits in from the EEPROM. Bits are "shifted in" by raising the clock
        !          4427:      * input to the EEPROM (setting the SK bit), and then reading the value of
        !          4428:      * the "DO" bit.  During this "shifting in" process the "DI" bit should
        !          4429:      * always be clear.
        !          4430:      */
        !          4431:
        !          4432:     eecd = E1000_READ_REG(hw, EECD);
        !          4433:
        !          4434:     eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
        !          4435:     data = 0;
        !          4436:
        !          4437:     for (i = 0; i < count; i++) {
        !          4438:         data = data << 1;
        !          4439:         em_raise_ee_clk(hw, &eecd);
        !          4440:
        !          4441:         eecd = E1000_READ_REG(hw, EECD);
        !          4442:
        !          4443:         eecd &= ~(E1000_EECD_DI);
        !          4444:         if (eecd & E1000_EECD_DO)
        !          4445:             data |= 1;
        !          4446:
        !          4447:         em_lower_ee_clk(hw, &eecd);
        !          4448:     }
        !          4449:
        !          4450:     return data;
        !          4451: }
        !          4452:
        !          4453: /******************************************************************************
        !          4454:  * Prepares EEPROM for access
        !          4455:  *
        !          4456:  * hw - Struct containing variables accessed by shared code
        !          4457:  *
        !          4458:  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
        !          4459:  * function should be called before issuing a command to the EEPROM.
        !          4460:  *****************************************************************************/
        !          4461: static int32_t
        !          4462: em_acquire_eeprom(struct em_hw *hw)
        !          4463: {
        !          4464:     struct em_eeprom_info *eeprom = &hw->eeprom;
        !          4465:     uint32_t eecd, i=0;
        !          4466:
        !          4467:     DEBUGFUNC("em_acquire_eeprom");
        !          4468:
        !          4469:     if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
        !          4470:         return -E1000_ERR_SWFW_SYNC;
        !          4471:     eecd = E1000_READ_REG(hw, EECD);
        !          4472:
        !          4473:     if (hw->mac_type != em_82573) {
        !          4474:         /* Request EEPROM Access */
        !          4475:         if (hw->mac_type > em_82544) {
        !          4476:             eecd |= E1000_EECD_REQ;
        !          4477:             E1000_WRITE_REG(hw, EECD, eecd);
        !          4478:             eecd = E1000_READ_REG(hw, EECD);
        !          4479:             while ((!(eecd & E1000_EECD_GNT)) &&
        !          4480:                   (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
        !          4481:                 i++;
        !          4482:                 usec_delay(5);
        !          4483:                 eecd = E1000_READ_REG(hw, EECD);
        !          4484:             }
        !          4485:             if (!(eecd & E1000_EECD_GNT)) {
        !          4486:                 eecd &= ~E1000_EECD_REQ;
        !          4487:                 E1000_WRITE_REG(hw, EECD, eecd);
        !          4488:                 DEBUGOUT("Could not acquire EEPROM grant\n");
        !          4489:                 em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
        !          4490:                 return -E1000_ERR_EEPROM;
        !          4491:             }
        !          4492:         }
        !          4493:     }
        !          4494:
        !          4495:     /* Setup EEPROM for Read/Write */
        !          4496:
        !          4497:     if (eeprom->type == em_eeprom_microwire) {
        !          4498:         /* Clear SK and DI */
        !          4499:         eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
        !          4500:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4501:
        !          4502:         /* Set CS */
        !          4503:         eecd |= E1000_EECD_CS;
        !          4504:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4505:     } else if (eeprom->type == em_eeprom_spi) {
        !          4506:         /* Clear SK and CS */
        !          4507:         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        !          4508:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4509:         usec_delay(1);
        !          4510:     }
        !          4511:
        !          4512:     return E1000_SUCCESS;
        !          4513: }
        !          4514:
        !          4515: /******************************************************************************
        !          4516:  * Returns EEPROM to a "standby" state
        !          4517:  *
        !          4518:  * hw - Struct containing variables accessed by shared code
        !          4519:  *****************************************************************************/
        !          4520: static void
        !          4521: em_standby_eeprom(struct em_hw *hw)
        !          4522: {
        !          4523:     struct em_eeprom_info *eeprom = &hw->eeprom;
        !          4524:     uint32_t eecd;
        !          4525:
        !          4526:     eecd = E1000_READ_REG(hw, EECD);
        !          4527:
        !          4528:     if (eeprom->type == em_eeprom_microwire) {
        !          4529:         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        !          4530:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4531:         E1000_WRITE_FLUSH(hw);
        !          4532:         usec_delay(eeprom->delay_usec);
        !          4533:
        !          4534:         /* Clock high */
        !          4535:         eecd |= E1000_EECD_SK;
        !          4536:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4537:         E1000_WRITE_FLUSH(hw);
        !          4538:         usec_delay(eeprom->delay_usec);
        !          4539:
        !          4540:         /* Select EEPROM */
        !          4541:         eecd |= E1000_EECD_CS;
        !          4542:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4543:         E1000_WRITE_FLUSH(hw);
        !          4544:         usec_delay(eeprom->delay_usec);
        !          4545:
        !          4546:         /* Clock low */
        !          4547:         eecd &= ~E1000_EECD_SK;
        !          4548:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4549:         E1000_WRITE_FLUSH(hw);
        !          4550:         usec_delay(eeprom->delay_usec);
        !          4551:     } else if (eeprom->type == em_eeprom_spi) {
        !          4552:         /* Toggle CS to flush commands */
        !          4553:         eecd |= E1000_EECD_CS;
        !          4554:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4555:         E1000_WRITE_FLUSH(hw);
        !          4556:         usec_delay(eeprom->delay_usec);
        !          4557:         eecd &= ~E1000_EECD_CS;
        !          4558:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4559:         E1000_WRITE_FLUSH(hw);
        !          4560:         usec_delay(eeprom->delay_usec);
        !          4561:     }
        !          4562: }
        !          4563:
        !          4564: /******************************************************************************
        !          4565:  * Terminates a command by inverting the EEPROM's chip select pin
        !          4566:  *
        !          4567:  * hw - Struct containing variables accessed by shared code
        !          4568:  *****************************************************************************/
        !          4569: static void
        !          4570: em_release_eeprom(struct em_hw *hw)
        !          4571: {
        !          4572:     uint32_t eecd;
        !          4573:
        !          4574:     DEBUGFUNC("em_release_eeprom");
        !          4575:
        !          4576:     eecd = E1000_READ_REG(hw, EECD);
        !          4577:
        !          4578:     if (hw->eeprom.type == em_eeprom_spi) {
        !          4579:         eecd |= E1000_EECD_CS;  /* Pull CS high */
        !          4580:         eecd &= ~E1000_EECD_SK; /* Lower SCK */
        !          4581:
        !          4582:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4583:
        !          4584:         usec_delay(hw->eeprom.delay_usec);
        !          4585:     } else if (hw->eeprom.type == em_eeprom_microwire) {
        !          4586:         /* cleanup eeprom */
        !          4587:
        !          4588:         /* CS on Microwire is active-high */
        !          4589:         eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
        !          4590:
        !          4591:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4592:
        !          4593:         /* Rising edge of clock */
        !          4594:         eecd |= E1000_EECD_SK;
        !          4595:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4596:         E1000_WRITE_FLUSH(hw);
        !          4597:         usec_delay(hw->eeprom.delay_usec);
        !          4598:
        !          4599:         /* Falling edge of clock */
        !          4600:         eecd &= ~E1000_EECD_SK;
        !          4601:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4602:         E1000_WRITE_FLUSH(hw);
        !          4603:         usec_delay(hw->eeprom.delay_usec);
        !          4604:     }
        !          4605:
        !          4606:     /* Stop requesting EEPROM access */
        !          4607:     if (hw->mac_type > em_82544) {
        !          4608:         eecd &= ~E1000_EECD_REQ;
        !          4609:         E1000_WRITE_REG(hw, EECD, eecd);
        !          4610:     }
        !          4611:
        !          4612:     em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
        !          4613: }
        !          4614:
        !          4615: /******************************************************************************
        !          4616:  * Reads a 16 bit word from the EEPROM.
        !          4617:  *
        !          4618:  * hw - Struct containing variables accessed by shared code
        !          4619:  *****************************************************************************/
        !          4620: STATIC int32_t
        !          4621: em_spi_eeprom_ready(struct em_hw *hw)
        !          4622: {
        !          4623:     uint16_t retry_count = 0;
        !          4624:     uint8_t spi_stat_reg;
        !          4625:
        !          4626:     DEBUGFUNC("em_spi_eeprom_ready");
        !          4627:
        !          4628:     /* Read "Status Register" repeatedly until the LSB is cleared.  The
        !          4629:      * EEPROM will signal that the command has been completed by clearing
        !          4630:      * bit 0 of the internal status register.  If it's not cleared within
        !          4631:      * 5 milliseconds, then error out.
        !          4632:      */
        !          4633:     retry_count = 0;
        !          4634:     do {
        !          4635:         em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
        !          4636:                                 hw->eeprom.opcode_bits);
        !          4637:         spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8);
        !          4638:         if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
        !          4639:             break;
        !          4640:
        !          4641:         usec_delay(5);
        !          4642:         retry_count += 5;
        !          4643:
        !          4644:         em_standby_eeprom(hw);
        !          4645:     } while (retry_count < EEPROM_MAX_RETRY_SPI);
        !          4646:
        !          4647:     /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
        !          4648:      * only 0-5mSec on 5V devices)
        !          4649:      */
        !          4650:     if (retry_count >= EEPROM_MAX_RETRY_SPI) {
        !          4651:         DEBUGOUT("SPI EEPROM Status error\n");
        !          4652:         return -E1000_ERR_EEPROM;
        !          4653:     }
        !          4654:
        !          4655:     return E1000_SUCCESS;
        !          4656: }
        !          4657:
        !          4658: /******************************************************************************
        !          4659:  * Reads a 16 bit word from the EEPROM.
        !          4660:  *
        !          4661:  * hw - Struct containing variables accessed by shared code
        !          4662:  * offset - offset of  word in the EEPROM to read
        !          4663:  * data - word read from the EEPROM
        !          4664:  * words - number of words to read
        !          4665:  *****************************************************************************/
        !          4666: int32_t
        !          4667: em_read_eeprom(struct em_hw *hw,
        !          4668:                   uint16_t offset,
        !          4669:                   uint16_t words,
        !          4670:                   uint16_t *data)
        !          4671: {
        !          4672:     struct em_eeprom_info *eeprom = &hw->eeprom;
        !          4673:     uint32_t i = 0;
        !          4674:
        !          4675:     DEBUGFUNC("em_read_eeprom");
        !          4676:
        !          4677:     /* If eeprom is not yet detected, do so now */
        !          4678:     if (eeprom->word_size == 0)
        !          4679:         em_init_eeprom_params(hw);
        !          4680:
        !          4681:     /* A check for invalid values:  offset too large, too many words, and not
        !          4682:      * enough words.
        !          4683:      */
        !          4684:     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
        !          4685:        (words == 0)) {
        !          4686:         DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
        !          4687:         return -E1000_ERR_EEPROM;
        !          4688:     }
        !          4689:
        !          4690:     /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
        !          4691:      * directly. In this case, we need to acquire the EEPROM so that
        !          4692:      * FW or other port software does not interrupt.
        !          4693:      */
        !          4694:     if (em_is_onboard_nvm_eeprom(hw) == TRUE &&
        !          4695:         hw->eeprom.use_eerd == FALSE) {
        !          4696:         /* Prepare the EEPROM for bit-bang reading */
        !          4697:         if (em_acquire_eeprom(hw) != E1000_SUCCESS)
        !          4698:             return -E1000_ERR_EEPROM;
        !          4699:     }
        !          4700:
        !          4701:     /* Eerd register EEPROM access requires no eeprom aquire/release */
        !          4702:     if (eeprom->use_eerd == TRUE)
        !          4703:         return em_read_eeprom_eerd(hw, offset, words, data);
        !          4704:
        !          4705:     /* ICH EEPROM access is done via the ICH flash controller */
        !          4706:     if (eeprom->type == em_eeprom_ich8)
        !          4707:         return em_read_eeprom_ich8(hw, offset, words, data);
        !          4708:
        !          4709:     /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
        !          4710:      * acquired the EEPROM at this point, so any returns should relase it */
        !          4711:     if (eeprom->type == em_eeprom_spi) {
        !          4712:         uint16_t word_in;
        !          4713:         uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
        !          4714:
        !          4715:         if (em_spi_eeprom_ready(hw)) {
        !          4716:             em_release_eeprom(hw);
        !          4717:             return -E1000_ERR_EEPROM;
        !          4718:         }
        !          4719:
        !          4720:         em_standby_eeprom(hw);
        !          4721:
        !          4722:         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
        !          4723:         if ((eeprom->address_bits == 8) && (offset >= 128))
        !          4724:             read_opcode |= EEPROM_A8_OPCODE_SPI;
        !          4725:
        !          4726:         /* Send the READ command (opcode + addr)  */
        !          4727:         em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
        !          4728:         em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
        !          4729:
        !          4730:         /* Read the data.  The address of the eeprom internally increments with
        !          4731:          * each byte (spi) being read, saving on the overhead of eeprom setup
        !          4732:          * and tear-down.  The address counter will roll over if reading beyond
        !          4733:          * the size of the eeprom, thus allowing the entire memory to be read
        !          4734:          * starting from any offset. */
        !          4735:         for (i = 0; i < words; i++) {
        !          4736:             word_in = em_shift_in_ee_bits(hw, 16);
        !          4737:             data[i] = (word_in >> 8) | (word_in << 8);
        !          4738:         }
        !          4739:     } else if (eeprom->type == em_eeprom_microwire) {
        !          4740:         for (i = 0; i < words; i++) {
        !          4741:             /* Send the READ command (opcode + addr)  */
        !          4742:             em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
        !          4743:                                     eeprom->opcode_bits);
        !          4744:             em_shift_out_ee_bits(hw, (uint16_t)(offset + i),
        !          4745:                                     eeprom->address_bits);
        !          4746:
        !          4747:             /* Read the data.  For microwire, each word requires the overhead
        !          4748:              * of eeprom setup and tear-down. */
        !          4749:             data[i] = em_shift_in_ee_bits(hw, 16);
        !          4750:             em_standby_eeprom(hw);
        !          4751:         }
        !          4752:     }
        !          4753:
        !          4754:     /* End this read operation */
        !          4755:     em_release_eeprom(hw);
        !          4756:
        !          4757:     return E1000_SUCCESS;
        !          4758: }
        !          4759:
        !          4760: /******************************************************************************
        !          4761:  * Reads a 16 bit word from the EEPROM using the EERD register.
        !          4762:  *
        !          4763:  * hw - Struct containing variables accessed by shared code
        !          4764:  * offset - offset of  word in the EEPROM to read
        !          4765:  * data - word read from the EEPROM
        !          4766:  * words - number of words to read
        !          4767:  *****************************************************************************/
        !          4768: STATIC int32_t
        !          4769: em_read_eeprom_eerd(struct em_hw *hw,
        !          4770:                   uint16_t offset,
        !          4771:                   uint16_t words,
        !          4772:                   uint16_t *data)
        !          4773: {
        !          4774:     uint32_t i, eerd = 0;
        !          4775:     int32_t error = 0;
        !          4776:
        !          4777:     for (i = 0; i < words; i++) {
        !          4778:         eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
        !          4779:                          E1000_EEPROM_RW_REG_START;
        !          4780:
        !          4781:         E1000_WRITE_REG(hw, EERD, eerd);
        !          4782:         error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
        !          4783:
        !          4784:         if (error) {
        !          4785:             break;
        !          4786:         }
        !          4787:         data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
        !          4788:
        !          4789:     }
        !          4790:
        !          4791:     return error;
        !          4792: }
        !          4793:
        !          4794: /******************************************************************************
        !          4795:  * Writes a 16 bit word from the EEPROM using the EEWR register.
        !          4796:  *
        !          4797:  * hw - Struct containing variables accessed by shared code
        !          4798:  * offset - offset of  word in the EEPROM to read
        !          4799:  * data - word read from the EEPROM
        !          4800:  * words - number of words to read
        !          4801:  *****************************************************************************/
        !          4802: STATIC int32_t
        !          4803: em_write_eeprom_eewr(struct em_hw *hw,
        !          4804:                    uint16_t offset,
        !          4805:                    uint16_t words,
        !          4806:                    uint16_t *data)
        !          4807: {
        !          4808:     uint32_t    register_value = 0;
        !          4809:     uint32_t    i              = 0;
        !          4810:     int32_t     error          = 0;
        !          4811:
        !          4812:     if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
        !          4813:         return -E1000_ERR_SWFW_SYNC;
        !          4814:
        !          4815:     for (i = 0; i < words; i++) {
        !          4816:         register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
        !          4817:                          ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
        !          4818:                          E1000_EEPROM_RW_REG_START;
        !          4819:
        !          4820:         error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
        !          4821:         if (error) {
        !          4822:             break;
        !          4823:         }
        !          4824:
        !          4825:         E1000_WRITE_REG(hw, EEWR, register_value);
        !          4826:
        !          4827:         error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
        !          4828:
        !          4829:         if (error) {
        !          4830:             break;
        !          4831:         }
        !          4832:     }
        !          4833:
        !          4834:     em_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
        !          4835:     return error;
        !          4836: }
        !          4837:
        !          4838: /******************************************************************************
        !          4839:  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
        !          4840:  *
        !          4841:  * hw - Struct containing variables accessed by shared code
        !          4842:  *****************************************************************************/
        !          4843: STATIC int32_t
        !          4844: em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
        !          4845: {
        !          4846:     uint32_t attempts = 100000;
        !          4847:     uint32_t i, reg = 0;
        !          4848:     int32_t done = E1000_ERR_EEPROM;
        !          4849:
        !          4850:     for (i = 0; i < attempts; i++) {
        !          4851:         if (eerd == E1000_EEPROM_POLL_READ)
        !          4852:             reg = E1000_READ_REG(hw, EERD);
        !          4853:         else
        !          4854:             reg = E1000_READ_REG(hw, EEWR);
        !          4855:
        !          4856:         if (reg & E1000_EEPROM_RW_REG_DONE) {
        !          4857:             done = E1000_SUCCESS;
        !          4858:             break;
        !          4859:         }
        !          4860:         usec_delay(5);
        !          4861:     }
        !          4862:
        !          4863:     return done;
        !          4864: }
        !          4865:
        !          4866: /***************************************************************************
        !          4867: * Description:     Determines if the onboard NVM is FLASH or EEPROM.
        !          4868: *
        !          4869: * hw - Struct containing variables accessed by shared code
        !          4870: ****************************************************************************/
        !          4871: STATIC boolean_t
        !          4872: em_is_onboard_nvm_eeprom(struct em_hw *hw)
        !          4873: {
        !          4874:     uint32_t eecd = 0;
        !          4875:
        !          4876:     DEBUGFUNC("em_is_onboard_nvm_eeprom");
        !          4877:
        !          4878:     if (hw->mac_type == em_ich8lan)
        !          4879:         return FALSE;
        !          4880:
        !          4881:     if (hw->mac_type == em_82573) {
        !          4882:         eecd = E1000_READ_REG(hw, EECD);
        !          4883:
        !          4884:         /* Isolate bits 15 & 16 */
        !          4885:         eecd = ((eecd >> 15) & 0x03);
        !          4886:
        !          4887:         /* If both bits are set, device is Flash type */
        !          4888:         if (eecd == 0x03) {
        !          4889:             return FALSE;
        !          4890:         }
        !          4891:     }
        !          4892:     return TRUE;
        !          4893: }
        !          4894:
        !          4895: /******************************************************************************
        !          4896:  * Verifies that the EEPROM has a valid checksum
        !          4897:  *
        !          4898:  * hw - Struct containing variables accessed by shared code
        !          4899:  *
        !          4900:  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
        !          4901:  * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
        !          4902:  * valid.
        !          4903:  *****************************************************************************/
        !          4904: int32_t
        !          4905: em_validate_eeprom_checksum(struct em_hw *hw)
        !          4906: {
        !          4907:     uint16_t checksum = 0;
        !          4908:     uint16_t i, eeprom_data;
        !          4909:
        !          4910:     DEBUGFUNC("em_validate_eeprom_checksum");
        !          4911:
        !          4912:     if ((hw->mac_type == em_82573) &&
        !          4913:         (em_is_onboard_nvm_eeprom(hw) == FALSE)) {
        !          4914:         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
        !          4915:          * 10h-12h.  Checksum may need to be fixed. */
        !          4916:         em_read_eeprom(hw, 0x10, 1, &eeprom_data);
        !          4917:         if ((eeprom_data & 0x10) == 0) {
        !          4918:             /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
        !          4919:              * has already been fixed.  If the checksum is still wrong and this
        !          4920:              * bit is a 1, we need to return bad checksum.  Otherwise, we need
        !          4921:              * to set this bit to a 1 and update the checksum. */
        !          4922:             em_read_eeprom(hw, 0x23, 1, &eeprom_data);
        !          4923:             if ((eeprom_data & 0x8000) == 0) {
        !          4924:                 eeprom_data |= 0x8000;
        !          4925:                 em_write_eeprom(hw, 0x23, 1, &eeprom_data);
        !          4926:                 em_update_eeprom_checksum(hw);
        !          4927:             }
        !          4928:         }
        !          4929:     }
        !          4930:
        !          4931:     if (hw->mac_type == em_ich8lan) {
        !          4932:         /* Drivers must allocate the shadow ram structure for the
        !          4933:          * EEPROM checksum to be updated.  Otherwise, this bit as well
        !          4934:          * as the checksum must both be set correctly for this
        !          4935:          * validation to pass.
        !          4936:          */
        !          4937:         em_read_eeprom(hw, 0x19, 1, &eeprom_data);
        !          4938:         if ((eeprom_data & 0x40) == 0) {
        !          4939:             eeprom_data |= 0x40;
        !          4940:             em_write_eeprom(hw, 0x19, 1, &eeprom_data);
        !          4941:             em_update_eeprom_checksum(hw);
        !          4942:         }
        !          4943:     }
        !          4944:
        !          4945:     for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
        !          4946:         if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
        !          4947:             DEBUGOUT("EEPROM Read Error\n");
        !          4948:             return -E1000_ERR_EEPROM;
        !          4949:         }
        !          4950:         checksum += eeprom_data;
        !          4951:     }
        !          4952:
        !          4953:     if (checksum == (uint16_t) EEPROM_SUM)
        !          4954:         return E1000_SUCCESS;
        !          4955:     else {
        !          4956:         DEBUGOUT("EEPROM Checksum Invalid\n");
        !          4957:         return -E1000_ERR_EEPROM;
        !          4958:     }
        !          4959: }
        !          4960:
        !          4961: /******************************************************************************
        !          4962:  * Calculates the EEPROM checksum and writes it to the EEPROM
        !          4963:  *
        !          4964:  * hw - Struct containing variables accessed by shared code
        !          4965:  *
        !          4966:  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
        !          4967:  * Writes the difference to word offset 63 of the EEPROM.
        !          4968:  *****************************************************************************/
        !          4969: int32_t
        !          4970: em_update_eeprom_checksum(struct em_hw *hw)
        !          4971: {
        !          4972:     uint32_t ctrl_ext;
        !          4973:     uint16_t checksum = 0;
        !          4974:     uint16_t i, eeprom_data;
        !          4975:
        !          4976:     DEBUGFUNC("em_update_eeprom_checksum");
        !          4977:
        !          4978:     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
        !          4979:         if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
        !          4980:             DEBUGOUT("EEPROM Read Error\n");
        !          4981:             return -E1000_ERR_EEPROM;
        !          4982:         }
        !          4983:         checksum += eeprom_data;
        !          4984:     }
        !          4985:     checksum = (uint16_t) EEPROM_SUM - checksum;
        !          4986:     if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
        !          4987:         DEBUGOUT("EEPROM Write Error\n");
        !          4988:         return -E1000_ERR_EEPROM;
        !          4989:     } else if (hw->eeprom.type == em_eeprom_flash) {
        !          4990:         em_commit_shadow_ram(hw);
        !          4991:     } else if (hw->eeprom.type == em_eeprom_ich8) {
        !          4992:         em_commit_shadow_ram(hw);
        !          4993:         /* Reload the EEPROM, or else modifications will not appear
        !          4994:          * until after next adapter reset. */
        !          4995:         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        !          4996:         ctrl_ext |= E1000_CTRL_EXT_EE_RST;
        !          4997:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        !          4998:         msec_delay(10);
        !          4999:     }
        !          5000:     return E1000_SUCCESS;
        !          5001: }
        !          5002:
        !          5003: /******************************************************************************
        !          5004:  * Parent function for writing words to the different EEPROM types.
        !          5005:  *
        !          5006:  * hw - Struct containing variables accessed by shared code
        !          5007:  * offset - offset within the EEPROM to be written to
        !          5008:  * words - number of words to write
        !          5009:  * data - 16 bit word to be written to the EEPROM
        !          5010:  *
        !          5011:  * If em_update_eeprom_checksum is not called after this function, the
        !          5012:  * EEPROM will most likely contain an invalid checksum.
        !          5013:  *****************************************************************************/
        !          5014: int32_t
        !          5015: em_write_eeprom(struct em_hw *hw,
        !          5016:                    uint16_t offset,
        !          5017:                    uint16_t words,
        !          5018:                    uint16_t *data)
        !          5019: {
        !          5020:     struct em_eeprom_info *eeprom = &hw->eeprom;
        !          5021:     int32_t status = 0;
        !          5022:
        !          5023:     DEBUGFUNC("em_write_eeprom");
        !          5024:
        !          5025:     /* If eeprom is not yet detected, do so now */
        !          5026:     if (eeprom->word_size == 0)
        !          5027:         em_init_eeprom_params(hw);
        !          5028:
        !          5029:     /* A check for invalid values:  offset too large, too many words, and not
        !          5030:      * enough words.
        !          5031:      */
        !          5032:     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
        !          5033:        (words == 0)) {
        !          5034:         DEBUGOUT("\"words\" parameter out of bounds\n");
        !          5035:         return -E1000_ERR_EEPROM;
        !          5036:     }
        !          5037:
        !          5038:     /* 82573 writes only through eewr */
        !          5039:     if (eeprom->use_eewr == TRUE)
        !          5040:         return em_write_eeprom_eewr(hw, offset, words, data);
        !          5041:
        !          5042:     if (eeprom->type == em_eeprom_ich8)
        !          5043:         return em_write_eeprom_ich8(hw, offset, words, data);
        !          5044:
        !          5045:     /* Prepare the EEPROM for writing  */
        !          5046:     if (em_acquire_eeprom(hw) != E1000_SUCCESS)
        !          5047:         return -E1000_ERR_EEPROM;
        !          5048:
        !          5049:     if (eeprom->type == em_eeprom_microwire) {
        !          5050:         status = em_write_eeprom_microwire(hw, offset, words, data);
        !          5051:     } else {
        !          5052:         status = em_write_eeprom_spi(hw, offset, words, data);
        !          5053:         msec_delay(10);
        !          5054:     }
        !          5055:
        !          5056:     /* Done with writing */
        !          5057:     em_release_eeprom(hw);
        !          5058:
        !          5059:     return status;
        !          5060: }
        !          5061:
        !          5062: /******************************************************************************
        !          5063:  * Writes a 16 bit word to a given offset in an SPI EEPROM.
        !          5064:  *
        !          5065:  * hw - Struct containing variables accessed by shared code
        !          5066:  * offset - offset within the EEPROM to be written to
        !          5067:  * words - number of words to write
        !          5068:  * data - pointer to array of 8 bit words to be written to the EEPROM
        !          5069:  *
        !          5070:  *****************************************************************************/
        !          5071: STATIC int32_t
        !          5072: em_write_eeprom_spi(struct em_hw *hw,
        !          5073:                        uint16_t offset,
        !          5074:                        uint16_t words,
        !          5075:                        uint16_t *data)
        !          5076: {
        !          5077:     struct em_eeprom_info *eeprom = &hw->eeprom;
        !          5078:     uint16_t widx = 0;
        !          5079:
        !          5080:     DEBUGFUNC("em_write_eeprom_spi");
        !          5081:
        !          5082:     while (widx < words) {
        !          5083:         uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
        !          5084:
        !          5085:         if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
        !          5086:
        !          5087:         em_standby_eeprom(hw);
        !          5088:
        !          5089:         /*  Send the WRITE ENABLE command (8 bit opcode )  */
        !          5090:         em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
        !          5091:                                     eeprom->opcode_bits);
        !          5092:
        !          5093:         em_standby_eeprom(hw);
        !          5094:
        !          5095:         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
        !          5096:         if ((eeprom->address_bits == 8) && (offset >= 128))
        !          5097:             write_opcode |= EEPROM_A8_OPCODE_SPI;
        !          5098:
        !          5099:         /* Send the Write command (8-bit opcode + addr) */
        !          5100:         em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
        !          5101:
        !          5102:         em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
        !          5103:                                 eeprom->address_bits);
        !          5104:
        !          5105:         /* Send the data */
        !          5106:
        !          5107:         /* Loop to allow for up to whole page write (32 bytes) of eeprom */
        !          5108:         while (widx < words) {
        !          5109:             uint16_t word_out = data[widx];
        !          5110:             word_out = (word_out >> 8) | (word_out << 8);
        !          5111:             em_shift_out_ee_bits(hw, word_out, 16);
        !          5112:             widx++;
        !          5113:
        !          5114:             /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
        !          5115:              * operation, while the smaller eeproms are capable of an 8-byte
        !          5116:              * PAGE WRITE operation.  Break the inner loop to pass new address
        !          5117:              */
        !          5118:             if ((((offset + widx)*2) % eeprom->page_size) == 0) {
        !          5119:                 em_standby_eeprom(hw);
        !          5120:                 break;
        !          5121:             }
        !          5122:         }
        !          5123:     }
        !          5124:
        !          5125:     return E1000_SUCCESS;
        !          5126: }
        !          5127:
        !          5128: /******************************************************************************
        !          5129:  * Writes a 16 bit word to a given offset in a Microwire EEPROM.
        !          5130:  *
        !          5131:  * hw - Struct containing variables accessed by shared code
        !          5132:  * offset - offset within the EEPROM to be written to
        !          5133:  * words - number of words to write
        !          5134:  * data - pointer to array of 16 bit words to be written to the EEPROM
        !          5135:  *
        !          5136:  *****************************************************************************/
        !          5137: STATIC int32_t
        !          5138: em_write_eeprom_microwire(struct em_hw *hw,
        !          5139:                              uint16_t offset,
        !          5140:                              uint16_t words,
        !          5141:                              uint16_t *data)
        !          5142: {
        !          5143:     struct em_eeprom_info *eeprom = &hw->eeprom;
        !          5144:     uint32_t eecd;
        !          5145:     uint16_t words_written = 0;
        !          5146:     uint16_t i = 0;
        !          5147:
        !          5148:     DEBUGFUNC("em_write_eeprom_microwire");
        !          5149:
        !          5150:     /* Send the write enable command to the EEPROM (3-bit opcode plus
        !          5151:      * 6/8-bit dummy address beginning with 11).  It's less work to include
        !          5152:      * the 11 of the dummy address as part of the opcode than it is to shift
        !          5153:      * it over the correct number of bits for the address.  This puts the
        !          5154:      * EEPROM into write/erase mode.
        !          5155:      */
        !          5156:     em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
        !          5157:                             (uint16_t)(eeprom->opcode_bits + 2));
        !          5158:
        !          5159:     em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
        !          5160:
        !          5161:     /* Prepare the EEPROM */
        !          5162:     em_standby_eeprom(hw);
        !          5163:
        !          5164:     while (words_written < words) {
        !          5165:         /* Send the Write command (3-bit opcode + addr) */
        !          5166:         em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
        !          5167:                                 eeprom->opcode_bits);
        !          5168:
        !          5169:         em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
        !          5170:                                 eeprom->address_bits);
        !          5171:
        !          5172:         /* Send the data */
        !          5173:         em_shift_out_ee_bits(hw, data[words_written], 16);
        !          5174:
        !          5175:         /* Toggle the CS line.  This in effect tells the EEPROM to execute
        !          5176:          * the previous command.
        !          5177:          */
        !          5178:         em_standby_eeprom(hw);
        !          5179:
        !          5180:         /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
        !          5181:          * signal that the command has been completed by raising the DO signal.
        !          5182:          * If DO does not go high in 10 milliseconds, then error out.
        !          5183:          */
        !          5184:         for (i = 0; i < 200; i++) {
        !          5185:             eecd = E1000_READ_REG(hw, EECD);
        !          5186:             if (eecd & E1000_EECD_DO) break;
        !          5187:             usec_delay(50);
        !          5188:         }
        !          5189:         if (i == 200) {
        !          5190:             DEBUGOUT("EEPROM Write did not complete\n");
        !          5191:             return -E1000_ERR_EEPROM;
        !          5192:         }
        !          5193:
        !          5194:         /* Recover from write */
        !          5195:         em_standby_eeprom(hw);
        !          5196:
        !          5197:         words_written++;
        !          5198:     }
        !          5199:
        !          5200:     /* Send the write disable command to the EEPROM (3-bit opcode plus
        !          5201:      * 6/8-bit dummy address beginning with 10).  It's less work to include
        !          5202:      * the 10 of the dummy address as part of the opcode than it is to shift
        !          5203:      * it over the correct number of bits for the address.  This takes the
        !          5204:      * EEPROM out of write/erase mode.
        !          5205:      */
        !          5206:     em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
        !          5207:                             (uint16_t)(eeprom->opcode_bits + 2));
        !          5208:
        !          5209:     em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
        !          5210:
        !          5211:     return E1000_SUCCESS;
        !          5212: }
        !          5213:
        !          5214: /******************************************************************************
        !          5215:  * Flushes the cached eeprom to NVM. This is done by saving the modified values
        !          5216:  * in the eeprom cache and the non modified values in the currently active bank
        !          5217:  * to the new bank.
        !          5218:  *
        !          5219:  * hw - Struct containing variables accessed by shared code
        !          5220:  * offset - offset of  word in the EEPROM to read
        !          5221:  * data - word read from the EEPROM
        !          5222:  * words - number of words to read
        !          5223:  *****************************************************************************/
        !          5224: STATIC int32_t
        !          5225: em_commit_shadow_ram(struct em_hw *hw)
        !          5226: {
        !          5227:     uint32_t attempts = 100000;
        !          5228:     uint32_t eecd = 0;
        !          5229:     uint32_t flop = 0;
        !          5230:     uint32_t i = 0;
        !          5231:     int32_t error = E1000_SUCCESS;
        !          5232:     uint32_t old_bank_offset = 0;
        !          5233:     uint32_t new_bank_offset = 0;
        !          5234:     uint8_t low_byte = 0;
        !          5235:     uint8_t high_byte = 0;
        !          5236:     boolean_t sector_write_failed = FALSE;
        !          5237:
        !          5238:     if (hw->mac_type == em_82573) {
        !          5239:         /* The flop register will be used to determine if flash type is STM */
        !          5240:         flop = E1000_READ_REG(hw, FLOP);
        !          5241:         for (i=0; i < attempts; i++) {
        !          5242:             eecd = E1000_READ_REG(hw, EECD);
        !          5243:             if ((eecd & E1000_EECD_FLUPD) == 0) {
        !          5244:                 break;
        !          5245:             }
        !          5246:             usec_delay(5);
        !          5247:         }
        !          5248:
        !          5249:         if (i == attempts) {
        !          5250:             return -E1000_ERR_EEPROM;
        !          5251:         }
        !          5252:
        !          5253:         /* If STM opcode located in bits 15:8 of flop, reset firmware */
        !          5254:         if ((flop & 0xFF00) == E1000_STM_OPCODE) {
        !          5255:             E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
        !          5256:         }
        !          5257:
        !          5258:         /* Perform the flash update */
        !          5259:         E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
        !          5260:
        !          5261:         for (i=0; i < attempts; i++) {
        !          5262:             eecd = E1000_READ_REG(hw, EECD);
        !          5263:             if ((eecd & E1000_EECD_FLUPD) == 0) {
        !          5264:                 break;
        !          5265:             }
        !          5266:             usec_delay(5);
        !          5267:         }
        !          5268:
        !          5269:         if (i == attempts) {
        !          5270:             return -E1000_ERR_EEPROM;
        !          5271:         }
        !          5272:     }
        !          5273:
        !          5274:     if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) {
        !          5275:         /* We're writing to the opposite bank so if we're on bank 1,
        !          5276:          * write to bank 0 etc.  We also need to erase the segment that
        !          5277:          * is going to be written */
        !          5278:         if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
        !          5279:             new_bank_offset = hw->flash_bank_size * 2;
        !          5280:             old_bank_offset = 0;
        !          5281:             em_erase_ich8_4k_segment(hw, 1);
        !          5282:         } else {
        !          5283:             old_bank_offset = hw->flash_bank_size * 2;
        !          5284:             new_bank_offset = 0;
        !          5285:             em_erase_ich8_4k_segment(hw, 0);
        !          5286:         }
        !          5287:
        !          5288:         sector_write_failed = FALSE;
        !          5289:         /* Loop for every byte in the shadow RAM,
        !          5290:          * which is in units of words. */
        !          5291:         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
        !          5292:             /* Determine whether to write the value stored
        !          5293:              * in the other NVM bank or a modified value stored
        !          5294:              * in the shadow RAM */
        !          5295:             if (hw->eeprom_shadow_ram[i].modified == TRUE) {
        !          5296:                 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
        !          5297:                 usec_delay(100);
        !          5298:                 error = em_verify_write_ich8_byte(hw,
        !          5299:                             (i << 1) + new_bank_offset, low_byte);
        !          5300:
        !          5301:                 if (error != E1000_SUCCESS)
        !          5302:                     sector_write_failed = TRUE;
        !          5303:                 else {
        !          5304:                     high_byte =
        !          5305:                         (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
        !          5306:                     usec_delay(100);
        !          5307:                 }
        !          5308:             } else {
        !          5309:                 em_read_ich8_byte(hw, (i << 1) + old_bank_offset,
        !          5310:                                      &low_byte);
        !          5311:                 usec_delay(100);
        !          5312:                 error = em_verify_write_ich8_byte(hw,
        !          5313:                             (i << 1) + new_bank_offset, low_byte);
        !          5314:
        !          5315:                 if (error != E1000_SUCCESS)
        !          5316:                     sector_write_failed = TRUE;
        !          5317:                 else {
        !          5318:                     em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
        !          5319:                                          &high_byte);
        !          5320:                     usec_delay(100);
        !          5321:                 }
        !          5322:             }
        !          5323:
        !          5324:             /* If the write of the low byte was successful, go ahread and
        !          5325:              * write the high byte while checking to make sure that if it
        !          5326:              * is the signature byte, then it is handled properly */
        !          5327:             if (sector_write_failed == FALSE) {
        !          5328:                 /* If the word is 0x13, then make sure the signature bits
        !          5329:                  * (15:14) are 11b until the commit has completed.
        !          5330:                  * This will allow us to write 10b which indicates the
        !          5331:                  * signature is valid.  We want to do this after the write
        !          5332:                  * has completed so that we don't mark the segment valid
        !          5333:                  * while the write is still in progress */
        !          5334:                 if (i == E1000_ICH_NVM_SIG_WORD)
        !          5335:                     high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
        !          5336:
        !          5337:                 error = em_verify_write_ich8_byte(hw,
        !          5338:                             (i << 1) + new_bank_offset + 1, high_byte);
        !          5339:                 if (error != E1000_SUCCESS)
        !          5340:                     sector_write_failed = TRUE;
        !          5341:
        !          5342:             } else {
        !          5343:                 /* If the write failed then break from the loop and
        !          5344:                  * return an error */
        !          5345:                 break;
        !          5346:             }
        !          5347:         }
        !          5348:
        !          5349:         /* Don't bother writing the segment valid bits if sector
        !          5350:          * programming failed. */
        !          5351:         if (sector_write_failed == FALSE) {
        !          5352:             /* Finally validate the new segment by setting bit 15:14
        !          5353:              * to 10b in word 0x13 , this can be done without an
        !          5354:              * erase as well since these bits are 11 to start with
        !          5355:              * and we need to change bit 14 to 0b */
        !          5356:             em_read_ich8_byte(hw,
        !          5357:                                  E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
        !          5358:                                  &high_byte);
        !          5359:             high_byte &= 0xBF;
        !          5360:             error = em_verify_write_ich8_byte(hw,
        !          5361:                         E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
        !          5362:             /* And invalidate the previously valid segment by setting
        !          5363:              * its signature word (0x13) high_byte to 0b. This can be
        !          5364:              * done without an erase because flash erase sets all bits
        !          5365:              * to 1's. We can write 1's to 0's without an erase */
        !          5366:             if (error == E1000_SUCCESS) {
        !          5367:                 error = em_verify_write_ich8_byte(hw,
        !          5368:                             E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
        !          5369:             }
        !          5370:
        !          5371:             /* Clear the now not used entry in the cache */
        !          5372:             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
        !          5373:                 hw->eeprom_shadow_ram[i].modified = FALSE;
        !          5374:                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
        !          5375:             }
        !          5376:         }
        !          5377:     }
        !          5378:
        !          5379:     return error;
        !          5380: }
        !          5381:
        !          5382: /******************************************************************************
        !          5383:  * Reads the adapter's part number from the EEPROM
        !          5384:  *
        !          5385:  * hw - Struct containing variables accessed by shared code
        !          5386:  * part_num - Adapter's part number
        !          5387:  *****************************************************************************/
        !          5388: int32_t
        !          5389: em_read_part_num(struct em_hw *hw,
        !          5390:                     uint32_t *part_num)
        !          5391: {
        !          5392:     uint16_t offset = EEPROM_PBA_BYTE_1;
        !          5393:     uint16_t eeprom_data;
        !          5394:
        !          5395:     DEBUGFUNC("em_read_part_num");
        !          5396:
        !          5397:     /* Get word 0 from EEPROM */
        !          5398:     if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
        !          5399:         DEBUGOUT("EEPROM Read Error\n");
        !          5400:         return -E1000_ERR_EEPROM;
        !          5401:     }
        !          5402:     /* Save word 0 in upper half of part_num */
        !          5403:     *part_num = (uint32_t) (eeprom_data << 16);
        !          5404:
        !          5405:     /* Get word 1 from EEPROM */
        !          5406:     if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
        !          5407:         DEBUGOUT("EEPROM Read Error\n");
        !          5408:         return -E1000_ERR_EEPROM;
        !          5409:     }
        !          5410:     /* Save word 1 in lower half of part_num */
        !          5411:     *part_num |= eeprom_data;
        !          5412:
        !          5413:     return E1000_SUCCESS;
        !          5414: }
        !          5415:
        !          5416: /******************************************************************************
        !          5417:  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
        !          5418:  * second function of dual function devices
        !          5419:  *
        !          5420:  * hw - Struct containing variables accessed by shared code
        !          5421:  *****************************************************************************/
        !          5422: int32_t
        !          5423: em_read_mac_addr(struct em_hw * hw)
        !          5424: {
        !          5425:     uint16_t offset;
        !          5426:     uint16_t eeprom_data, i;
        !          5427:
        !          5428:     DEBUGFUNC("em_read_mac_addr");
        !          5429:
        !          5430:     for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
        !          5431:         offset = i >> 1;
        !          5432:         if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
        !          5433:             DEBUGOUT("EEPROM Read Error\n");
        !          5434:             return -E1000_ERR_EEPROM;
        !          5435:         }
        !          5436:         hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
        !          5437:         hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
        !          5438:     }
        !          5439:
        !          5440:     switch (hw->mac_type) {
        !          5441:     default:
        !          5442:         break;
        !          5443:     case em_82546:
        !          5444:     case em_82546_rev_3:
        !          5445:     case em_82571:
        !          5446:     case em_80003es2lan:
        !          5447:         if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
        !          5448:             hw->perm_mac_addr[5] ^= 0x01;
        !          5449:         break;
        !          5450:     }
        !          5451:
        !          5452:     for (i = 0; i < NODE_ADDRESS_SIZE; i++)
        !          5453:         hw->mac_addr[i] = hw->perm_mac_addr[i];
        !          5454:     return E1000_SUCCESS;
        !          5455: }
        !          5456:
        !          5457: /******************************************************************************
        !          5458:  * Initializes receive address filters.
        !          5459:  *
        !          5460:  * hw - Struct containing variables accessed by shared code
        !          5461:  *
        !          5462:  * Places the MAC address in receive address register 0 and clears the rest
        !          5463:  * of the receive addresss registers. Clears the multicast table. Assumes
        !          5464:  * the receiver is in reset when the routine is called.
        !          5465:  *****************************************************************************/
        !          5466: STATIC void
        !          5467: em_init_rx_addrs(struct em_hw *hw)
        !          5468: {
        !          5469:     uint32_t i;
        !          5470:     uint32_t rar_num;
        !          5471:
        !          5472:     DEBUGFUNC("em_init_rx_addrs");
        !          5473:
        !          5474:     /* Setup the receive address. */
        !          5475:     DEBUGOUT("Programming MAC Address into RAR[0]\n");
        !          5476:
        !          5477:     em_rar_set(hw, hw->mac_addr, 0);
        !          5478:
        !          5479:     rar_num = E1000_RAR_ENTRIES;
        !          5480:
        !          5481:     /* Reserve a spot for the Locally Administered Address to work around
        !          5482:      * an 82571 issue in which a reset on one port will reload the MAC on
        !          5483:      * the other port. */
        !          5484:     if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
        !          5485:         rar_num -= 1;
        !          5486:     if (hw->mac_type == em_ich8lan)
        !          5487:         rar_num = E1000_RAR_ENTRIES_ICH8LAN;
        !          5488:
        !          5489:     /* Zero out the other 15 receive addresses. */
        !          5490:     DEBUGOUT("Clearing RAR[1-15]\n");
        !          5491:     for (i = 1; i < rar_num; i++) {
        !          5492:         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
        !          5493:         E1000_WRITE_FLUSH(hw);
        !          5494:         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
        !          5495:         E1000_WRITE_FLUSH(hw);
        !          5496:     }
        !          5497: }
        !          5498:
        !          5499: /******************************************************************************
        !          5500:  * Updates the MAC's list of multicast addresses.
        !          5501:  *
        !          5502:  * hw - Struct containing variables accessed by shared code
        !          5503:  * mc_addr_list - the list of new multicast addresses
        !          5504:  * mc_addr_count - number of addresses
        !          5505:  * pad - number of bytes between addresses in the list
        !          5506:  * rar_used_count - offset where to start adding mc addresses into the RAR's
        !          5507:  *
        !          5508:  * The given list replaces any existing list. Clears the last 15 receive
        !          5509:  * address registers and the multicast table. Uses receive address registers
        !          5510:  * for the first 15 multicast addresses, and hashes the rest into the
        !          5511:  * multicast table.
        !          5512:  *****************************************************************************/
        !          5513: void
        !          5514: em_mc_addr_list_update(struct em_hw *hw,
        !          5515:                           uint8_t *mc_addr_list,
        !          5516:                           uint32_t mc_addr_count,
        !          5517:                           uint32_t pad,
        !          5518:                           uint32_t rar_used_count)
        !          5519: {
        !          5520:     uint32_t hash_value;
        !          5521:     uint32_t i;
        !          5522:     uint32_t num_rar_entry;
        !          5523:     uint32_t num_mta_entry;
        !          5524:
        !          5525:     DEBUGFUNC("em_mc_addr_list_update");
        !          5526:
        !          5527:     /* Set the new number of MC addresses that we are being requested to use. */
        !          5528:     hw->num_mc_addrs = mc_addr_count;
        !          5529:
        !          5530:     /* Clear RAR[1-15] */
        !          5531:     DEBUGOUT(" Clearing RAR[1-15]\n");
        !          5532:     num_rar_entry = E1000_RAR_ENTRIES;
        !          5533:     if (hw->mac_type == em_ich8lan)
        !          5534:         num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
        !          5535:
        !          5536:     /* Reserve a spot for the Locally Administered Address to work around
        !          5537:      * an 82571 issue in which a reset on one port will reload the MAC on
        !          5538:      * the other port. */
        !          5539:     if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE))
        !          5540:         num_rar_entry -= 1;
        !          5541:
        !          5542:     for (i = rar_used_count; i < num_rar_entry; i++) {
        !          5543:         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
        !          5544:         E1000_WRITE_FLUSH(hw);
        !          5545:         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
        !          5546:         E1000_WRITE_FLUSH(hw);
        !          5547:     }
        !          5548:
        !          5549:     /* Clear the MTA */
        !          5550:     DEBUGOUT(" Clearing MTA\n");
        !          5551:     num_mta_entry = E1000_NUM_MTA_REGISTERS;
        !          5552:     if (hw->mac_type == em_ich8lan)
        !          5553:         num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
        !          5554:
        !          5555:     for (i = 0; i < num_mta_entry; i++) {
        !          5556:         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
        !          5557:         E1000_WRITE_FLUSH(hw);
        !          5558:     }
        !          5559:
        !          5560:     /* Add the new addresses */
        !          5561:     for (i = 0; i < mc_addr_count; i++) {
        !          5562:         DEBUGOUT(" Adding the multicast addresses:\n");
        !          5563:         DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
        !          5564:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
        !          5565:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
        !          5566:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
        !          5567:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
        !          5568:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
        !          5569:                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
        !          5570:
        !          5571:         hash_value = em_hash_mc_addr(hw,
        !          5572:                                         mc_addr_list +
        !          5573:                                         (i * (ETH_LENGTH_OF_ADDRESS + pad)));
        !          5574:
        !          5575:         DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
        !          5576:
        !          5577:         /* Place this multicast address in the RAR if there is room, *
        !          5578:          * else put it in the MTA
        !          5579:          */
        !          5580:         if (rar_used_count < num_rar_entry) {
        !          5581:             em_rar_set(hw,
        !          5582:                           mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
        !          5583:                           rar_used_count);
        !          5584:             rar_used_count++;
        !          5585:         } else {
        !          5586:             em_mta_set(hw, hash_value);
        !          5587:         }
        !          5588:     }
        !          5589:     DEBUGOUT("MC Update Complete\n");
        !          5590: }
        !          5591:
        !          5592: /******************************************************************************
        !          5593:  * Hashes an address to determine its location in the multicast table
        !          5594:  *
        !          5595:  * hw - Struct containing variables accessed by shared code
        !          5596:  * mc_addr - the multicast address to hash
        !          5597:  *****************************************************************************/
        !          5598: uint32_t
        !          5599: em_hash_mc_addr(struct em_hw *hw,
        !          5600:                    uint8_t *mc_addr)
        !          5601: {
        !          5602:     uint32_t hash_value = 0;
        !          5603:
        !          5604:     /* The portion of the address that is used for the hash table is
        !          5605:      * determined by the mc_filter_type setting.
        !          5606:      */
        !          5607:     switch (hw->mc_filter_type) {
        !          5608:     /* [0] [1] [2] [3] [4] [5]
        !          5609:      * 01  AA  00  12  34  56
        !          5610:      * LSB                 MSB
        !          5611:      */
        !          5612:     case 0:
        !          5613:         if (hw->mac_type == em_ich8lan) {
        !          5614:             /* [47:38] i.e. 0x158 for above example address */
        !          5615:             hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
        !          5616:         } else {
        !          5617:             /* [47:36] i.e. 0x563 for above example address */
        !          5618:             hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
        !          5619:         }
        !          5620:         break;
        !          5621:     case 1:
        !          5622:         if (hw->mac_type == em_ich8lan) {
        !          5623:             /* [46:37] i.e. 0x2B1 for above example address */
        !          5624:             hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
        !          5625:         } else {
        !          5626:             /* [46:35] i.e. 0xAC6 for above example address */
        !          5627:             hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
        !          5628:         }
        !          5629:         break;
        !          5630:     case 2:
        !          5631:         if (hw->mac_type == em_ich8lan) {
        !          5632:             /*[45:36] i.e. 0x163 for above example address */
        !          5633:             hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
        !          5634:         } else {
        !          5635:             /* [45:34] i.e. 0x5D8 for above example address */
        !          5636:             hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
        !          5637:         }
        !          5638:         break;
        !          5639:     case 3:
        !          5640:         if (hw->mac_type == em_ich8lan) {
        !          5641:             /* [43:34] i.e. 0x18D for above example address */
        !          5642:             hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
        !          5643:         } else {
        !          5644:             /* [43:32] i.e. 0x634 for above example address */
        !          5645:             hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
        !          5646:         }
        !          5647:         break;
        !          5648:     }
        !          5649:
        !          5650:     hash_value &= 0xFFF;
        !          5651:     if (hw->mac_type == em_ich8lan)
        !          5652:         hash_value &= 0x3FF;
        !          5653:
        !          5654:     return hash_value;
        !          5655: }
        !          5656:
        !          5657: /******************************************************************************
        !          5658:  * Sets the bit in the multicast table corresponding to the hash value.
        !          5659:  *
        !          5660:  * hw - Struct containing variables accessed by shared code
        !          5661:  * hash_value - Multicast address hash value
        !          5662:  *****************************************************************************/
        !          5663: void
        !          5664: em_mta_set(struct em_hw *hw,
        !          5665:               uint32_t hash_value)
        !          5666: {
        !          5667:     uint32_t hash_bit, hash_reg;
        !          5668:     uint32_t mta;
        !          5669:     uint32_t temp;
        !          5670:
        !          5671:     /* The MTA is a register array of 128 32-bit registers.
        !          5672:      * It is treated like an array of 4096 bits.  We want to set
        !          5673:      * bit BitArray[hash_value]. So we figure out what register
        !          5674:      * the bit is in, read it, OR in the new bit, then write
        !          5675:      * back the new value.  The register is determined by the
        !          5676:      * upper 7 bits of the hash value and the bit within that
        !          5677:      * register are determined by the lower 5 bits of the value.
        !          5678:      */
        !          5679:     hash_reg = (hash_value >> 5) & 0x7F;
        !          5680:     if (hw->mac_type == em_ich8lan)
        !          5681:         hash_reg &= 0x1F;
        !          5682:
        !          5683:     hash_bit = hash_value & 0x1F;
        !          5684:
        !          5685:     mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
        !          5686:
        !          5687:     mta |= (1 << hash_bit);
        !          5688:
        !          5689:     /* If we are on an 82544 and we are trying to write an odd offset
        !          5690:      * in the MTA, save off the previous entry before writing and
        !          5691:      * restore the old value after writing.
        !          5692:      */
        !          5693:     if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
        !          5694:         temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
        !          5695:         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
        !          5696:         E1000_WRITE_FLUSH(hw);
        !          5697:         E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
        !          5698:         E1000_WRITE_FLUSH(hw);
        !          5699:     } else {
        !          5700:         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
        !          5701:         E1000_WRITE_FLUSH(hw);
        !          5702:     }
        !          5703: }
        !          5704:
        !          5705: /******************************************************************************
        !          5706:  * Puts an ethernet address into a receive address register.
        !          5707:  *
        !          5708:  * hw - Struct containing variables accessed by shared code
        !          5709:  * addr - Address to put into receive address register
        !          5710:  * index - Receive address register to write
        !          5711:  *****************************************************************************/
        !          5712: void
        !          5713: em_rar_set(struct em_hw *hw,
        !          5714:               uint8_t *addr,
        !          5715:               uint32_t index)
        !          5716: {
        !          5717:     uint32_t rar_low, rar_high;
        !          5718:
        !          5719:     /* HW expects these in little endian so we reverse the byte order
        !          5720:      * from network order (big endian) to little endian
        !          5721:      */
        !          5722:     rar_low = ((uint32_t) addr[0] |
        !          5723:                ((uint32_t) addr[1] << 8) |
        !          5724:                ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
        !          5725:     rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
        !          5726:
        !          5727:     /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
        !          5728:      * unit hang.
        !          5729:      *
        !          5730:      * Description:
        !          5731:      * If there are any Rx frames queued up or otherwise present in the HW
        !          5732:      * before RSS is enabled, and then we enable RSS, the HW Rx unit will
        !          5733:      * hang.  To work around this issue, we have to disable receives and
        !          5734:      * flush out all Rx frames before we enable RSS. To do so, we modify we
        !          5735:      * redirect all Rx traffic to manageability and then reset the HW.
        !          5736:      * This flushes away Rx frames, and (since the redirections to
        !          5737:      * manageability persists across resets) keeps new ones from coming in
        !          5738:      * while we work.  Then, we clear the Address Valid AV bit for all MAC
        !          5739:      * addresses and undo the re-direction to manageability.
        !          5740:      * Now, frames are coming in again, but the MAC won't accept them, so
        !          5741:      * far so good.  We now proceed to initialize RSS (if necessary) and
        !          5742:      * configure the Rx unit.  Last, we re-enable the AV bits and continue
        !          5743:      * on our merry way.
        !          5744:      */
        !          5745:     switch (hw->mac_type) {
        !          5746:     case em_82571:
        !          5747:     case em_82572:
        !          5748:     case em_80003es2lan:
        !          5749:         if (hw->leave_av_bit_off == TRUE)
        !          5750:             break;
        !          5751:     default:
        !          5752:         /* Indicate to hardware the Address is Valid. */
        !          5753:         rar_high |= E1000_RAH_AV;
        !          5754:         break;
        !          5755:     }
        !          5756:
        !          5757:     E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
        !          5758:     E1000_WRITE_FLUSH(hw);
        !          5759:     E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
        !          5760:     E1000_WRITE_FLUSH(hw);
        !          5761: }
        !          5762:
        !          5763: /******************************************************************************
        !          5764:  * Clears the VLAN filer table
        !          5765:  *
        !          5766:  * hw - Struct containing variables accessed by shared code
        !          5767:  *****************************************************************************/
        !          5768: STATIC void
        !          5769: em_clear_vfta(struct em_hw *hw)
        !          5770: {
        !          5771:     uint32_t offset;
        !          5772:     uint32_t vfta_value = 0;
        !          5773:     uint32_t vfta_offset = 0;
        !          5774:     uint32_t vfta_bit_in_reg = 0;
        !          5775:
        !          5776:     if (hw->mac_type == em_ich8lan)
        !          5777:         return;
        !          5778:
        !          5779:     if (hw->mac_type == em_82573) {
        !          5780:         if (hw->mng_cookie.vlan_id != 0) {
        !          5781:             /* The VFTA is a 4096b bit-field, each identifying a single VLAN
        !          5782:              * ID.  The following operations determine which 32b entry
        !          5783:              * (i.e. offset) into the array we want to set the VLAN ID
        !          5784:              * (i.e. bit) of the manageability unit. */
        !          5785:             vfta_offset = (hw->mng_cookie.vlan_id >>
        !          5786:                            E1000_VFTA_ENTRY_SHIFT) &
        !          5787:                           E1000_VFTA_ENTRY_MASK;
        !          5788:             vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
        !          5789:                                     E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
        !          5790:         }
        !          5791:     }
        !          5792:     for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
        !          5793:         /* If the offset we want to clear is the same offset of the
        !          5794:          * manageability VLAN ID, then clear all bits except that of the
        !          5795:          * manageability unit */
        !          5796:         vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
        !          5797:         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
        !          5798:         E1000_WRITE_FLUSH(hw);
        !          5799:     }
        !          5800: }
        !          5801:
        !          5802: STATIC int32_t
        !          5803: em_id_led_init(struct em_hw * hw)
        !          5804: {
        !          5805:     uint32_t ledctl;
        !          5806:     const uint32_t ledctl_mask = 0x000000FF;
        !          5807:     const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
        !          5808:     const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
        !          5809:     uint16_t eeprom_data, i, temp;
        !          5810:     const uint16_t led_mask = 0x0F;
        !          5811:
        !          5812:     DEBUGFUNC("em_id_led_init");
        !          5813:
        !          5814:     if (hw->mac_type < em_82540) {
        !          5815:         /* Nothing to do */
        !          5816:         return E1000_SUCCESS;
        !          5817:     }
        !          5818:
        !          5819:     ledctl = E1000_READ_REG(hw, LEDCTL);
        !          5820:     hw->ledctl_default = ledctl;
        !          5821:     hw->ledctl_mode1 = hw->ledctl_default;
        !          5822:     hw->ledctl_mode2 = hw->ledctl_default;
        !          5823:
        !          5824:     if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
        !          5825:         DEBUGOUT("EEPROM Read Error\n");
        !          5826:         return -E1000_ERR_EEPROM;
        !          5827:     }
        !          5828:
        !          5829:     if ((hw->mac_type == em_82573) &&
        !          5830:         (eeprom_data == ID_LED_RESERVED_82573))
        !          5831:         eeprom_data = ID_LED_DEFAULT_82573;
        !          5832:     else if ((eeprom_data == ID_LED_RESERVED_0000) ||
        !          5833:             (eeprom_data == ID_LED_RESERVED_FFFF)) {
        !          5834:         if (hw->mac_type == em_ich8lan)
        !          5835:             eeprom_data = ID_LED_DEFAULT_ICH8LAN;
        !          5836:         else
        !          5837:             eeprom_data = ID_LED_DEFAULT;
        !          5838:     }
        !          5839:
        !          5840:     for (i = 0; i < 4; i++) {
        !          5841:         temp = (eeprom_data >> (i << 2)) & led_mask;
        !          5842:         switch (temp) {
        !          5843:         case ID_LED_ON1_DEF2:
        !          5844:         case ID_LED_ON1_ON2:
        !          5845:         case ID_LED_ON1_OFF2:
        !          5846:             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
        !          5847:             hw->ledctl_mode1 |= ledctl_on << (i << 3);
        !          5848:             break;
        !          5849:         case ID_LED_OFF1_DEF2:
        !          5850:         case ID_LED_OFF1_ON2:
        !          5851:         case ID_LED_OFF1_OFF2:
        !          5852:             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
        !          5853:             hw->ledctl_mode1 |= ledctl_off << (i << 3);
        !          5854:             break;
        !          5855:         default:
        !          5856:             /* Do nothing */
        !          5857:             break;
        !          5858:         }
        !          5859:         switch (temp) {
        !          5860:         case ID_LED_DEF1_ON2:
        !          5861:         case ID_LED_ON1_ON2:
        !          5862:         case ID_LED_OFF1_ON2:
        !          5863:             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
        !          5864:             hw->ledctl_mode2 |= ledctl_on << (i << 3);
        !          5865:             break;
        !          5866:         case ID_LED_DEF1_OFF2:
        !          5867:         case ID_LED_ON1_OFF2:
        !          5868:         case ID_LED_OFF1_OFF2:
        !          5869:             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
        !          5870:             hw->ledctl_mode2 |= ledctl_off << (i << 3);
        !          5871:             break;
        !          5872:         default:
        !          5873:             /* Do nothing */
        !          5874:             break;
        !          5875:         }
        !          5876:     }
        !          5877:     return E1000_SUCCESS;
        !          5878: }
        !          5879:
        !          5880: /******************************************************************************
        !          5881:  * Clears all hardware statistics counters.
        !          5882:  *
        !          5883:  * hw - Struct containing variables accessed by shared code
        !          5884:  *****************************************************************************/
        !          5885: void
        !          5886: em_clear_hw_cntrs(struct em_hw *hw)
        !          5887: {
        !          5888:     volatile uint32_t temp;
        !          5889:
        !          5890:     temp = E1000_READ_REG(hw, CRCERRS);
        !          5891:     temp = E1000_READ_REG(hw, SYMERRS);
        !          5892:     temp = E1000_READ_REG(hw, MPC);
        !          5893:     temp = E1000_READ_REG(hw, SCC);
        !          5894:     temp = E1000_READ_REG(hw, ECOL);
        !          5895:     temp = E1000_READ_REG(hw, MCC);
        !          5896:     temp = E1000_READ_REG(hw, LATECOL);
        !          5897:     temp = E1000_READ_REG(hw, COLC);
        !          5898:     temp = E1000_READ_REG(hw, DC);
        !          5899:     temp = E1000_READ_REG(hw, SEC);
        !          5900:     temp = E1000_READ_REG(hw, RLEC);
        !          5901:     temp = E1000_READ_REG(hw, XONRXC);
        !          5902:     temp = E1000_READ_REG(hw, XONTXC);
        !          5903:     temp = E1000_READ_REG(hw, XOFFRXC);
        !          5904:     temp = E1000_READ_REG(hw, XOFFTXC);
        !          5905:     temp = E1000_READ_REG(hw, FCRUC);
        !          5906:
        !          5907:     if (hw->mac_type != em_ich8lan) {
        !          5908:     temp = E1000_READ_REG(hw, PRC64);
        !          5909:     temp = E1000_READ_REG(hw, PRC127);
        !          5910:     temp = E1000_READ_REG(hw, PRC255);
        !          5911:     temp = E1000_READ_REG(hw, PRC511);
        !          5912:     temp = E1000_READ_REG(hw, PRC1023);
        !          5913:     temp = E1000_READ_REG(hw, PRC1522);
        !          5914:     }
        !          5915:
        !          5916:     temp = E1000_READ_REG(hw, GPRC);
        !          5917:     temp = E1000_READ_REG(hw, BPRC);
        !          5918:     temp = E1000_READ_REG(hw, MPRC);
        !          5919:     temp = E1000_READ_REG(hw, GPTC);
        !          5920:     temp = E1000_READ_REG(hw, GORCL);
        !          5921:     temp = E1000_READ_REG(hw, GORCH);
        !          5922:     temp = E1000_READ_REG(hw, GOTCL);
        !          5923:     temp = E1000_READ_REG(hw, GOTCH);
        !          5924:     temp = E1000_READ_REG(hw, RNBC);
        !          5925:     temp = E1000_READ_REG(hw, RUC);
        !          5926:     temp = E1000_READ_REG(hw, RFC);
        !          5927:     temp = E1000_READ_REG(hw, ROC);
        !          5928:     temp = E1000_READ_REG(hw, RJC);
        !          5929:     temp = E1000_READ_REG(hw, TORL);
        !          5930:     temp = E1000_READ_REG(hw, TORH);
        !          5931:     temp = E1000_READ_REG(hw, TOTL);
        !          5932:     temp = E1000_READ_REG(hw, TOTH);
        !          5933:     temp = E1000_READ_REG(hw, TPR);
        !          5934:     temp = E1000_READ_REG(hw, TPT);
        !          5935:
        !          5936:     if (hw->mac_type != em_ich8lan) {
        !          5937:     temp = E1000_READ_REG(hw, PTC64);
        !          5938:     temp = E1000_READ_REG(hw, PTC127);
        !          5939:     temp = E1000_READ_REG(hw, PTC255);
        !          5940:     temp = E1000_READ_REG(hw, PTC511);
        !          5941:     temp = E1000_READ_REG(hw, PTC1023);
        !          5942:     temp = E1000_READ_REG(hw, PTC1522);
        !          5943:     }
        !          5944:
        !          5945:     temp = E1000_READ_REG(hw, MPTC);
        !          5946:     temp = E1000_READ_REG(hw, BPTC);
        !          5947:
        !          5948:     if (hw->mac_type < em_82543) return;
        !          5949:
        !          5950:     temp = E1000_READ_REG(hw, ALGNERRC);
        !          5951:     temp = E1000_READ_REG(hw, RXERRC);
        !          5952:     temp = E1000_READ_REG(hw, TNCRS);
        !          5953:     temp = E1000_READ_REG(hw, CEXTERR);
        !          5954:     temp = E1000_READ_REG(hw, TSCTC);
        !          5955:     temp = E1000_READ_REG(hw, TSCTFC);
        !          5956:
        !          5957:     if (hw->mac_type <= em_82544) return;
        !          5958:
        !          5959:     temp = E1000_READ_REG(hw, MGTPRC);
        !          5960:     temp = E1000_READ_REG(hw, MGTPDC);
        !          5961:     temp = E1000_READ_REG(hw, MGTPTC);
        !          5962:
        !          5963:     if (hw->mac_type <= em_82547_rev_2) return;
        !          5964:
        !          5965:     temp = E1000_READ_REG(hw, IAC);
        !          5966:     temp = E1000_READ_REG(hw, ICRXOC);
        !          5967:
        !          5968:     if (hw->mac_type == em_ich8lan) return;
        !          5969:
        !          5970:     temp = E1000_READ_REG(hw, ICRXPTC);
        !          5971:     temp = E1000_READ_REG(hw, ICRXATC);
        !          5972:     temp = E1000_READ_REG(hw, ICTXPTC);
        !          5973:     temp = E1000_READ_REG(hw, ICTXATC);
        !          5974:     temp = E1000_READ_REG(hw, ICTXQEC);
        !          5975:     temp = E1000_READ_REG(hw, ICTXQMTC);
        !          5976:     temp = E1000_READ_REG(hw, ICRXDMTC);
        !          5977: }
        !          5978:
        !          5979: /******************************************************************************
        !          5980:  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
        !          5981:  *
        !          5982:  * hw - Struct containing variables accessed by shared code
        !          5983:  * frame_len - The length of the frame in question
        !          5984:  * mac_addr - The Ethernet destination address of the frame in question
        !          5985:  *****************************************************************************/
        !          5986: void
        !          5987: em_tbi_adjust_stats(struct em_hw *hw,
        !          5988:                        struct em_hw_stats *stats,
        !          5989:                        uint32_t frame_len,
        !          5990:                        uint8_t *mac_addr)
        !          5991: {
        !          5992:     uint64_t carry_bit;
        !          5993:
        !          5994:     /* First adjust the frame length. */
        !          5995:     frame_len--;
        !          5996:     /* We need to adjust the statistics counters, since the hardware
        !          5997:      * counters overcount this packet as a CRC error and undercount
        !          5998:      * the packet as a good packet
        !          5999:      */
        !          6000:     /* This packet should not be counted as a CRC error.    */
        !          6001:     stats->crcerrs--;
        !          6002:     /* This packet does count as a Good Packet Received.    */
        !          6003:     stats->gprc++;
        !          6004:
        !          6005:     /* Adjust the Good Octets received counters             */
        !          6006:     carry_bit = 0x80000000 & stats->gorcl;
        !          6007:     stats->gorcl += frame_len;
        !          6008:     /* If the high bit of Gorcl (the low 32 bits of the Good Octets
        !          6009:      * Received Count) was one before the addition,
        !          6010:      * AND it is zero after, then we lost the carry out,
        !          6011:      * need to add one to Gorch (Good Octets Received Count High).
        !          6012:      * This could be simplified if all environments supported
        !          6013:      * 64-bit integers.
        !          6014:      */
        !          6015:     if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
        !          6016:         stats->gorch++;
        !          6017:     /* Is this a broadcast or multicast?  Check broadcast first,
        !          6018:      * since the test for a multicast frame will test positive on
        !          6019:      * a broadcast frame.
        !          6020:      */
        !          6021:     if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
        !          6022:         /* Broadcast packet */
        !          6023:         stats->bprc++;
        !          6024:     else if (*mac_addr & 0x01)
        !          6025:         /* Multicast packet */
        !          6026:         stats->mprc++;
        !          6027:
        !          6028:     if (frame_len == hw->max_frame_size) {
        !          6029:         /* In this case, the hardware has overcounted the number of
        !          6030:          * oversize frames.
        !          6031:          */
        !          6032:         if (stats->roc > 0)
        !          6033:             stats->roc--;
        !          6034:     }
        !          6035:
        !          6036:     /* Adjust the bin counters when the extra byte put the frame in the
        !          6037:      * wrong bin. Remember that the frame_len was adjusted above.
        !          6038:      */
        !          6039:     if (frame_len == 64) {
        !          6040:         stats->prc64++;
        !          6041:         stats->prc127--;
        !          6042:     } else if (frame_len == 127) {
        !          6043:         stats->prc127++;
        !          6044:         stats->prc255--;
        !          6045:     } else if (frame_len == 255) {
        !          6046:         stats->prc255++;
        !          6047:         stats->prc511--;
        !          6048:     } else if (frame_len == 511) {
        !          6049:         stats->prc511++;
        !          6050:         stats->prc1023--;
        !          6051:     } else if (frame_len == 1023) {
        !          6052:         stats->prc1023++;
        !          6053:         stats->prc1522--;
        !          6054:     } else if (frame_len == 1522) {
        !          6055:         stats->prc1522++;
        !          6056:     }
        !          6057: }
        !          6058:
        !          6059: /******************************************************************************
        !          6060:  * Gets the current PCI bus type, speed, and width of the hardware
        !          6061:  *
        !          6062:  * hw - Struct containing variables accessed by shared code
        !          6063:  *****************************************************************************/
        !          6064: void
        !          6065: em_get_bus_info(struct em_hw *hw)
        !          6066: {
        !          6067:     int32_t ret_val;
        !          6068:     uint16_t pci_ex_link_status;
        !          6069:     uint32_t status;
        !          6070:
        !          6071:     switch (hw->mac_type) {
        !          6072:     case em_82542_rev2_0:
        !          6073:     case em_82542_rev2_1:
        !          6074:         hw->bus_type = em_bus_type_unknown;
        !          6075:         hw->bus_speed = em_bus_speed_unknown;
        !          6076:         hw->bus_width = em_bus_width_unknown;
        !          6077:         break;
        !          6078:     case em_82571:
        !          6079:     case em_82572:
        !          6080:     case em_82573:
        !          6081:     case em_80003es2lan:
        !          6082:         hw->bus_type = em_bus_type_pci_express;
        !          6083:         hw->bus_speed = em_bus_speed_2500;
        !          6084:         ret_val = em_read_pcie_cap_reg(hw,
        !          6085:                                       PCI_EX_LINK_STATUS,
        !          6086:                                       &pci_ex_link_status);
        !          6087:         if (ret_val)
        !          6088:             hw->bus_width = em_bus_width_unknown;
        !          6089:         else
        !          6090:             hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
        !          6091:                           PCI_EX_LINK_WIDTH_SHIFT;
        !          6092:         break;
        !          6093:     case em_ich8lan:
        !          6094:         hw->bus_type = em_bus_type_pci_express;
        !          6095:         hw->bus_speed = em_bus_speed_2500;
        !          6096:         hw->bus_width = em_bus_width_pciex_1;
        !          6097:         break;
        !          6098:     default:
        !          6099:         status = E1000_READ_REG(hw, STATUS);
        !          6100:         hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
        !          6101:                        em_bus_type_pcix : em_bus_type_pci;
        !          6102:
        !          6103:         if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
        !          6104:             hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
        !          6105:                             em_bus_speed_66 : em_bus_speed_120;
        !          6106:         } else if (hw->bus_type == em_bus_type_pci) {
        !          6107:             hw->bus_speed = (status & E1000_STATUS_PCI66) ?
        !          6108:                             em_bus_speed_66 : em_bus_speed_33;
        !          6109:         } else {
        !          6110:             switch (status & E1000_STATUS_PCIX_SPEED) {
        !          6111:             case E1000_STATUS_PCIX_SPEED_66:
        !          6112:                 hw->bus_speed = em_bus_speed_66;
        !          6113:                 break;
        !          6114:             case E1000_STATUS_PCIX_SPEED_100:
        !          6115:                 hw->bus_speed = em_bus_speed_100;
        !          6116:                 break;
        !          6117:             case E1000_STATUS_PCIX_SPEED_133:
        !          6118:                 hw->bus_speed = em_bus_speed_133;
        !          6119:                 break;
        !          6120:             default:
        !          6121:                 hw->bus_speed = em_bus_speed_reserved;
        !          6122:                 break;
        !          6123:             }
        !          6124:         }
        !          6125:         hw->bus_width = (status & E1000_STATUS_BUS64) ?
        !          6126:                         em_bus_width_64 : em_bus_width_32;
        !          6127:         break;
        !          6128:     }
        !          6129: }
        !          6130:
        !          6131: /******************************************************************************
        !          6132:  * Writes a value to one of the devices registers using port I/O (as opposed to
        !          6133:  * memory mapped I/O). Only 82544 and newer devices support port I/O.
        !          6134:  *
        !          6135:  * hw - Struct containing variables accessed by shared code
        !          6136:  * offset - offset to write to
        !          6137:  * value - value to write
        !          6138:  *****************************************************************************/
        !          6139: STATIC void
        !          6140: em_write_reg_io(struct em_hw *hw,
        !          6141:                    uint32_t offset,
        !          6142:                    uint32_t value)
        !          6143: {
        !          6144:     unsigned long io_addr = hw->io_base;
        !          6145:     unsigned long io_data = hw->io_base + 4;
        !          6146:
        !          6147:     em_io_write(hw, io_addr, offset);
        !          6148:     em_io_write(hw, io_data, value);
        !          6149: }
        !          6150:
        !          6151: /******************************************************************************
        !          6152:  * Estimates the cable length.
        !          6153:  *
        !          6154:  * hw - Struct containing variables accessed by shared code
        !          6155:  * min_length - The estimated minimum length
        !          6156:  * max_length - The estimated maximum length
        !          6157:  *
        !          6158:  * returns: - E1000_ERR_XXX
        !          6159:  *            E1000_SUCCESS
        !          6160:  *
        !          6161:  * This function always returns a ranged length (minimum & maximum).
        !          6162:  * So for M88 phy's, this function interprets the one value returned from the
        !          6163:  * register to the minimum and maximum range.
        !          6164:  * For IGP phy's, the function calculates the range by the AGC registers.
        !          6165:  *****************************************************************************/
        !          6166: STATIC int32_t
        !          6167: em_get_cable_length(struct em_hw *hw,
        !          6168:                        uint16_t *min_length,
        !          6169:                        uint16_t *max_length)
        !          6170: {
        !          6171:     int32_t ret_val;
        !          6172:     uint16_t agc_value = 0;
        !          6173:     uint16_t i, phy_data;
        !          6174:     uint16_t cable_length;
        !          6175:
        !          6176:     DEBUGFUNC("em_get_cable_length");
        !          6177:
        !          6178:     *min_length = *max_length = 0;
        !          6179:
        !          6180:     /* Use old method for Phy older than IGP */
        !          6181:     if (hw->phy_type == em_phy_m88) {
        !          6182:
        !          6183:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
        !          6184:                                      &phy_data);
        !          6185:         if (ret_val)
        !          6186:             return ret_val;
        !          6187:         cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
        !          6188:                        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
        !          6189:
        !          6190:         /* Convert the enum value to ranged values */
        !          6191:         switch (cable_length) {
        !          6192:         case em_cable_length_50:
        !          6193:             *min_length = 0;
        !          6194:             *max_length = em_igp_cable_length_50;
        !          6195:             break;
        !          6196:         case em_cable_length_50_80:
        !          6197:             *min_length = em_igp_cable_length_50;
        !          6198:             *max_length = em_igp_cable_length_80;
        !          6199:             break;
        !          6200:         case em_cable_length_80_110:
        !          6201:             *min_length = em_igp_cable_length_80;
        !          6202:             *max_length = em_igp_cable_length_110;
        !          6203:             break;
        !          6204:         case em_cable_length_110_140:
        !          6205:             *min_length = em_igp_cable_length_110;
        !          6206:             *max_length = em_igp_cable_length_140;
        !          6207:             break;
        !          6208:         case em_cable_length_140:
        !          6209:             *min_length = em_igp_cable_length_140;
        !          6210:             *max_length = em_igp_cable_length_170;
        !          6211:             break;
        !          6212:         default:
        !          6213:             return -E1000_ERR_PHY;
        !          6214:             break;
        !          6215:         }
        !          6216:     } else if (hw->phy_type == em_phy_gg82563) {
        !          6217:         ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
        !          6218:                                      &phy_data);
        !          6219:         if (ret_val)
        !          6220:             return ret_val;
        !          6221:         cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
        !          6222:
        !          6223:         switch (cable_length) {
        !          6224:         case em_gg_cable_length_60:
        !          6225:             *min_length = 0;
        !          6226:             *max_length = em_igp_cable_length_60;
        !          6227:             break;
        !          6228:         case em_gg_cable_length_60_115:
        !          6229:             *min_length = em_igp_cable_length_60;
        !          6230:             *max_length = em_igp_cable_length_115;
        !          6231:             break;
        !          6232:         case em_gg_cable_length_115_150:
        !          6233:             *min_length = em_igp_cable_length_115;
        !          6234:             *max_length = em_igp_cable_length_150;
        !          6235:             break;
        !          6236:         case em_gg_cable_length_150:
        !          6237:             *min_length = em_igp_cable_length_150;
        !          6238:             *max_length = em_igp_cable_length_180;
        !          6239:             break;
        !          6240:         default:
        !          6241:             return -E1000_ERR_PHY;
        !          6242:             break;
        !          6243:         }
        !          6244:     } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */
        !          6245:         uint16_t cur_agc_value;
        !          6246:         uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
        !          6247:         uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
        !          6248:                                                          {IGP01E1000_PHY_AGC_A,
        !          6249:                                                           IGP01E1000_PHY_AGC_B,
        !          6250:                                                           IGP01E1000_PHY_AGC_C,
        !          6251:                                                           IGP01E1000_PHY_AGC_D};
        !          6252:         /* Read the AGC registers for all channels */
        !          6253:         for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
        !          6254:
        !          6255:             ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
        !          6256:             if (ret_val)
        !          6257:                 return ret_val;
        !          6258:
        !          6259:             cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
        !          6260:
        !          6261:             /* Value bound check. */
        !          6262:             if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
        !          6263:                 (cur_agc_value == 0))
        !          6264:                 return -E1000_ERR_PHY;
        !          6265:
        !          6266:             agc_value += cur_agc_value;
        !          6267:
        !          6268:             /* Update minimal AGC value. */
        !          6269:             if (min_agc_value > cur_agc_value)
        !          6270:                 min_agc_value = cur_agc_value;
        !          6271:         }
        !          6272:
        !          6273:         /* Remove the minimal AGC result for length < 50m */
        !          6274:         if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
        !          6275:             agc_value -= min_agc_value;
        !          6276:
        !          6277:             /* Get the average length of the remaining 3 channels */
        !          6278:             agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
        !          6279:         } else {
        !          6280:             /* Get the average length of all the 4 channels. */
        !          6281:             agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
        !          6282:         }
        !          6283:
        !          6284:         /* Set the range of the calculated length. */
        !          6285:         *min_length = ((em_igp_cable_length_table[agc_value] -
        !          6286:                        IGP01E1000_AGC_RANGE) > 0) ?
        !          6287:                        (em_igp_cable_length_table[agc_value] -
        !          6288:                        IGP01E1000_AGC_RANGE) : 0;
        !          6289:         *max_length = em_igp_cable_length_table[agc_value] +
        !          6290:                       IGP01E1000_AGC_RANGE;
        !          6291:     } else if (hw->phy_type == em_phy_igp_2 ||
        !          6292:                hw->phy_type == em_phy_igp_3) {
        !          6293:         uint16_t cur_agc_index, max_agc_index = 0;
        !          6294:         uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
        !          6295:         uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
        !          6296:                                                          {IGP02E1000_PHY_AGC_A,
        !          6297:                                                           IGP02E1000_PHY_AGC_B,
        !          6298:                                                           IGP02E1000_PHY_AGC_C,
        !          6299:                                                           IGP02E1000_PHY_AGC_D};
        !          6300:         /* Read the AGC registers for all channels */
        !          6301:         for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
        !          6302:             ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
        !          6303:             if (ret_val)
        !          6304:                 return ret_val;
        !          6305:
        !          6306:             /* Getting bits 15:9, which represent the combination of course and
        !          6307:              * fine gain values.  The result is a number that can be put into
        !          6308:              * the lookup table to obtain the approximate cable length. */
        !          6309:             cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
        !          6310:                             IGP02E1000_AGC_LENGTH_MASK;
        !          6311:
        !          6312:             /* Array index bound check. */
        !          6313:             if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
        !          6314:                 (cur_agc_index == 0))
        !          6315:                 return -E1000_ERR_PHY;
        !          6316:
        !          6317:             /* Remove min & max AGC values from calculation. */
        !          6318:             if (em_igp_2_cable_length_table[min_agc_index] >
        !          6319:                 em_igp_2_cable_length_table[cur_agc_index])
        !          6320:                 min_agc_index = cur_agc_index;
        !          6321:             if (em_igp_2_cable_length_table[max_agc_index] <
        !          6322:                 em_igp_2_cable_length_table[cur_agc_index])
        !          6323:                 max_agc_index = cur_agc_index;
        !          6324:
        !          6325:             agc_value += em_igp_2_cable_length_table[cur_agc_index];
        !          6326:         }
        !          6327:
        !          6328:         agc_value -= (em_igp_2_cable_length_table[min_agc_index] +
        !          6329:                       em_igp_2_cable_length_table[max_agc_index]);
        !          6330:         agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
        !          6331:
        !          6332:         /* Calculate cable length with the error range of +/- 10 meters. */
        !          6333:         *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
        !          6334:                        (agc_value - IGP02E1000_AGC_RANGE) : 0;
        !          6335:         *max_length = agc_value + IGP02E1000_AGC_RANGE;
        !          6336:     }
        !          6337:
        !          6338:     return E1000_SUCCESS;
        !          6339: }
        !          6340:
        !          6341: /******************************************************************************
        !          6342:  * Check if Downshift occured
        !          6343:  *
        !          6344:  * hw - Struct containing variables accessed by shared code
        !          6345:  * downshift - output parameter : 0 - No Downshift ocured.
        !          6346:  *                                1 - Downshift ocured.
        !          6347:  *
        !          6348:  * returns: - E1000_ERR_XXX
        !          6349:  *            E1000_SUCCESS
        !          6350:  *
        !          6351:  * For phy's older then IGP, this function reads the Downshift bit in the Phy
        !          6352:  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
        !          6353:  * Link Health register.  In IGP this bit is latched high, so the driver must
        !          6354:  * read it immediately after link is established.
        !          6355:  *****************************************************************************/
        !          6356: STATIC int32_t
        !          6357: em_check_downshift(struct em_hw *hw)
        !          6358: {
        !          6359:     int32_t ret_val;
        !          6360:     uint16_t phy_data;
        !          6361:
        !          6362:     DEBUGFUNC("em_check_downshift");
        !          6363:
        !          6364:     if (hw->phy_type == em_phy_igp ||
        !          6365:         hw->phy_type == em_phy_igp_3 ||
        !          6366:         hw->phy_type == em_phy_igp_2) {
        !          6367:         ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
        !          6368:                                      &phy_data);
        !          6369:         if (ret_val)
        !          6370:             return ret_val;
        !          6371:
        !          6372:         hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
        !          6373:     } else if ((hw->phy_type == em_phy_m88) ||
        !          6374:                (hw->phy_type == em_phy_gg82563)) {
        !          6375:         ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
        !          6376:                                      &phy_data);
        !          6377:         if (ret_val)
        !          6378:             return ret_val;
        !          6379:
        !          6380:         hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
        !          6381:                                M88E1000_PSSR_DOWNSHIFT_SHIFT;
        !          6382:     } else if (hw->phy_type == em_phy_ife) {
        !          6383:         /* em_phy_ife supports 10/100 speed only */
        !          6384:         hw->speed_downgraded = FALSE;
        !          6385:     }
        !          6386:
        !          6387:     return E1000_SUCCESS;
        !          6388: }
        !          6389:
        !          6390: /*****************************************************************************
        !          6391:  *
        !          6392:  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
        !          6393:  * gigabit link is achieved to improve link quality.
        !          6394:  *
        !          6395:  * hw: Struct containing variables accessed by shared code
        !          6396:  *
        !          6397:  * returns: - E1000_ERR_PHY if fail to read/write the PHY
        !          6398:  *            E1000_SUCCESS at any other case.
        !          6399:  *
        !          6400:  ****************************************************************************/
        !          6401:
        !          6402: STATIC int32_t
        !          6403: em_config_dsp_after_link_change(struct em_hw *hw,
        !          6404:                                    boolean_t link_up)
        !          6405: {
        !          6406:     int32_t ret_val;
        !          6407:     uint16_t phy_data, phy_saved_data, speed, duplex, i;
        !          6408:     uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
        !          6409:                                         {IGP01E1000_PHY_AGC_PARAM_A,
        !          6410:                                         IGP01E1000_PHY_AGC_PARAM_B,
        !          6411:                                         IGP01E1000_PHY_AGC_PARAM_C,
        !          6412:                                         IGP01E1000_PHY_AGC_PARAM_D};
        !          6413:     uint16_t min_length, max_length;
        !          6414:
        !          6415:     DEBUGFUNC("em_config_dsp_after_link_change");
        !          6416:
        !          6417:     if (hw->phy_type != em_phy_igp)
        !          6418:         return E1000_SUCCESS;
        !          6419:
        !          6420:     if (link_up) {
        !          6421:         ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
        !          6422:         if (ret_val) {
        !          6423:             DEBUGOUT("Error getting link speed and duplex\n");
        !          6424:             return ret_val;
        !          6425:         }
        !          6426:
        !          6427:         if (speed == SPEED_1000) {
        !          6428:
        !          6429:             ret_val = em_get_cable_length(hw, &min_length, &max_length);
        !          6430:             if (ret_val)
        !          6431:                 return ret_val;
        !          6432:
        !          6433:             if ((hw->dsp_config_state == em_dsp_config_enabled) &&
        !          6434:                 min_length >= em_igp_cable_length_50) {
        !          6435:
        !          6436:                 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
        !          6437:                     ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
        !          6438:                                                  &phy_data);
        !          6439:                     if (ret_val)
        !          6440:                         return ret_val;
        !          6441:
        !          6442:                     phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
        !          6443:
        !          6444:                     ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
        !          6445:                                                   phy_data);
        !          6446:                     if (ret_val)
        !          6447:                         return ret_val;
        !          6448:                 }
        !          6449:                 hw->dsp_config_state = em_dsp_config_activated;
        !          6450:             }
        !          6451:
        !          6452:             if ((hw->ffe_config_state == em_ffe_config_enabled) &&
        !          6453:                (min_length < em_igp_cable_length_50)) {
        !          6454:
        !          6455:                 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
        !          6456:                 uint32_t idle_errs = 0;
        !          6457:
        !          6458:                 /* clear previous idle error counts */
        !          6459:                 ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
        !          6460:                                              &phy_data);
        !          6461:                 if (ret_val)
        !          6462:                     return ret_val;
        !          6463:
        !          6464:                 for (i = 0; i < ffe_idle_err_timeout; i++) {
        !          6465:                     usec_delay(1000);
        !          6466:                     ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
        !          6467:                                                  &phy_data);
        !          6468:                     if (ret_val)
        !          6469:                         return ret_val;
        !          6470:
        !          6471:                     idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
        !          6472:                     if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
        !          6473:                         hw->ffe_config_state = em_ffe_config_active;
        !          6474:
        !          6475:                         ret_val = em_write_phy_reg(hw,
        !          6476:                                     IGP01E1000_PHY_DSP_FFE,
        !          6477:                                     IGP01E1000_PHY_DSP_FFE_CM_CP);
        !          6478:                         if (ret_val)
        !          6479:                             return ret_val;
        !          6480:                         break;
        !          6481:                     }
        !          6482:
        !          6483:                     if (idle_errs)
        !          6484:                         ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
        !          6485:                 }
        !          6486:             }
        !          6487:         }
        !          6488:     } else {
        !          6489:         if (hw->dsp_config_state == em_dsp_config_activated) {
        !          6490:             /* Save off the current value of register 0x2F5B to be restored at
        !          6491:              * the end of the routines. */
        !          6492:             ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
        !          6493:
        !          6494:             if (ret_val)
        !          6495:                 return ret_val;
        !          6496:
        !          6497:             /* Disable the PHY transmitter */
        !          6498:             ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
        !          6499:
        !          6500:             if (ret_val)
        !          6501:                 return ret_val;
        !          6502:
        !          6503:             msec_delay_irq(20);
        !          6504:
        !          6505:             ret_val = em_write_phy_reg(hw, 0x0000,
        !          6506:                                           IGP01E1000_IEEE_FORCE_GIGA);
        !          6507:             if (ret_val)
        !          6508:                 return ret_val;
        !          6509:             for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
        !          6510:                 ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
        !          6511:                 if (ret_val)
        !          6512:                     return ret_val;
        !          6513:
        !          6514:                 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
        !          6515:                 phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
        !          6516:
        !          6517:                 ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
        !          6518:                 if (ret_val)
        !          6519:                     return ret_val;
        !          6520:             }
        !          6521:
        !          6522:             ret_val = em_write_phy_reg(hw, 0x0000,
        !          6523:                                           IGP01E1000_IEEE_RESTART_AUTONEG);
        !          6524:             if (ret_val)
        !          6525:                 return ret_val;
        !          6526:
        !          6527:             msec_delay_irq(20);
        !          6528:
        !          6529:             /* Now enable the transmitter */
        !          6530:             ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
        !          6531:
        !          6532:             if (ret_val)
        !          6533:                 return ret_val;
        !          6534:
        !          6535:             hw->dsp_config_state = em_dsp_config_enabled;
        !          6536:         }
        !          6537:
        !          6538:         if (hw->ffe_config_state == em_ffe_config_active) {
        !          6539:             /* Save off the current value of register 0x2F5B to be restored at
        !          6540:              * the end of the routines. */
        !          6541:             ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
        !          6542:
        !          6543:             if (ret_val)
        !          6544:                 return ret_val;
        !          6545:
        !          6546:             /* Disable the PHY transmitter */
        !          6547:             ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
        !          6548:
        !          6549:             if (ret_val)
        !          6550:                 return ret_val;
        !          6551:
        !          6552:             msec_delay_irq(20);
        !          6553:
        !          6554:             ret_val = em_write_phy_reg(hw, 0x0000,
        !          6555:                                           IGP01E1000_IEEE_FORCE_GIGA);
        !          6556:             if (ret_val)
        !          6557:                 return ret_val;
        !          6558:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
        !          6559:                                           IGP01E1000_PHY_DSP_FFE_DEFAULT);
        !          6560:             if (ret_val)
        !          6561:                 return ret_val;
        !          6562:
        !          6563:             ret_val = em_write_phy_reg(hw, 0x0000,
        !          6564:                                           IGP01E1000_IEEE_RESTART_AUTONEG);
        !          6565:             if (ret_val)
        !          6566:                 return ret_val;
        !          6567:
        !          6568:             msec_delay_irq(20);
        !          6569:
        !          6570:             /* Now enable the transmitter */
        !          6571:             ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
        !          6572:
        !          6573:             if (ret_val)
        !          6574:                 return ret_val;
        !          6575:
        !          6576:             hw->ffe_config_state = em_ffe_config_enabled;
        !          6577:         }
        !          6578:     }
        !          6579:     return E1000_SUCCESS;
        !          6580: }
        !          6581:
        !          6582: /*****************************************************************************
        !          6583:  * Set PHY to class A mode
        !          6584:  * Assumes the following operations will follow to enable the new class mode.
        !          6585:  *  1. Do a PHY soft reset
        !          6586:  *  2. Restart auto-negotiation or force link.
        !          6587:  *
        !          6588:  * hw - Struct containing variables accessed by shared code
        !          6589:  ****************************************************************************/
        !          6590: static int32_t
        !          6591: em_set_phy_mode(struct em_hw *hw)
        !          6592: {
        !          6593:     int32_t ret_val;
        !          6594:     uint16_t eeprom_data;
        !          6595:
        !          6596:     DEBUGFUNC("em_set_phy_mode");
        !          6597:
        !          6598:     if ((hw->mac_type == em_82545_rev_3) &&
        !          6599:         (hw->media_type == em_media_type_copper)) {
        !          6600:         ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
        !          6601:         if (ret_val) {
        !          6602:             return ret_val;
        !          6603:         }
        !          6604:
        !          6605:         if ((eeprom_data != EEPROM_RESERVED_WORD) &&
        !          6606:             (eeprom_data & EEPROM_PHY_CLASS_A)) {
        !          6607:             ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
        !          6608:             if (ret_val)
        !          6609:                 return ret_val;
        !          6610:             ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
        !          6611:             if (ret_val)
        !          6612:                 return ret_val;
        !          6613:
        !          6614:             hw->phy_reset_disable = FALSE;
        !          6615:         }
        !          6616:     }
        !          6617:
        !          6618:     return E1000_SUCCESS;
        !          6619: }
        !          6620:
        !          6621: /*****************************************************************************
        !          6622:  *
        !          6623:  * This function sets the lplu state according to the active flag.  When
        !          6624:  * activating lplu this function also disables smart speed and vise versa.
        !          6625:  * lplu will not be activated unless the device autonegotiation advertisement
        !          6626:  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
        !          6627:  * hw: Struct containing variables accessed by shared code
        !          6628:  * active - true to enable lplu false to disable lplu.
        !          6629:  *
        !          6630:  * returns: - E1000_ERR_PHY if fail to read/write the PHY
        !          6631:  *            E1000_SUCCESS at any other case.
        !          6632:  *
        !          6633:  ****************************************************************************/
        !          6634:
        !          6635: STATIC int32_t
        !          6636: em_set_d3_lplu_state(struct em_hw *hw,
        !          6637:                         boolean_t active)
        !          6638: {
        !          6639:     uint32_t phy_ctrl = 0;
        !          6640:     int32_t ret_val;
        !          6641:     uint16_t phy_data;
        !          6642:     DEBUGFUNC("em_set_d3_lplu_state");
        !          6643:
        !          6644:     if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2
        !          6645:         && hw->phy_type != em_phy_igp_3)
        !          6646:         return E1000_SUCCESS;
        !          6647:
        !          6648:     /* During driver activity LPLU should not be used or it will attain link
        !          6649:      * from the lowest speeds starting from 10Mbps. The capability is used for
        !          6650:      * Dx transitions and states */
        !          6651:     if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
        !          6652:         ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
        !          6653:         if (ret_val)
        !          6654:             return ret_val;
        !          6655:     } else if (hw->mac_type == em_ich8lan) {
        !          6656:         /* MAC writes into PHY register based on the state transition
        !          6657:          * and start auto-negotiation. SW driver can overwrite the settings
        !          6658:          * in CSR PHY power control E1000_PHY_CTRL register. */
        !          6659:         phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
        !          6660:     } else {
        !          6661:         ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
        !          6662:         if (ret_val)
        !          6663:             return ret_val;
        !          6664:     }
        !          6665:
        !          6666:     if (!active) {
        !          6667:         if (hw->mac_type == em_82541_rev_2 ||
        !          6668:             hw->mac_type == em_82547_rev_2) {
        !          6669:             phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
        !          6670:             ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
        !          6671:             if (ret_val)
        !          6672:                 return ret_val;
        !          6673:         } else {
        !          6674:             if (hw->mac_type == em_ich8lan) {
        !          6675:                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
        !          6676:                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
        !          6677:             } else {
        !          6678:                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
        !          6679:                 ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
        !          6680:                                               phy_data);
        !          6681:                 if (ret_val)
        !          6682:                     return ret_val;
        !          6683:             }
        !          6684:         }
        !          6685:
        !          6686:         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
        !          6687:          * Dx states where the power conservation is most important.  During
        !          6688:          * driver activity we should enable SmartSpeed, so performance is
        !          6689:          * maintained. */
        !          6690:         if (hw->smart_speed == em_smart_speed_on) {
        !          6691:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          6692:                                          &phy_data);
        !          6693:             if (ret_val)
        !          6694:                 return ret_val;
        !          6695:
        !          6696:             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
        !          6697:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          6698:                                           phy_data);
        !          6699:             if (ret_val)
        !          6700:                 return ret_val;
        !          6701:         } else if (hw->smart_speed == em_smart_speed_off) {
        !          6702:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          6703:                                          &phy_data);
        !          6704:             if (ret_val)
        !          6705:                 return ret_val;
        !          6706:
        !          6707:             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        !          6708:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          6709:                                           phy_data);
        !          6710:             if (ret_val)
        !          6711:                 return ret_val;
        !          6712:         }
        !          6713:
        !          6714:     } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
        !          6715:                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
        !          6716:                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
        !          6717:
        !          6718:         if (hw->mac_type == em_82541_rev_2 ||
        !          6719:             hw->mac_type == em_82547_rev_2) {
        !          6720:             phy_data |= IGP01E1000_GMII_FLEX_SPD;
        !          6721:             ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
        !          6722:             if (ret_val)
        !          6723:                 return ret_val;
        !          6724:         } else {
        !          6725:             if (hw->mac_type == em_ich8lan) {
        !          6726:                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
        !          6727:                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
        !          6728:             } else {
        !          6729:                 phy_data |= IGP02E1000_PM_D3_LPLU;
        !          6730:                 ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
        !          6731:                                               phy_data);
        !          6732:                 if (ret_val)
        !          6733:                     return ret_val;
        !          6734:             }
        !          6735:         }
        !          6736:
        !          6737:         /* When LPLU is enabled we should disable SmartSpeed */
        !          6738:         ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
        !          6739:         if (ret_val)
        !          6740:             return ret_val;
        !          6741:
        !          6742:         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        !          6743:         ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
        !          6744:         if (ret_val)
        !          6745:             return ret_val;
        !          6746:
        !          6747:     }
        !          6748:     return E1000_SUCCESS;
        !          6749: }
        !          6750:
        !          6751: /*****************************************************************************
        !          6752:  *
        !          6753:  * This function sets the lplu d0 state according to the active flag.  When
        !          6754:  * activating lplu this function also disables smart speed and vise versa.
        !          6755:  * lplu will not be activated unless the device autonegotiation advertisement
        !          6756:  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
        !          6757:  * hw: Struct containing variables accessed by shared code
        !          6758:  * active - true to enable lplu false to disable lplu.
        !          6759:  *
        !          6760:  * returns: - E1000_ERR_PHY if fail to read/write the PHY
        !          6761:  *            E1000_SUCCESS at any other case.
        !          6762:  *
        !          6763:  ****************************************************************************/
        !          6764:
        !          6765: STATIC int32_t
        !          6766: em_set_d0_lplu_state(struct em_hw *hw,
        !          6767:                         boolean_t active)
        !          6768: {
        !          6769:     uint32_t phy_ctrl = 0;
        !          6770:     int32_t ret_val;
        !          6771:     uint16_t phy_data;
        !          6772:     DEBUGFUNC("em_set_d0_lplu_state");
        !          6773:
        !          6774:     if (hw->mac_type <= em_82547_rev_2)
        !          6775:         return E1000_SUCCESS;
        !          6776:
        !          6777:     if (hw->mac_type == em_ich8lan) {
        !          6778:         phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
        !          6779:     } else {
        !          6780:         ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
        !          6781:         if (ret_val)
        !          6782:             return ret_val;
        !          6783:     }
        !          6784:
        !          6785:     if (!active) {
        !          6786:         if (hw->mac_type == em_ich8lan) {
        !          6787:             phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
        !          6788:             E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
        !          6789:         } else {
        !          6790:             phy_data &= ~IGP02E1000_PM_D0_LPLU;
        !          6791:             ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
        !          6792:             if (ret_val)
        !          6793:                 return ret_val;
        !          6794:         }
        !          6795:
        !          6796:         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
        !          6797:          * Dx states where the power conservation is most important.  During
        !          6798:          * driver activity we should enable SmartSpeed, so performance is
        !          6799:          * maintained. */
        !          6800:         if (hw->smart_speed == em_smart_speed_on) {
        !          6801:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          6802:                                          &phy_data);
        !          6803:             if (ret_val)
        !          6804:                 return ret_val;
        !          6805:
        !          6806:             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
        !          6807:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          6808:                                           phy_data);
        !          6809:             if (ret_val)
        !          6810:                 return ret_val;
        !          6811:         } else if (hw->smart_speed == em_smart_speed_off) {
        !          6812:             ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          6813:                                          &phy_data);
        !          6814:             if (ret_val)
        !          6815:                 return ret_val;
        !          6816:
        !          6817:             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        !          6818:             ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
        !          6819:                                           phy_data);
        !          6820:             if (ret_val)
        !          6821:                 return ret_val;
        !          6822:         }
        !          6823:
        !          6824:
        !          6825:     } else {
        !          6826:
        !          6827:         if (hw->mac_type == em_ich8lan) {
        !          6828:             phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
        !          6829:             E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
        !          6830:         } else {
        !          6831:             phy_data |= IGP02E1000_PM_D0_LPLU;
        !          6832:             ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
        !          6833:             if (ret_val)
        !          6834:                 return ret_val;
        !          6835:         }
        !          6836:
        !          6837:         /* When LPLU is enabled we should disable SmartSpeed */
        !          6838:         ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
        !          6839:         if (ret_val)
        !          6840:             return ret_val;
        !          6841:
        !          6842:         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        !          6843:         ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
        !          6844:         if (ret_val)
        !          6845:             return ret_val;
        !          6846:
        !          6847:     }
        !          6848:     return E1000_SUCCESS;
        !          6849: }
        !          6850:
        !          6851: /******************************************************************************
        !          6852:  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
        !          6853:  *
        !          6854:  * hw - Struct containing variables accessed by shared code
        !          6855:  *****************************************************************************/
        !          6856: static int32_t
        !          6857: em_set_vco_speed(struct em_hw *hw)
        !          6858: {
        !          6859:     int32_t  ret_val;
        !          6860:     uint16_t default_page = 0;
        !          6861:     uint16_t phy_data;
        !          6862:
        !          6863:     DEBUGFUNC("em_set_vco_speed");
        !          6864:
        !          6865:     switch (hw->mac_type) {
        !          6866:     case em_82545_rev_3:
        !          6867:     case em_82546_rev_3:
        !          6868:        break;
        !          6869:     default:
        !          6870:         return E1000_SUCCESS;
        !          6871:     }
        !          6872:
        !          6873:     /* Set PHY register 30, page 5, bit 8 to 0 */
        !          6874:
        !          6875:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
        !          6876:     if (ret_val)
        !          6877:         return ret_val;
        !          6878:
        !          6879:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
        !          6880:     if (ret_val)
        !          6881:         return ret_val;
        !          6882:
        !          6883:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
        !          6884:     if (ret_val)
        !          6885:         return ret_val;
        !          6886:
        !          6887:     phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
        !          6888:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
        !          6889:     if (ret_val)
        !          6890:         return ret_val;
        !          6891:
        !          6892:     /* Set PHY register 30, page 4, bit 11 to 1 */
        !          6893:
        !          6894:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
        !          6895:     if (ret_val)
        !          6896:         return ret_val;
        !          6897:
        !          6898:     ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
        !          6899:     if (ret_val)
        !          6900:         return ret_val;
        !          6901:
        !          6902:     phy_data |= M88E1000_PHY_VCO_REG_BIT11;
        !          6903:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
        !          6904:     if (ret_val)
        !          6905:         return ret_val;
        !          6906:
        !          6907:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
        !          6908:     if (ret_val)
        !          6909:         return ret_val;
        !          6910:
        !          6911:     return E1000_SUCCESS;
        !          6912: }
        !          6913:
        !          6914:
        !          6915: /*****************************************************************************
        !          6916:  * This function reads the cookie from ARC ram.
        !          6917:  *
        !          6918:  * returns: - E1000_SUCCESS .
        !          6919:  ****************************************************************************/
        !          6920: STATIC int32_t
        !          6921: em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
        !          6922: {
        !          6923:     uint8_t i;
        !          6924:     uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
        !          6925:     uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
        !          6926:
        !          6927:     length = (length >> 2);
        !          6928:     offset = (offset >> 2);
        !          6929:
        !          6930:     for (i = 0; i < length; i++) {
        !          6931:         *((uint32_t *) buffer + i) =
        !          6932:             E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
        !          6933:     }
        !          6934:     return E1000_SUCCESS;
        !          6935: }
        !          6936:
        !          6937:
        !          6938: /*****************************************************************************
        !          6939:  * This function checks whether the HOST IF is enabled for command operaton
        !          6940:  * and also checks whether the previous command is completed.
        !          6941:  * It busy waits in case of previous command is not completed.
        !          6942:  *
        !          6943:  * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
        !          6944:  *            timeout
        !          6945:  *          - E1000_SUCCESS for success.
        !          6946:  ****************************************************************************/
        !          6947: STATIC int32_t
        !          6948: em_mng_enable_host_if(struct em_hw * hw)
        !          6949: {
        !          6950:     uint32_t hicr;
        !          6951:     uint8_t i;
        !          6952:
        !          6953:     /* Check that the host interface is enabled. */
        !          6954:     hicr = E1000_READ_REG(hw, HICR);
        !          6955:     if ((hicr & E1000_HICR_EN) == 0) {
        !          6956:         DEBUGOUT("E1000_HOST_EN bit disabled.\n");
        !          6957:         return -E1000_ERR_HOST_INTERFACE_COMMAND;
        !          6958:     }
        !          6959:     /* check the previous command is completed */
        !          6960:     for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
        !          6961:         hicr = E1000_READ_REG(hw, HICR);
        !          6962:         if (!(hicr & E1000_HICR_C))
        !          6963:             break;
        !          6964:         msec_delay_irq(1);
        !          6965:     }
        !          6966:
        !          6967:     if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
        !          6968:         DEBUGOUT("Previous command timeout failed .\n");
        !          6969:         return -E1000_ERR_HOST_INTERFACE_COMMAND;
        !          6970:     }
        !          6971:     return E1000_SUCCESS;
        !          6972: }
        !          6973:
        !          6974: /*****************************************************************************
        !          6975:  * This function checks the mode of the firmware.
        !          6976:  *
        !          6977:  * returns  - TRUE when the mode is IAMT or FALSE.
        !          6978:  ****************************************************************************/
        !          6979: boolean_t
        !          6980: em_check_mng_mode(struct em_hw *hw)
        !          6981: {
        !          6982:     uint32_t fwsm;
        !          6983:
        !          6984:     fwsm = E1000_READ_REG(hw, FWSM);
        !          6985:
        !          6986:     if (hw->mac_type == em_ich8lan) {
        !          6987:         if ((fwsm & E1000_FWSM_MODE_MASK) ==
        !          6988:             (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
        !          6989:             return TRUE;
        !          6990:     } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
        !          6991:                (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
        !          6992:         return TRUE;
        !          6993:
        !          6994:     return FALSE;
        !          6995: }
        !          6996:
        !          6997: /*****************************************************************************
        !          6998:  * This function calculates the checksum.
        !          6999:  *
        !          7000:  * returns  - checksum of buffer contents.
        !          7001:  ****************************************************************************/
        !          7002: STATIC uint8_t
        !          7003: em_calculate_mng_checksum(char *buffer, uint32_t length)
        !          7004: {
        !          7005:     uint8_t sum = 0;
        !          7006:     uint32_t i;
        !          7007:
        !          7008:     if (!buffer)
        !          7009:         return 0;
        !          7010:
        !          7011:     for (i=0; i < length; i++)
        !          7012:         sum += buffer[i];
        !          7013:
        !          7014:     return (uint8_t) (0 - sum);
        !          7015: }
        !          7016:
        !          7017: /*****************************************************************************
        !          7018:  * This function checks whether tx pkt filtering needs to be enabled or not.
        !          7019:  *
        !          7020:  * returns  - TRUE for packet filtering or FALSE.
        !          7021:  ****************************************************************************/
        !          7022: boolean_t
        !          7023: em_enable_tx_pkt_filtering(struct em_hw *hw)
        !          7024: {
        !          7025:     /* called in init as well as watchdog timer functions */
        !          7026:
        !          7027:     int32_t ret_val, checksum;
        !          7028:     boolean_t tx_filter = FALSE;
        !          7029:     struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
        !          7030:     uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
        !          7031:
        !          7032:     if (em_check_mng_mode(hw)) {
        !          7033:         ret_val = em_mng_enable_host_if(hw);
        !          7034:         if (ret_val == E1000_SUCCESS) {
        !          7035:             ret_val = em_host_if_read_cookie(hw, buffer);
        !          7036:             if (ret_val == E1000_SUCCESS) {
        !          7037:                 checksum = hdr->checksum;
        !          7038:                 hdr->checksum = 0;
        !          7039:                 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
        !          7040:                     checksum == em_calculate_mng_checksum((char *)buffer,
        !          7041:                                                E1000_MNG_DHCP_COOKIE_LENGTH)) {
        !          7042:                     if (hdr->status &
        !          7043:                         E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
        !          7044:                         tx_filter = TRUE;
        !          7045:                 } else
        !          7046:                     tx_filter = TRUE;
        !          7047:             } else
        !          7048:                 tx_filter = TRUE;
        !          7049:         }
        !          7050:     }
        !          7051:
        !          7052:     hw->tx_pkt_filtering = tx_filter;
        !          7053:     return tx_filter;
        !          7054: }
        !          7055:
        !          7056:
        !          7057: static int32_t
        !          7058: em_polarity_reversal_workaround(struct em_hw *hw)
        !          7059: {
        !          7060:     int32_t ret_val;
        !          7061:     uint16_t mii_status_reg;
        !          7062:     uint16_t i;
        !          7063:
        !          7064:     /* Polarity reversal workaround for forced 10F/10H links. */
        !          7065:
        !          7066:     /* Disable the transmitter on the PHY */
        !          7067:
        !          7068:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
        !          7069:     if (ret_val)
        !          7070:         return ret_val;
        !          7071:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
        !          7072:     if (ret_val)
        !          7073:         return ret_val;
        !          7074:
        !          7075:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
        !          7076:     if (ret_val)
        !          7077:         return ret_val;
        !          7078:
        !          7079:     /* This loop will early-out if the NO link condition has been met. */
        !          7080:     for (i = PHY_FORCE_TIME; i > 0; i--) {
        !          7081:         /* Read the MII Status Register and wait for Link Status bit
        !          7082:          * to be clear.
        !          7083:          */
        !          7084:
        !          7085:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          7086:         if (ret_val)
        !          7087:             return ret_val;
        !          7088:
        !          7089:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          7090:         if (ret_val)
        !          7091:             return ret_val;
        !          7092:
        !          7093:         if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
        !          7094:         msec_delay_irq(100);
        !          7095:     }
        !          7096:
        !          7097:     /* Recommended delay time after link has been lost */
        !          7098:     msec_delay_irq(1000);
        !          7099:
        !          7100:     /* Now we will re-enable the transmitter on the PHY */
        !          7101:
        !          7102:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
        !          7103:     if (ret_val)
        !          7104:         return ret_val;
        !          7105:     msec_delay_irq(50);
        !          7106:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
        !          7107:     if (ret_val)
        !          7108:         return ret_val;
        !          7109:     msec_delay_irq(50);
        !          7110:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
        !          7111:     if (ret_val)
        !          7112:         return ret_val;
        !          7113:     msec_delay_irq(50);
        !          7114:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
        !          7115:     if (ret_val)
        !          7116:         return ret_val;
        !          7117:
        !          7118:     ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
        !          7119:     if (ret_val)
        !          7120:         return ret_val;
        !          7121:
        !          7122:     /* This loop will early-out if the link condition has been met. */
        !          7123:     for (i = PHY_FORCE_TIME; i > 0; i--) {
        !          7124:         /* Read the MII Status Register and wait for Link Status bit
        !          7125:          * to be set.
        !          7126:          */
        !          7127:
        !          7128:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          7129:         if (ret_val)
        !          7130:             return ret_val;
        !          7131:
        !          7132:         ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        !          7133:         if (ret_val)
        !          7134:             return ret_val;
        !          7135:
        !          7136:         if (mii_status_reg & MII_SR_LINK_STATUS) break;
        !          7137:         msec_delay_irq(100);
        !          7138:     }
        !          7139:     return E1000_SUCCESS;
        !          7140: }
        !          7141:
        !          7142: /***************************************************************************
        !          7143:  *
        !          7144:  * Disables PCI-Express master access.
        !          7145:  *
        !          7146:  * hw: Struct containing variables accessed by shared code
        !          7147:  *
        !          7148:  * returns: - none.
        !          7149:  *
        !          7150:  ***************************************************************************/
        !          7151: STATIC void
        !          7152: em_set_pci_express_master_disable(struct em_hw *hw)
        !          7153: {
        !          7154:     uint32_t ctrl;
        !          7155:
        !          7156:     DEBUGFUNC("em_set_pci_express_master_disable");
        !          7157:
        !          7158:     if (hw->bus_type != em_bus_type_pci_express)
        !          7159:         return;
        !          7160:
        !          7161:     ctrl = E1000_READ_REG(hw, CTRL);
        !          7162:     ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
        !          7163:     E1000_WRITE_REG(hw, CTRL, ctrl);
        !          7164: }
        !          7165:
        !          7166: /*******************************************************************************
        !          7167:  *
        !          7168:  * Disables PCI-Express master access and verifies there are no pending requests
        !          7169:  *
        !          7170:  * hw: Struct containing variables accessed by shared code
        !          7171:  *
        !          7172:  * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
        !          7173:  *            caused the master requests to be disabled.
        !          7174:  *            E1000_SUCCESS master requests disabled.
        !          7175:  *
        !          7176:  ******************************************************************************/
        !          7177: int32_t
        !          7178: em_disable_pciex_master(struct em_hw *hw)
        !          7179: {
        !          7180:     int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
        !          7181:
        !          7182:     DEBUGFUNC("em_disable_pciex_master");
        !          7183:
        !          7184:     if (hw->bus_type != em_bus_type_pci_express)
        !          7185:         return E1000_SUCCESS;
        !          7186:
        !          7187:     em_set_pci_express_master_disable(hw);
        !          7188:
        !          7189:     while (timeout) {
        !          7190:         if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
        !          7191:             break;
        !          7192:         else
        !          7193:             usec_delay(100);
        !          7194:         timeout--;
        !          7195:     }
        !          7196:
        !          7197:     if (!timeout) {
        !          7198:         DEBUGOUT("Master requests are pending.\n");
        !          7199:         return -E1000_ERR_MASTER_REQUESTS_PENDING;
        !          7200:     }
        !          7201:
        !          7202:     return E1000_SUCCESS;
        !          7203: }
        !          7204:
        !          7205: /*******************************************************************************
        !          7206:  *
        !          7207:  * Check for EEPROM Auto Read bit done.
        !          7208:  *
        !          7209:  * hw: Struct containing variables accessed by shared code
        !          7210:  *
        !          7211:  * returns: - E1000_ERR_RESET if fail to reset MAC
        !          7212:  *            E1000_SUCCESS at any other case.
        !          7213:  *
        !          7214:  ******************************************************************************/
        !          7215: STATIC int32_t
        !          7216: em_get_auto_rd_done(struct em_hw *hw)
        !          7217: {
        !          7218:     int32_t timeout = AUTO_READ_DONE_TIMEOUT;
        !          7219:
        !          7220:     DEBUGFUNC("em_get_auto_rd_done");
        !          7221:
        !          7222:     switch (hw->mac_type) {
        !          7223:     default:
        !          7224:         msec_delay(5);
        !          7225:         break;
        !          7226:     case em_82571:
        !          7227:     case em_82572:
        !          7228:     case em_82573:
        !          7229:     case em_80003es2lan:
        !          7230:     case em_ich8lan:
        !          7231:         while (timeout) {
        !          7232:             if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
        !          7233:                 break;
        !          7234:             else msec_delay(1);
        !          7235:             timeout--;
        !          7236:         }
        !          7237:
        !          7238:         if (!timeout) {
        !          7239:             DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
        !          7240:             return -E1000_ERR_RESET;
        !          7241:         }
        !          7242:         break;
        !          7243:     }
        !          7244:
        !          7245:     /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
        !          7246:      * Need to wait for PHY configuration completion before accessing NVM
        !          7247:      * and PHY. */
        !          7248:     if (hw->mac_type == em_82573)
        !          7249:         msec_delay(25);
        !          7250:
        !          7251:     return E1000_SUCCESS;
        !          7252: }
        !          7253:
        !          7254: /***************************************************************************
        !          7255:  * Checks if the PHY configuration is done
        !          7256:  *
        !          7257:  * hw: Struct containing variables accessed by shared code
        !          7258:  *
        !          7259:  * returns: - E1000_ERR_RESET if fail to reset MAC
        !          7260:  *            E1000_SUCCESS at any other case.
        !          7261:  *
        !          7262:  ***************************************************************************/
        !          7263: STATIC int32_t
        !          7264: em_get_phy_cfg_done(struct em_hw *hw)
        !          7265: {
        !          7266:     int32_t timeout = PHY_CFG_TIMEOUT;
        !          7267:     uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
        !          7268:
        !          7269:     DEBUGFUNC("em_get_phy_cfg_done");
        !          7270:
        !          7271:     switch (hw->mac_type) {
        !          7272:     default:
        !          7273:         msec_delay_irq(10);
        !          7274:         break;
        !          7275:     case em_80003es2lan:
        !          7276:         /* Separate *_CFG_DONE_* bit for each port */
        !          7277:         if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
        !          7278:             cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
        !          7279:         /* FALLTHROUGH */
        !          7280:     case em_82571:
        !          7281:     case em_82572:
        !          7282:         while (timeout) {
        !          7283:             if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
        !          7284:                 break;
        !          7285:             else
        !          7286:                 msec_delay(1);
        !          7287:             timeout--;
        !          7288:         }
        !          7289:         if (!timeout) {
        !          7290:             DEBUGOUT("MNG configuration cycle has not completed.\n");
        !          7291:             return -E1000_ERR_RESET;
        !          7292:         }
        !          7293:         break;
        !          7294:     }
        !          7295:
        !          7296:     return E1000_SUCCESS;
        !          7297: }
        !          7298:
        !          7299: /***************************************************************************
        !          7300:  *
        !          7301:  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
        !          7302:  * adapter or Eeprom access.
        !          7303:  *
        !          7304:  * hw: Struct containing variables accessed by shared code
        !          7305:  *
        !          7306:  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
        !          7307:  *            E1000_SUCCESS at any other case.
        !          7308:  *
        !          7309:  ***************************************************************************/
        !          7310: STATIC int32_t
        !          7311: em_get_hw_eeprom_semaphore(struct em_hw *hw)
        !          7312: {
        !          7313:     int32_t timeout;
        !          7314:     uint32_t swsm;
        !          7315:
        !          7316:     DEBUGFUNC("em_get_hw_eeprom_semaphore");
        !          7317:
        !          7318:     if (!hw->eeprom_semaphore_present)
        !          7319:         return E1000_SUCCESS;
        !          7320:
        !          7321:     if (hw->mac_type == em_80003es2lan) {
        !          7322:         /* Get the SW semaphore. */
        !          7323:         if (em_get_software_semaphore(hw) != E1000_SUCCESS)
        !          7324:             return -E1000_ERR_EEPROM;
        !          7325:     }
        !          7326:
        !          7327:     /* Get the FW semaphore. */
        !          7328:     timeout = hw->eeprom.word_size + 1;
        !          7329:     while (timeout) {
        !          7330:         swsm = E1000_READ_REG(hw, SWSM);
        !          7331:         swsm |= E1000_SWSM_SWESMBI;
        !          7332:         E1000_WRITE_REG(hw, SWSM, swsm);
        !          7333:         /* if we managed to set the bit we got the semaphore. */
        !          7334:         swsm = E1000_READ_REG(hw, SWSM);
        !          7335:         if (swsm & E1000_SWSM_SWESMBI)
        !          7336:             break;
        !          7337:
        !          7338:         usec_delay(50);
        !          7339:         timeout--;
        !          7340:     }
        !          7341:
        !          7342:     if (!timeout) {
        !          7343:         /* Release semaphores */
        !          7344:         em_put_hw_eeprom_semaphore(hw);
        !          7345:         DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
        !          7346:         return -E1000_ERR_EEPROM;
        !          7347:     }
        !          7348:
        !          7349:     return E1000_SUCCESS;
        !          7350: }
        !          7351:
        !          7352: /***************************************************************************
        !          7353:  * This function clears HW semaphore bits.
        !          7354:  *
        !          7355:  * hw: Struct containing variables accessed by shared code
        !          7356:  *
        !          7357:  * returns: - None.
        !          7358:  *
        !          7359:  ***************************************************************************/
        !          7360: STATIC void
        !          7361: em_put_hw_eeprom_semaphore(struct em_hw *hw)
        !          7362: {
        !          7363:     uint32_t swsm;
        !          7364:
        !          7365:     DEBUGFUNC("em_put_hw_eeprom_semaphore");
        !          7366:
        !          7367:     if (!hw->eeprom_semaphore_present)
        !          7368:         return;
        !          7369:
        !          7370:     swsm = E1000_READ_REG(hw, SWSM);
        !          7371:     if (hw->mac_type == em_80003es2lan) {
        !          7372:         /* Release both semaphores. */
        !          7373:         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
        !          7374:     } else
        !          7375:         swsm &= ~(E1000_SWSM_SWESMBI);
        !          7376:     E1000_WRITE_REG(hw, SWSM, swsm);
        !          7377: }
        !          7378:
        !          7379: /***************************************************************************
        !          7380:  *
        !          7381:  * Obtaining software semaphore bit (SMBI) before resetting PHY.
        !          7382:  *
        !          7383:  * hw: Struct containing variables accessed by shared code
        !          7384:  *
        !          7385:  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
        !          7386:  *            E1000_SUCCESS at any other case.
        !          7387:  *
        !          7388:  ***************************************************************************/
        !          7389: STATIC int32_t
        !          7390: em_get_software_semaphore(struct em_hw *hw)
        !          7391: {
        !          7392:     int32_t timeout = hw->eeprom.word_size + 1;
        !          7393:     uint32_t swsm;
        !          7394:
        !          7395:     DEBUGFUNC("em_get_software_semaphore");
        !          7396:
        !          7397:     if (hw->mac_type != em_80003es2lan)
        !          7398:         return E1000_SUCCESS;
        !          7399:
        !          7400:     while (timeout) {
        !          7401:         swsm = E1000_READ_REG(hw, SWSM);
        !          7402:         /* If SMBI bit cleared, it is now set and we hold the semaphore */
        !          7403:         if (!(swsm & E1000_SWSM_SMBI))
        !          7404:             break;
        !          7405:         msec_delay_irq(1);
        !          7406:         timeout--;
        !          7407:     }
        !          7408:
        !          7409:     if (!timeout) {
        !          7410:         DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
        !          7411:         return -E1000_ERR_RESET;
        !          7412:     }
        !          7413:
        !          7414:     return E1000_SUCCESS;
        !          7415: }
        !          7416:
        !          7417: /***************************************************************************
        !          7418:  *
        !          7419:  * Release semaphore bit (SMBI).
        !          7420:  *
        !          7421:  * hw: Struct containing variables accessed by shared code
        !          7422:  *
        !          7423:  ***************************************************************************/
        !          7424: STATIC void
        !          7425: em_release_software_semaphore(struct em_hw *hw)
        !          7426: {
        !          7427:     uint32_t swsm;
        !          7428:
        !          7429:     DEBUGFUNC("em_release_software_semaphore");
        !          7430:
        !          7431:     if (hw->mac_type != em_80003es2lan)
        !          7432:         return;
        !          7433:
        !          7434:     swsm = E1000_READ_REG(hw, SWSM);
        !          7435:     /* Release the SW semaphores.*/
        !          7436:     swsm &= ~E1000_SWSM_SMBI;
        !          7437:     E1000_WRITE_REG(hw, SWSM, swsm);
        !          7438: }
        !          7439:
        !          7440: /******************************************************************************
        !          7441:  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
        !          7442:  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
        !          7443:  * the caller to figure out how to deal with it.
        !          7444:  *
        !          7445:  * hw - Struct containing variables accessed by shared code
        !          7446:  *
        !          7447:  * returns: - E1000_BLK_PHY_RESET
        !          7448:  *            E1000_SUCCESS
        !          7449:  *
        !          7450:  *****************************************************************************/
        !          7451: int32_t
        !          7452: em_check_phy_reset_block(struct em_hw *hw)
        !          7453: {
        !          7454:     uint32_t manc = 0;
        !          7455:     uint32_t fwsm = 0;
        !          7456:
        !          7457:     if (hw->mac_type == em_ich8lan) {
        !          7458:         fwsm = E1000_READ_REG(hw, FWSM);
        !          7459:         return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
        !          7460:                                             : E1000_BLK_PHY_RESET;
        !          7461:     }
        !          7462:
        !          7463:     if (hw->mac_type > em_82547_rev_2)
        !          7464:         manc = E1000_READ_REG(hw, MANC);
        !          7465:     return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
        !          7466:         E1000_BLK_PHY_RESET : E1000_SUCCESS;
        !          7467: }
        !          7468:
        !          7469: /******************************************************************************
        !          7470:  * Configure PCI-Ex no-snoop
        !          7471:  *
        !          7472:  * hw - Struct containing variables accessed by shared code.
        !          7473:  * no_snoop - Bitmap of no-snoop events.
        !          7474:  *
        !          7475:  * returns: E1000_SUCCESS
        !          7476:  *
        !          7477:  *****************************************************************************/
        !          7478: STATIC int32_t
        !          7479: em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop)
        !          7480: {
        !          7481:     uint32_t gcr_reg = 0;
        !          7482:
        !          7483:     DEBUGFUNC("em_set_pci_ex_no_snoop");
        !          7484:
        !          7485:     if (hw->bus_type == em_bus_type_unknown)
        !          7486:         em_get_bus_info(hw);
        !          7487:
        !          7488:     if (hw->bus_type != em_bus_type_pci_express)
        !          7489:         return E1000_SUCCESS;
        !          7490:
        !          7491:     if (no_snoop) {
        !          7492:         gcr_reg = E1000_READ_REG(hw, GCR);
        !          7493:         gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
        !          7494:         gcr_reg |= no_snoop;
        !          7495:         E1000_WRITE_REG(hw, GCR, gcr_reg);
        !          7496:     }
        !          7497:     if (hw->mac_type == em_ich8lan) {
        !          7498:         uint32_t ctrl_ext;
        !          7499:
        !          7500:         E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
        !          7501:
        !          7502:         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        !          7503:         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
        !          7504:         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        !          7505:     }
        !          7506:
        !          7507:     return E1000_SUCCESS;
        !          7508: }
        !          7509:
        !          7510: /***************************************************************************
        !          7511:  *
        !          7512:  * Get software semaphore FLAG bit (SWFLAG).
        !          7513:  * SWFLAG is used to synchronize the access to all shared resource between
        !          7514:  * SW, FW and HW.
        !          7515:  *
        !          7516:  * hw: Struct containing variables accessed by shared code
        !          7517:  *
        !          7518:  ***************************************************************************/
        !          7519: STATIC int32_t
        !          7520: em_get_software_flag(struct em_hw *hw)
        !          7521: {
        !          7522:     int32_t timeout = PHY_CFG_TIMEOUT;
        !          7523:     uint32_t extcnf_ctrl;
        !          7524:
        !          7525:     DEBUGFUNC("em_get_software_flag");
        !          7526:
        !          7527:     if (hw->mac_type == em_ich8lan) {
        !          7528:         while (timeout) {
        !          7529:             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
        !          7530:             extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
        !          7531:             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
        !          7532:
        !          7533:             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
        !          7534:             if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
        !          7535:                 break;
        !          7536:             msec_delay_irq(1);
        !          7537:             timeout--;
        !          7538:         }
        !          7539:
        !          7540:         if (!timeout) {
        !          7541:             DEBUGOUT("FW or HW locks the resource too long.\n");
        !          7542:             return -E1000_ERR_CONFIG;
        !          7543:         }
        !          7544:     }
        !          7545:
        !          7546:     return E1000_SUCCESS;
        !          7547: }
        !          7548:
        !          7549: /***************************************************************************
        !          7550:  *
        !          7551:  * Release software semaphore FLAG bit (SWFLAG).
        !          7552:  * SWFLAG is used to synchronize the access to all shared resource between
        !          7553:  * SW, FW and HW.
        !          7554:  *
        !          7555:  * hw: Struct containing variables accessed by shared code
        !          7556:  *
        !          7557:  ***************************************************************************/
        !          7558: STATIC void
        !          7559: em_release_software_flag(struct em_hw *hw)
        !          7560: {
        !          7561:     uint32_t extcnf_ctrl;
        !          7562:
        !          7563:     DEBUGFUNC("em_release_software_flag");
        !          7564:
        !          7565:     if (hw->mac_type == em_ich8lan) {
        !          7566:         extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
        !          7567:         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
        !          7568:         E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
        !          7569:     }
        !          7570:
        !          7571:     return;
        !          7572: }
        !          7573:
        !          7574:
        !          7575: /******************************************************************************
        !          7576:  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
        !          7577:  * register.
        !          7578:  *
        !          7579:  * hw - Struct containing variables accessed by shared code
        !          7580:  * offset - offset of word in the EEPROM to read
        !          7581:  * data - word read from the EEPROM
        !          7582:  * words - number of words to read
        !          7583:  *****************************************************************************/
        !          7584: STATIC int32_t
        !          7585: em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
        !          7586:                        uint16_t *data)
        !          7587: {
        !          7588:     int32_t  error = E1000_SUCCESS;
        !          7589:     uint32_t flash_bank = 0;
        !          7590:     uint32_t act_offset = 0;
        !          7591:     uint32_t bank_offset = 0;
        !          7592:     uint16_t word = 0;
        !          7593:     uint16_t i = 0;
        !          7594:
        !          7595:     /* We need to know which is the valid flash bank.  In the event
        !          7596:      * that we didn't allocate eeprom_shadow_ram, we may not be
        !          7597:      * managing flash_bank.  So it cannot be trusted and needs
        !          7598:      * to be updated with each read.
        !          7599:      */
        !          7600:     /* Value of bit 22 corresponds to the flash bank we're on. */
        !          7601:     flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
        !          7602:
        !          7603:     /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
        !          7604:     bank_offset = flash_bank * (hw->flash_bank_size * 2);
        !          7605:
        !          7606:     error = em_get_software_flag(hw);
        !          7607:     if (error != E1000_SUCCESS)
        !          7608:         return error;
        !          7609:
        !          7610:     for (i = 0; i < words; i++) {
        !          7611:         if (hw->eeprom_shadow_ram != NULL &&
        !          7612:             hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
        !          7613:             data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
        !          7614:         } else {
        !          7615:             /* The NVM part needs a byte offset, hence * 2 */
        !          7616:             act_offset = bank_offset + ((offset + i) * 2);
        !          7617:             error = em_read_ich8_word(hw, act_offset, &word);
        !          7618:             if (error != E1000_SUCCESS)
        !          7619:                 break;
        !          7620:             data[i] = word;
        !          7621:         }
        !          7622:     }
        !          7623:
        !          7624:     em_release_software_flag(hw);
        !          7625:
        !          7626:     return error;
        !          7627: }
        !          7628:
        !          7629: /******************************************************************************
        !          7630:  * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
        !          7631:  * register.  Actually, writes are written to the shadow ram cache in the hw
        !          7632:  * structure hw->em_shadow_ram.  em_commit_shadow_ram flushes this to
        !          7633:  * the NVM, which occurs when the NVM checksum is updated.
        !          7634:  *
        !          7635:  * hw - Struct containing variables accessed by shared code
        !          7636:  * offset - offset of word in the EEPROM to write
        !          7637:  * words - number of words to write
        !          7638:  * data - words to write to the EEPROM
        !          7639:  *****************************************************************************/
        !          7640: STATIC int32_t
        !          7641: em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words,
        !          7642:                         uint16_t *data)
        !          7643: {
        !          7644:     uint32_t i = 0;
        !          7645:     int32_t error = E1000_SUCCESS;
        !          7646:
        !          7647:     error = em_get_software_flag(hw);
        !          7648:     if (error != E1000_SUCCESS)
        !          7649:         return error;
        !          7650:
        !          7651:     /* A driver can write to the NVM only if it has eeprom_shadow_ram
        !          7652:      * allocated.  Subsequent reads to the modified words are read from
        !          7653:      * this cached structure as well.  Writes will only go into this
        !          7654:      * cached structure unless it's followed by a call to
        !          7655:      * em_update_eeprom_checksum() where it will commit the changes
        !          7656:      * and clear the "modified" field.
        !          7657:      */
        !          7658:     if (hw->eeprom_shadow_ram != NULL) {
        !          7659:         for (i = 0; i < words; i++) {
        !          7660:             if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
        !          7661:                 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
        !          7662:                 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
        !          7663:             } else {
        !          7664:                 error = -E1000_ERR_EEPROM;
        !          7665:                 break;
        !          7666:             }
        !          7667:         }
        !          7668:     } else {
        !          7669:         /* Drivers have the option to not allocate eeprom_shadow_ram as long
        !          7670:          * as they don't perform any NVM writes.  An attempt in doing so
        !          7671:          * will result in this error.
        !          7672:          */
        !          7673:         error = -E1000_ERR_EEPROM;
        !          7674:     }
        !          7675:
        !          7676:     em_release_software_flag(hw);
        !          7677:
        !          7678:     return error;
        !          7679: }
        !          7680:
        !          7681: /******************************************************************************
        !          7682:  * This function does initial flash setup so that a new read/write/erase cycle
        !          7683:  * can be started.
        !          7684:  *
        !          7685:  * hw - The pointer to the hw structure
        !          7686:  ****************************************************************************/
        !          7687: STATIC int32_t
        !          7688: em_ich8_cycle_init(struct em_hw *hw)
        !          7689: {
        !          7690:     union ich8_hws_flash_status hsfsts;
        !          7691:     int32_t error = E1000_ERR_EEPROM;
        !          7692:     int32_t i     = 0;
        !          7693:
        !          7694:     DEBUGFUNC("em_ich8_cycle_init");
        !          7695:
        !          7696:     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
        !          7697:
        !          7698:     /* May be check the Flash Des Valid bit in Hw status */
        !          7699:     if (hsfsts.hsf_status.fldesvalid == 0) {
        !          7700:         DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
        !          7701:         return error;
        !          7702:     }
        !          7703:
        !          7704:     /* Clear FCERR in Hw status by writing 1 */
        !          7705:     /* Clear DAEL in Hw status by writing a 1 */
        !          7706:     hsfsts.hsf_status.flcerr = 1;
        !          7707:     hsfsts.hsf_status.dael = 1;
        !          7708:
        !          7709:     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
        !          7710:
        !          7711:     /* Either we should have a hardware SPI cycle in progress bit to check
        !          7712:      * against, in order to start a new cycle or FDONE bit should be changed
        !          7713:      * in the hardware so that it is 1 after harware reset, which can then be
        !          7714:      * used as an indication whether a cycle is in progress or has been
        !          7715:      * completed .. we should also have some software semaphore mechanism to
        !          7716:      * guard FDONE or the cycle in progress bit so that two threads access to
        !          7717:      * those bits can be sequentiallized or a way so that 2 threads dont
        !          7718:      * start the cycle at the same time */
        !          7719:
        !          7720:     if (hsfsts.hsf_status.flcinprog == 0) {
        !          7721:         /* There is no cycle running at present, so we can start a cycle */
        !          7722:         /* Begin by setting Flash Cycle Done. */
        !          7723:         hsfsts.hsf_status.flcdone = 1;
        !          7724:         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
        !          7725:         error = E1000_SUCCESS;
        !          7726:     } else {
        !          7727:         /* otherwise poll for sometime so the current cycle has a chance
        !          7728:          * to end before giving up. */
        !          7729:         for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
        !          7730:             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
        !          7731:             if (hsfsts.hsf_status.flcinprog == 0) {
        !          7732:                 error = E1000_SUCCESS;
        !          7733:                 break;
        !          7734:             }
        !          7735:             usec_delay(1);
        !          7736:         }
        !          7737:         if (error == E1000_SUCCESS) {
        !          7738:             /* Successful in waiting for previous cycle to timeout,
        !          7739:              * now set the Flash Cycle Done. */
        !          7740:             hsfsts.hsf_status.flcdone = 1;
        !          7741:             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
        !          7742:         } else {
        !          7743:             DEBUGOUT("Flash controller busy, cannot get access");
        !          7744:         }
        !          7745:     }
        !          7746:     return error;
        !          7747: }
        !          7748:
        !          7749: /******************************************************************************
        !          7750:  * This function starts a flash cycle and waits for its completion
        !          7751:  *
        !          7752:  * hw - The pointer to the hw structure
        !          7753:  ****************************************************************************/
        !          7754: STATIC int32_t
        !          7755: em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout)
        !          7756: {
        !          7757:     union ich8_hws_flash_ctrl hsflctl;
        !          7758:     union ich8_hws_flash_status hsfsts;
        !          7759:     int32_t error = E1000_ERR_EEPROM;
        !          7760:     uint32_t i = 0;
        !          7761:
        !          7762:     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
        !          7763:     hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
        !          7764:     hsflctl.hsf_ctrl.flcgo = 1;
        !          7765:     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
        !          7766:
        !          7767:     /* wait till FDONE bit is set to 1 */
        !          7768:     do {
        !          7769:         hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
        !          7770:         if (hsfsts.hsf_status.flcdone == 1)
        !          7771:             break;
        !          7772:         usec_delay(1);
        !          7773:         i++;
        !          7774:     } while (i < timeout);
        !          7775:     if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
        !          7776:         error = E1000_SUCCESS;
        !          7777:     }
        !          7778:     return error;
        !          7779: }
        !          7780:
        !          7781: /******************************************************************************
        !          7782:  * Reads a byte or word from the NVM using the ICH8 flash access registers.
        !          7783:  *
        !          7784:  * hw - The pointer to the hw structure
        !          7785:  * index - The index of the byte or word to read.
        !          7786:  * size - Size of data to read, 1=byte 2=word
        !          7787:  * data - Pointer to the word to store the value read.
        !          7788:  *****************************************************************************/
        !          7789: STATIC int32_t
        !          7790: em_read_ich8_data(struct em_hw *hw, uint32_t index,
        !          7791:                      uint32_t size, uint16_t* data)
        !          7792: {
        !          7793:     union ich8_hws_flash_status hsfsts;
        !          7794:     union ich8_hws_flash_ctrl hsflctl;
        !          7795:     uint32_t flash_linear_address;
        !          7796:     uint32_t flash_data = 0;
        !          7797:     int32_t error = -E1000_ERR_EEPROM;
        !          7798:     int32_t count = 0;
        !          7799:
        !          7800:     DEBUGFUNC("em_read_ich8_data");
        !          7801:
        !          7802:     if (size < 1  || size > 2 || data == 0x0 ||
        !          7803:         index > ICH_FLASH_LINEAR_ADDR_MASK)
        !          7804:         return error;
        !          7805:
        !          7806:     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
        !          7807:                            hw->flash_base_addr;
        !          7808:
        !          7809:     do {
        !          7810:         usec_delay(1);
        !          7811:         /* Steps */
        !          7812:         error = em_ich8_cycle_init(hw);
        !          7813:         if (error != E1000_SUCCESS)
        !          7814:             break;
        !          7815:
        !          7816:         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
        !          7817:         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
        !          7818:         hsflctl.hsf_ctrl.fldbcount = size - 1;
        !          7819:         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
        !          7820:         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
        !          7821:
        !          7822:         /* Write the last 24 bits of index into Flash Linear address field in
        !          7823:          * Flash Address */
        !          7824:         /* TODO: TBD maybe check the index against the size of flash */
        !          7825:
        !          7826:         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
        !          7827:
        !          7828:         error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
        !          7829:
        !          7830:         /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
        !          7831:          * sequence a few more times, else read in (shift in) the Flash Data0,
        !          7832:          * the order is least significant byte first msb to lsb */
        !          7833:         if (error == E1000_SUCCESS) {
        !          7834:             flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
        !          7835:             if (size == 1) {
        !          7836:                 *data = (uint8_t)(flash_data & 0x000000FF);
        !          7837:             } else if (size == 2) {
        !          7838:                 *data = (uint16_t)(flash_data & 0x0000FFFF);
        !          7839:             }
        !          7840:             break;
        !          7841:         } else {
        !          7842:             /* If we've gotten here, then things are probably completely hosed,
        !          7843:              * but if the error condition is detected, it won't hurt to give
        !          7844:              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
        !          7845:              */
        !          7846:             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
        !          7847:             if (hsfsts.hsf_status.flcerr == 1) {
        !          7848:                 /* Repeat for some time before giving up. */
        !          7849:                 continue;
        !          7850:             } else if (hsfsts.hsf_status.flcdone == 0) {
        !          7851:                 DEBUGOUT("Timeout error - flash cycle did not complete.");
        !          7852:                 break;
        !          7853:             }
        !          7854:         }
        !          7855:     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
        !          7856:
        !          7857:     return error;
        !          7858: }
        !          7859:
        !          7860: /******************************************************************************
        !          7861:  * Writes One /two bytes to the NVM using the ICH8 flash access registers.
        !          7862:  *
        !          7863:  * hw - The pointer to the hw structure
        !          7864:  * index - The index of the byte/word to read.
        !          7865:  * size - Size of data to read, 1=byte 2=word
        !          7866:  * data - The byte(s) to write to the NVM.
        !          7867:  *****************************************************************************/
        !          7868: STATIC int32_t
        !          7869: em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size,
        !          7870:                       uint16_t data)
        !          7871: {
        !          7872:     union ich8_hws_flash_status hsfsts;
        !          7873:     union ich8_hws_flash_ctrl hsflctl;
        !          7874:     uint32_t flash_linear_address;
        !          7875:     uint32_t flash_data = 0;
        !          7876:     int32_t error = -E1000_ERR_EEPROM;
        !          7877:     int32_t count = 0;
        !          7878:
        !          7879:     DEBUGFUNC("em_write_ich8_data");
        !          7880:
        !          7881:     if (size < 1  || size > 2 || data > size * 0xff ||
        !          7882:         index > ICH_FLASH_LINEAR_ADDR_MASK)
        !          7883:         return error;
        !          7884:
        !          7885:     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
        !          7886:                            hw->flash_base_addr;
        !          7887:
        !          7888:     do {
        !          7889:         usec_delay(1);
        !          7890:         /* Steps */
        !          7891:         error = em_ich8_cycle_init(hw);
        !          7892:         if (error != E1000_SUCCESS)
        !          7893:             break;
        !          7894:
        !          7895:         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
        !          7896:         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
        !          7897:         hsflctl.hsf_ctrl.fldbcount = size -1;
        !          7898:         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
        !          7899:         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
        !          7900:
        !          7901:         /* Write the last 24 bits of index into Flash Linear address field in
        !          7902:          * Flash Address */
        !          7903:         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
        !          7904:
        !          7905:         if (size == 1)
        !          7906:             flash_data = (uint32_t)data & 0x00FF;
        !          7907:         else
        !          7908:             flash_data = (uint32_t)data;
        !          7909:
        !          7910:         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
        !          7911:
        !          7912:         /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
        !          7913:          * sequence a few more times else done */
        !          7914:         error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
        !          7915:         if (error == E1000_SUCCESS) {
        !          7916:             break;
        !          7917:         } else {
        !          7918:             /* If we're here, then things are most likely completely hosed,
        !          7919:              * but if the error condition is detected, it won't hurt to give
        !          7920:              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
        !          7921:              */
        !          7922:             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
        !          7923:             if (hsfsts.hsf_status.flcerr == 1) {
        !          7924:                 /* Repeat for some time before giving up. */
        !          7925:                 continue;
        !          7926:             } else if (hsfsts.hsf_status.flcdone == 0) {
        !          7927:                 DEBUGOUT("Timeout error - flash cycle did not complete.");
        !          7928:                 break;
        !          7929:             }
        !          7930:         }
        !          7931:     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
        !          7932:
        !          7933:     return error;
        !          7934: }
        !          7935:
        !          7936: /******************************************************************************
        !          7937:  * Reads a single byte from the NVM using the ICH8 flash access registers.
        !          7938:  *
        !          7939:  * hw - pointer to em_hw structure
        !          7940:  * index - The index of the byte to read.
        !          7941:  * data - Pointer to a byte to store the value read.
        !          7942:  *****************************************************************************/
        !          7943: STATIC int32_t
        !          7944: em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data)
        !          7945: {
        !          7946:     int32_t status = E1000_SUCCESS;
        !          7947:     uint16_t word = 0;
        !          7948:
        !          7949:     status = em_read_ich8_data(hw, index, 1, &word);
        !          7950:     if (status == E1000_SUCCESS) {
        !          7951:         *data = (uint8_t)word;
        !          7952:     }
        !          7953:
        !          7954:     return status;
        !          7955: }
        !          7956:
        !          7957: /******************************************************************************
        !          7958:  * Writes a single byte to the NVM using the ICH8 flash access registers.
        !          7959:  * Performs verification by reading back the value and then going through
        !          7960:  * a retry algorithm before giving up.
        !          7961:  *
        !          7962:  * hw - pointer to em_hw structure
        !          7963:  * index - The index of the byte to write.
        !          7964:  * byte - The byte to write to the NVM.
        !          7965:  *****************************************************************************/
        !          7966: STATIC int32_t
        !          7967: em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte)
        !          7968: {
        !          7969:     int32_t error = E1000_SUCCESS;
        !          7970:     int32_t program_retries = 0;
        !          7971:
        !          7972:     DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
        !          7973:
        !          7974:     error = em_write_ich8_byte(hw, index, byte);
        !          7975:
        !          7976:     if (error != E1000_SUCCESS) {
        !          7977:         for (program_retries = 0; program_retries < 100; program_retries++) {
        !          7978:             DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
        !          7979:             error = em_write_ich8_byte(hw, index, byte);
        !          7980:             usec_delay(100);
        !          7981:             if (error == E1000_SUCCESS)
        !          7982:                 break;
        !          7983:         }
        !          7984:     }
        !          7985:
        !          7986:     if (program_retries == 100)
        !          7987:         error = E1000_ERR_EEPROM;
        !          7988:
        !          7989:     return error;
        !          7990: }
        !          7991:
        !          7992: /******************************************************************************
        !          7993:  * Writes a single byte to the NVM using the ICH8 flash access registers.
        !          7994:  *
        !          7995:  * hw - pointer to em_hw structure
        !          7996:  * index - The index of the byte to read.
        !          7997:  * data - The byte to write to the NVM.
        !          7998:  *****************************************************************************/
        !          7999: STATIC int32_t
        !          8000: em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data)
        !          8001: {
        !          8002:     int32_t status = E1000_SUCCESS;
        !          8003:     uint16_t word = (uint16_t)data;
        !          8004:
        !          8005:     status = em_write_ich8_data(hw, index, 1, word);
        !          8006:
        !          8007:     return status;
        !          8008: }
        !          8009:
        !          8010: /******************************************************************************
        !          8011:  * Reads a word from the NVM using the ICH8 flash access registers.
        !          8012:  *
        !          8013:  * hw - pointer to em_hw structure
        !          8014:  * index - The starting byte index of the word to read.
        !          8015:  * data - Pointer to a word to store the value read.
        !          8016:  *****************************************************************************/
        !          8017: STATIC int32_t
        !          8018: em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data)
        !          8019: {
        !          8020:     int32_t status = E1000_SUCCESS;
        !          8021:     status = em_read_ich8_data(hw, index, 2, data);
        !          8022:     return status;
        !          8023: }
        !          8024:
        !          8025:
        !          8026: /******************************************************************************
        !          8027:  * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
        !          8028:  * based.
        !          8029:  *
        !          8030:  * hw - pointer to em_hw structure
        !          8031:  * bank - 0 for first bank, 1 for second bank
        !          8032:  *
        !          8033:  * Note that this function may actually erase as much as 8 or 64 KBytes.  The
        !          8034:  * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
        !          8035:  * bank size may be 4, 8 or 64 KBytes
        !          8036:  *****************************************************************************/
        !          8037: int32_t
        !          8038: em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank)
        !          8039: {
        !          8040:     union ich8_hws_flash_status hsfsts;
        !          8041:     union ich8_hws_flash_ctrl hsflctl;
        !          8042:     uint32_t flash_linear_address;
        !          8043:     int32_t  count = 0;
        !          8044:     int32_t  error = E1000_ERR_EEPROM;
        !          8045:     int32_t  iteration;
        !          8046:     int32_t  sub_sector_size = 0;
        !          8047:     int32_t  bank_size;
        !          8048:     int32_t  j = 0;
        !          8049:     int32_t  error_flag = 0;
        !          8050:
        !          8051:     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
        !          8052:
        !          8053:     /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
        !          8054:     /* 00: The Hw sector is 256 bytes, hence we need to erase 16
        !          8055:      *     consecutive sectors.  The start index for the nth Hw sector can be
        !          8056:      *     calculated as bank * 4096 + n * 256
        !          8057:      * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
        !          8058:      *     The start index for the nth Hw sector can be calculated
        !          8059:      *     as bank * 4096
        !          8060:      * 10: The HW sector is 8K bytes
        !          8061:      * 11: The Hw sector size is 64K bytes */
        !          8062:     if (hsfsts.hsf_status.berasesz == 0x0) {
        !          8063:         /* Hw sector size 256 */
        !          8064:         sub_sector_size = ICH_FLASH_SEG_SIZE_256;
        !          8065:         bank_size = ICH_FLASH_SECTOR_SIZE;
        !          8066:         iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
        !          8067:     } else if (hsfsts.hsf_status.berasesz == 0x1) {
        !          8068:         bank_size = ICH_FLASH_SEG_SIZE_4K;
        !          8069:         iteration = 1;
        !          8070:     } else if (hsfsts.hsf_status.berasesz == 0x3) {
        !          8071:         bank_size = ICH_FLASH_SEG_SIZE_64K;
        !          8072:         iteration = 1;
        !          8073:     } else {
        !          8074:         return error;
        !          8075:     }
        !          8076:
        !          8077:     for (j = 0; j < iteration ; j++) {
        !          8078:         do {
        !          8079:             count++;
        !          8080:             /* Steps */
        !          8081:             error = em_ich8_cycle_init(hw);
        !          8082:             if (error != E1000_SUCCESS) {
        !          8083:                 error_flag = 1;
        !          8084:                 break;
        !          8085:             }
        !          8086:
        !          8087:             /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
        !          8088:              * Control */
        !          8089:             hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
        !          8090:             hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
        !          8091:             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
        !          8092:
        !          8093:             /* Write the last 24 bits of an index within the block into Flash
        !          8094:              * Linear address field in Flash Address.  This probably needs to
        !          8095:              * be calculated here based off the on-chip erase sector size and
        !          8096:              * the software bank size (4, 8 or 64 KBytes) */
        !          8097:             flash_linear_address = bank * bank_size + j * sub_sector_size;
        !          8098:             flash_linear_address += hw->flash_base_addr;
        !          8099:             flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
        !          8100:
        !          8101:             E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
        !          8102:
        !          8103:             error = em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
        !          8104:             /* Check if FCERR is set to 1.  If 1, clear it and try the whole
        !          8105:              * sequence a few more times else Done */
        !          8106:             if (error == E1000_SUCCESS) {
        !          8107:                 break;
        !          8108:             } else {
        !          8109:                 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
        !          8110:                 if (hsfsts.hsf_status.flcerr == 1) {
        !          8111:                     /* repeat for some time before giving up */
        !          8112:                     continue;
        !          8113:                 } else if (hsfsts.hsf_status.flcdone == 0) {
        !          8114:                     error_flag = 1;
        !          8115:                     break;
        !          8116:                 }
        !          8117:             }
        !          8118:         } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
        !          8119:         if (error_flag == 1)
        !          8120:             break;
        !          8121:     }
        !          8122:     if (error_flag != 1)
        !          8123:         error = E1000_SUCCESS;
        !          8124:     return error;
        !          8125: }
        !          8126:
        !          8127:
        !          8128: STATIC int32_t
        !          8129: em_init_lcd_from_nvm_config_region(struct em_hw *hw,
        !          8130:                                       uint32_t cnf_base_addr, uint32_t cnf_size)
        !          8131: {
        !          8132:     uint32_t ret_val = E1000_SUCCESS;
        !          8133:     uint16_t word_addr, reg_data, reg_addr;
        !          8134:     uint16_t i;
        !          8135:
        !          8136:     /* cnf_base_addr is in DWORD */
        !          8137:     word_addr = (uint16_t)(cnf_base_addr << 1);
        !          8138:
        !          8139:     /* cnf_size is returned in size of dwords */
        !          8140:     for (i = 0; i < cnf_size; i++) {
        !          8141:         ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
        !          8142:         if (ret_val)
        !          8143:             return ret_val;
        !          8144:
        !          8145:         ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
        !          8146:         if (ret_val)
        !          8147:             return ret_val;
        !          8148:
        !          8149:         ret_val = em_get_software_flag(hw);
        !          8150:         if (ret_val != E1000_SUCCESS)
        !          8151:             return ret_val;
        !          8152:
        !          8153:         ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
        !          8154:
        !          8155:         em_release_software_flag(hw);
        !          8156:     }
        !          8157:
        !          8158:     return ret_val;
        !          8159: }
        !          8160:
        !          8161: /******************************************************************************
        !          8162:  * This function initializes the PHY from the NVM on ICH8 platforms. This
        !          8163:  * is needed due to an issue where the NVM configuration is not properly
        !          8164:  * autoloaded after power transitions. Therefore, after each PHY reset, we
        !          8165:  * will load the configuration data out of the NVM manually.
        !          8166:  *
        !          8167:  * hw: Struct containing variables accessed by shared code
        !          8168:  *****************************************************************************/
        !          8169: STATIC int32_t
        !          8170: em_init_lcd_from_nvm(struct em_hw *hw)
        !          8171: {
        !          8172:     uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
        !          8173:
        !          8174:     if (hw->phy_type != em_phy_igp_3)
        !          8175:           return E1000_SUCCESS;
        !          8176:
        !          8177:     /* Check if SW needs configure the PHY */
        !          8178:     reg_data = E1000_READ_REG(hw, FEXTNVM);
        !          8179:     if (!(reg_data & FEXTNVM_SW_CONFIG))
        !          8180:         return E1000_SUCCESS;
        !          8181:
        !          8182:     /* Wait for basic configuration completes before proceeding*/
        !          8183:     loop = 0;
        !          8184:     do {
        !          8185:         reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
        !          8186:         usec_delay(100);
        !          8187:         loop++;
        !          8188:     } while ((!reg_data) && (loop < 50));
        !          8189:
        !          8190:     /* Clear the Init Done bit for the next init event */
        !          8191:     reg_data = E1000_READ_REG(hw, STATUS);
        !          8192:     reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
        !          8193:     E1000_WRITE_REG(hw, STATUS, reg_data);
        !          8194:
        !          8195:     /* Make sure HW does not configure LCD from PHY extended configuration
        !          8196:        before SW configuration */
        !          8197:     reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
        !          8198:     if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
        !          8199:         reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
        !          8200:         cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
        !          8201:         cnf_size >>= 16;
        !          8202:         if (cnf_size) {
        !          8203:             reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
        !          8204:             cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
        !          8205:             /* cnf_base_addr is in DWORD */
        !          8206:             cnf_base_addr >>= 16;
        !          8207:
        !          8208:             /* Configure LCD from extended configuration region. */
        !          8209:             ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
        !          8210:                                                             cnf_size);
        !          8211:             if (ret_val)
        !          8212:                 return ret_val;
        !          8213:         }
        !          8214:     }
        !          8215:
        !          8216:     return E1000_SUCCESS;
        !          8217: }

CVSweb