[BACK]Return to sgec.c CVS log [TXT][DIR] Up to [local] / sys / arch / vax / if

File: [local] / sys / arch / vax / if / sgec.c (download)

Revision 1.1.1.1 (vendor branch), Tue Mar 4 16:08:50 2008 UTC (16 years, 3 months ago) by nbrk
Branch: OPENBSD_4_2_BASE, MAIN
CVS Tags: jornada-partial-support-wip, HEAD
Changes since 1.1: +0 -0 lines

Import of OpenBSD 4.2 release kernel tree with initial code to support 
Jornada 720/728, StrongARM 1110-based handheld PC.
At this point kernel roots on NFS and boots into vfs_mountroot() and traps.
What is supported:
- glass console, Jornada framebuffer (jfb) works in 16bpp direct color mode
(needs some palette tweaks for non black/white/blue colors, i think)
- saic, SA11x0 interrupt controller (needs cleanup)
- sacom, SA11x0 UART (supported only as boot console for now)
- SA11x0 GPIO controller fully supported (but can't handle multiple interrupt
handlers on one gpio pin)
- sassp, SSP port on SA11x0 that attaches spibus
- Jornada microcontroller (jmcu) to control kbd, battery, etc throught
the SPI bus (wskbd attaches on jmcu, but not tested)
- tod functions seem work
- initial code for SA-1111 (chip companion) : this is TODO

Next important steps, i think:
- gpio and intc on sa1111
- pcmcia support for sa11x0 (and sa1111 help logic)
- REAL root on nfs when we have PCMCIA support (we may use any of supported pccard NICs)
- root on wd0! (using already supported PCMCIA-ATA)

/*	$OpenBSD: sgec.c,v 1.15 2006/08/31 22:10:57 miod Exp $	*/
/*      $NetBSD: sgec.c,v 1.5 2000/06/04 02:14:14 matt Exp $ */
/*
 * Copyright (c) 1999 Ludd, University of Lule}, Sweden. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *      This product includes software developed at Ludd, University of 
 *      Lule}, Sweden and its contributors.
 * 4. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Driver for the SGEC (Second Generation Ethernet Controller), sitting
 * on for example the VAX 4000/300 (KA670). 
 *
 * The SGEC looks like a mixture of the DEQNA and the TULIP. Fun toy.
 *
 * Even though the chip is capable to use virtual addresses (read the
 * System Page Table directly) this driver doesn't do so, and there
 * is no benefit in doing it either in NetBSD of today.
 *
 * Things that is still to do:
 *	Collect statistics.
 *	Use imperfect filtering when many multicast addresses.
 */

#include "bpfilter.h"

#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/sockio.h>

#include <net/if.h>
#include <net/if_dl.h>

#include <netinet/in.h>
#include <netinet/if_ether.h>

#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif

#include <machine/bus.h>

#include <vax/if/sgecreg.h>
#include <vax/if/sgecvar.h>

void	sgec_rxintr(struct ze_softc *);
void	sgec_txintr(struct ze_softc *);
void	zeinit(struct ze_softc *);
int	zeioctl(struct ifnet *, u_long, caddr_t);
void	zekick(struct ze_softc *);
int	zereset(struct ze_softc *);
void	zestart(struct ifnet *);
void	zetimeout(struct ifnet *);
int	ze_add_rxbuf(struct ze_softc *, int);
void	ze_setup(struct ze_softc *);

struct	cfdriver ze_cd = {
	NULL, "ze", DV_IFNET
};

#define	ZE_WCSR(csr, val) \
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, csr, val)
#define	ZE_RCSR(csr) \
	bus_space_read_4(sc->sc_iot, sc->sc_ioh, csr)

/*
 * Interface exists: make available by filling in network interface
 * record.  System will initialize the interface when it is ready
 * to accept packets.
 */
void
sgec_attach(sc)
	struct ze_softc *sc;
{
	struct	ifnet *ifp = (struct ifnet *)&sc->sc_if;
	struct	ze_tdes *tp;
	struct	ze_rdes *rp;
	bus_dma_segment_t seg;
	int i, s, rseg, error;

        /*
         * Allocate DMA safe memory for descriptors and setup memory.
         */
	if ((error = bus_dmamem_alloc(sc->sc_dmat,
	    sizeof(struct ze_cdata), NBPG, 0, &seg, 1, &rseg,
	    BUS_DMA_NOWAIT)) != 0) {
		printf(": unable to allocate control data, error = %d\n",
		    error);
		goto fail_0;
	}

	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
	    sizeof(struct ze_cdata), (caddr_t *)&sc->sc_zedata,
	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
		printf(": unable to map control data, error = %d\n", error);
		goto fail_1;
	}

	if ((error = bus_dmamap_create(sc->sc_dmat,
	    sizeof(struct ze_cdata), 1,
	    sizeof(struct ze_cdata), 0, BUS_DMA_NOWAIT,
	    &sc->sc_cmap)) != 0) {
		printf(": unable to create control data DMA map, error = %d\n",
		    error);
		goto fail_2;
	}

	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cmap,
	    sc->sc_zedata, sizeof(struct ze_cdata), NULL,
	    BUS_DMA_NOWAIT)) != 0) {
		printf(": unable to load control data DMA map, error = %d\n",
		    error);
		goto fail_3;
	}

	/*
	 * Zero the newly allocated memory.
	 */
	bzero(sc->sc_zedata, sizeof(struct ze_cdata));
	/*
	 * Create the transmit descriptor DMA maps.
	 */
	for (i = 0; i < TXDESCS; i++) {
		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
		    &sc->sc_xmtmap[i]))) {
			printf(": unable to create tx DMA map %d, error = %d\n",
			    i, error);
			goto fail_4;
		}
	}

	/*
	 * Create receive buffer DMA maps.
	 */
	for (i = 0; i < RXDESCS; i++) {
		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
		    MCLBYTES, 0, BUS_DMA_NOWAIT,
		    &sc->sc_rcvmap[i]))) {
			printf(": unable to create rx DMA map %d, error = %d\n",
			    i, error);
			goto fail_5;
		}
	}
	/*
	 * Pre-allocate the receive buffers.
	 */
	s = splnet();
	for (i = 0; i < RXDESCS; i++) {
		if ((error = ze_add_rxbuf(sc, i)) != 0) {
			printf(": unable to allocate or map rx buffer %d\n,"
			    " error = %d\n", i, error);
			goto fail_6;
		}
	}
	splx(s);

	/*
	 * Create ring loops of the buffer chains.
	 * This is only done once.
	 */
	sc->sc_pzedata = (struct ze_cdata *)sc->sc_cmap->dm_segs[0].ds_addr;

	rp = sc->sc_zedata->zc_recv;
	rp[RXDESCS].ze_framelen = ZE_FRAMELEN_OW;
	rp[RXDESCS].ze_rdes1 = ZE_RDES1_CA;
	rp[RXDESCS].ze_bufaddr = (char *)sc->sc_pzedata->zc_recv;

	tp = sc->sc_zedata->zc_xmit;
	tp[TXDESCS].ze_tdr = ZE_TDR_OW;
	tp[TXDESCS].ze_tdes1 = ZE_TDES1_CA;
	tp[TXDESCS].ze_bufaddr = (char *)sc->sc_pzedata->zc_xmit;

	if (zereset(sc))
		return;

	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname);
	ifp->if_softc = sc;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_start = zestart;
	ifp->if_ioctl = zeioctl;
	ifp->if_watchdog = zetimeout;

	/*
	 * Attach the interface.
	 */
	if_attach(ifp);
	ether_ifattach(ifp);

	printf(": address %s\n", ether_sprintf(sc->sc_ac.ac_enaddr));
	return;

	/*
	 * Free any resources we've allocated during the failed attach
	 * attempt.  Do this in reverse order and fall through.
	 */
 fail_6:
	for (i = 0; i < RXDESCS; i++) {
		if (sc->sc_rxmbuf[i] != NULL) {
			bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[i]);
			m_freem(sc->sc_rxmbuf[i]);
		}
	}
 fail_5:
	for (i = 0; i < RXDESCS; i++) {
		if (sc->sc_xmtmap[i] != NULL)
			bus_dmamap_destroy(sc->sc_dmat, sc->sc_xmtmap[i]);
	}
 fail_4:
	for (i = 0; i < TXDESCS; i++) {
		if (sc->sc_rcvmap[i] != NULL)
			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rcvmap[i]);
	}
	bus_dmamap_unload(sc->sc_dmat, sc->sc_cmap);
 fail_3:
	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cmap);
 fail_2:
	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_zedata,
	    sizeof(struct ze_cdata));
 fail_1:
	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
 fail_0:
	return;
}

/*
 * Initialization of interface.
 */
void
zeinit(sc)
	struct ze_softc *sc;
{
	struct ifnet *ifp = (struct ifnet *)&sc->sc_if;
	struct ze_cdata *zc = sc->sc_zedata;
	int i;

	/*
	 * Reset the interface.
	 */
	if (zereset(sc))
		return;

	sc->sc_nexttx = sc->sc_inq = sc->sc_lastack = 0;
	/*
	 * Release and init transmit descriptors.
	 */
	for (i = 0; i < TXDESCS; i++) {
		if (sc->sc_txmbuf[i]) {
			bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[i]);
			m_freem(sc->sc_txmbuf[i]);
			sc->sc_txmbuf[i] = 0;
		}
		zc->zc_xmit[i].ze_tdr = 0; /* Clear valid bit */
	}


	/*
	 * Init receive descriptors.
	 */
	for (i = 0; i < RXDESCS; i++)
		zc->zc_recv[i].ze_framelen = ZE_FRAMELEN_OW;
	sc->sc_nextrx = 0;

	ZE_WCSR(ZE_CSR6, ZE_NICSR6_IE | ZE_NICSR6_BL_8 | ZE_NICSR6_ST |
	    ZE_NICSR6_SR | ZE_NICSR6_DC);

	ifp->if_flags |= IFF_RUNNING;
	ifp->if_flags &= ~IFF_OACTIVE;

	/*
	 * Send a setup frame.
	 * This will start the transmit machinery as well.
	 */
	ze_setup(sc);

}

/*
 * Kick off the transmit logic, if it is stopped.
 * On the VXT2000 we need to always reprogram CSR4,
 * so stop it unconditionnaly.
 */
void
zekick(struct ze_softc *sc)
{
	u_int csr5;

	csr5 = ZE_RCSR(ZE_CSR5);
	if (ISSET(sc->sc_flags, SGECF_VXTQUIRKS)) {
		if ((csr5 & ZE_NICSR5_TS) == ZE_NICSR5_TS_RUN) {
			ZE_WCSR(ZE_CSR6, ZE_RCSR(ZE_CSR6) & ~ZE_NICSR6_ST);
			while ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_TS) !=
			    ZE_NICSR5_TS_STOP)
				DELAY(10);
		}
		ZE_WCSR(ZE_CSR4,
		    (vaddr_t)&sc->sc_pzedata->zc_xmit[sc->sc_nexttx]);
		ZE_WCSR(ZE_CSR1, ZE_NICSR1_TXPD);
		if ((csr5 & ZE_NICSR5_TS) == ZE_NICSR5_TS_RUN) {
			ZE_WCSR(ZE_CSR6, ZE_RCSR(ZE_CSR6) | ZE_NICSR6_ST);
			while ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_TS) ==
			    ZE_NICSR5_TS_STOP)
				DELAY(10);
		}
	} else {
		if ((csr5 & ZE_NICSR5_TS) != ZE_NICSR5_TS_RUN)
			ZE_WCSR(ZE_CSR1, ZE_NICSR1_TXPD);
	}
}

/*
 * Start output on interface.
 */
void
zestart(ifp)
	struct ifnet *ifp;
{
	struct ze_softc *sc = ifp->if_softc;
	struct ze_cdata *zc = sc->sc_zedata;
	paddr_t	buffer;
	struct mbuf *m, *m0;
	int idx, len, s, i, totlen, error;
	int old_inq = sc->sc_inq;
	short orword;

	s = splnet();
	while (sc->sc_inq < (TXDESCS - 1)) {
		if (ISSET(sc->sc_flags, SGECF_SETUP)) {
			ze_setup(sc);
			continue;
		}
		idx = sc->sc_nexttx;
		IF_DEQUEUE(&sc->sc_if.if_snd, m);
		if (m == 0)
			goto out;
		/*
		 * Count number of mbufs in chain.
		 * Always do DMA directly from mbufs, therefore the transmit
		 * ring is really big.
		 */
		for (m0 = m, i = 0; m0; m0 = m0->m_next)
			if (m0->m_len)
				i++;
		if (i >= TXDESCS)
			panic("zestart"); /* XXX */

		if ((i + sc->sc_inq) >= (TXDESCS - 1)) {
			IF_PREPEND(&sc->sc_if.if_snd, m);
			ifp->if_flags |= IFF_OACTIVE;
			goto out;
		}
		
#if NBPFILTER > 0
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
		/*
		 * m now points to a mbuf chain that can be loaded.
		 * Loop around and set it.
		 */
		totlen = 0;
		for (m0 = m; m0; m0 = m0->m_next) {
			error = bus_dmamap_load(sc->sc_dmat, sc->sc_xmtmap[idx],
			    mtod(m0, void *), m0->m_len, 0, 0);
			buffer = sc->sc_xmtmap[idx]->dm_segs[0].ds_addr;
			len = m0->m_len;
			if (len == 0)
				continue;

			totlen += len;
			/* Word alignment calc */
			orword = 0;
			if (totlen == len)
				orword = ZE_TDES1_FS;
			if (totlen == m->m_pkthdr.len) {
				if (totlen < ETHER_ADDR_LEN)
					len += (ETHER_ADDR_LEN - totlen);
				orword |= ZE_TDES1_LS;
				sc->sc_txmbuf[idx] = m;
			}
			zc->zc_xmit[idx].ze_bufsize = len;
			zc->zc_xmit[idx].ze_bufaddr = (char *)buffer;
			zc->zc_xmit[idx].ze_tdes1 = orword | ZE_TDES1_IC;
			zc->zc_xmit[idx].ze_tdr = ZE_TDR_OW;

			if (++idx == TXDESCS)
				idx = 0;
			sc->sc_inq++;
		}
#ifdef DIAGNOSTIC
		if (totlen != m->m_pkthdr.len)
			panic("zestart: len fault");
#endif

		/*
		 * Kick off the transmit logic, if it is stopped.
		 */
		zekick(sc);
		sc->sc_nexttx = idx;
	}
	if (sc->sc_inq == (TXDESCS - 1))
		ifp->if_flags |= IFF_OACTIVE;

out:	if (old_inq < sc->sc_inq)
		ifp->if_timer = 5; /* If transmit logic dies */
	splx(s);
}

void
sgec_rxintr(struct ze_softc *sc)
{
	struct ze_cdata *zc = sc->sc_zedata;
	struct ifnet *ifp = &sc->sc_if;
	struct ether_header *eh;
	struct mbuf *m;
	u_short rdes0;
	int len;

	while ((zc->zc_recv[sc->sc_nextrx].ze_framelen &
	    ZE_FRAMELEN_OW) == 0) {
		rdes0 = zc->zc_recv[sc->sc_nextrx].ze_rdes0;
		if (rdes0 & ZE_RDES0_ES) {
			rdes0 &= ~ZE_RDES0_TL;	/* not really an error */
			if ((rdes0 & (ZE_RDES0_OF | ZE_RDES0_CE | ZE_RDES0_CS |
			    ZE_RDES0_LE | ZE_RDES0_RF)) == 0)
				rdes0 &= ~ZE_RDES0_ES;
		}
		if (rdes0 & ZE_RDES0_ES) {
			ifp->if_ierrors++;
			if (rdes0 & ZE_RDES0_CS)
				ifp->if_collisions++;
			m = NULL;
		} else {
			ifp->if_ipackets++;
			m = sc->sc_rxmbuf[sc->sc_nextrx];
			len = zc->zc_recv[sc->sc_nextrx].ze_framelen;
		}
		ze_add_rxbuf(sc, sc->sc_nextrx);
		if (m != NULL) {
			m->m_pkthdr.rcvif = ifp;
			m->m_pkthdr.len = m->m_len = len;
			eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
			if (ifp->if_bpf) {
				bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
				    ((eh->ether_dhost[0] & 1) == 0) &&
				    bcmp(sc->sc_ac.ac_enaddr, eh->ether_dhost,
				    ETHER_ADDR_LEN) != 0) {
					m_freem(m);
					continue;
				}
			}
#endif
			/*
			 * ALLMULTI means PROMISC in this driver.
			 */
			if ((ifp->if_flags & IFF_ALLMULTI) &&
			    ((eh->ether_dhost[0] & 1) == 0) &&
			    bcmp(sc->sc_ac.ac_enaddr, eh->ether_dhost,
			    ETHER_ADDR_LEN)) {
				m_freem(m);
				continue;
			}
			ether_input_mbuf(ifp, m);
		}
		if (++sc->sc_nextrx == RXDESCS)
			sc->sc_nextrx = 0;
	}
}

void
sgec_txintr(struct ze_softc *sc)
{
	struct ze_cdata *zc = sc->sc_zedata;
	struct ifnet *ifp = &sc->sc_if;
	u_short tdes0;

	while ((zc->zc_xmit[sc->sc_lastack].ze_tdr & ZE_TDR_OW) == 0) {
		int idx = sc->sc_lastack;

		if (sc->sc_lastack == sc->sc_nexttx)
			break;
		sc->sc_inq--;
		if (++sc->sc_lastack == TXDESCS)
			sc->sc_lastack = 0;

		if ((zc->zc_xmit[idx].ze_tdes1 & ZE_TDES1_DT) ==
		    ZE_TDES1_DT_SETUP) {
			continue;
		}

		tdes0 = zc->zc_xmit[idx].ze_tdes0;
		if (tdes0 & ZE_TDES0_ES) {
			if (tdes0 & ZE_TDES0_TO)
				printf("%s: transmit watchdog timeout\n",
				    sc->sc_dev.dv_xname);
			if (tdes0 & (ZE_TDES0_LO | ZE_TDES0_NC))
				printf("%s: no carrier\n",
				    sc->sc_dev.dv_xname);
			if (tdes0 & ZE_TDES0_EC) {
				printf("%s: excessive collisions, tdr %d\n",
				    sc->sc_dev.dv_xname,
				    zc->zc_xmit[idx].ze_tdr & ~ZE_TDR_OW);
				ifp->if_collisions += 16;
			} else if (tdes0 & ZE_TDES0_LC)
				ifp->if_collisions +=
				    (tdes0 & ZE_TDES0_CC) >> 3;
			if (tdes0 & ZE_TDES0_UF)
				printf("%s: underflow\n", sc->sc_dev.dv_xname);
			ifp->if_oerrors++;
			if (tdes0 & (ZE_TDES0_TO | ZE_TDES0_UF))
				zeinit(sc);
		} else {
			if (zc->zc_xmit[idx].ze_tdes1 & ZE_TDES1_LS)
				ifp->if_opackets++;
			bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[idx]);
			if (sc->sc_txmbuf[idx]) {
				m_freem(sc->sc_txmbuf[idx]);
				sc->sc_txmbuf[idx] = 0;
			}
		}
	}
	if (sc->sc_inq == 0)
		ifp->if_timer = 0;
	ifp->if_flags &= ~IFF_OACTIVE;
	zestart(ifp); /* Put in more in queue */
}

int
sgec_intr(sc)
	struct ze_softc *sc;
{
	int s, csr;

	csr = ZE_RCSR(ZE_CSR5);
	if ((csr & ZE_NICSR5_IS) == 0) /* Wasn't we */
		return 0;

	/*
	 * On some systems, interrupts are handled at spl4, this can end up
	 * in pool corruption.
	 */
	s = splnet();

	ZE_WCSR(ZE_CSR5, csr);

	if (csr & ZE_NICSR5_ME) {
		printf("%s: memory error, resetting\n", sc->sc_dev.dv_xname);
		zeinit(sc);
		return (1);
	}

	if (csr & ZE_NICSR5_RI)
		sgec_rxintr(sc);

	if (csr & ZE_NICSR5_TI)
		sgec_txintr(sc);

	splx(s);

	return 1;
}

/*
 * Process an ioctl request.
 */
int
zeioctl(ifp, cmd, data)
	struct ifnet *ifp;
	u_long cmd;
	caddr_t data;
{
	struct ze_softc *sc = ifp->if_softc;
	struct ifreq *ifr = (struct ifreq *)data;
	struct ifaddr *ifa = (struct ifaddr *)data;
	int s = splnet(), error = 0;

	switch (cmd) {

	case SIOCSIFADDR:
		ifp->if_flags |= IFF_UP;
		switch(ifa->ifa_addr->sa_family) {
#ifdef INET
		case AF_INET:
			zeinit(sc);
			arp_ifinit(&sc->sc_ac, ifa);
			break;
#endif
		}
		break;

	case SIOCSIFFLAGS:
		if ((ifp->if_flags & IFF_UP) == 0 &&
		    (ifp->if_flags & IFF_RUNNING) != 0) {
			/*
			 * If interface is marked down and it is running,
			 * stop it. (by disabling receive mechanism).
			 */
			ZE_WCSR(ZE_CSR6, ZE_RCSR(ZE_CSR6) &
			    ~(ZE_NICSR6_ST|ZE_NICSR6_SR));
			ifp->if_flags &= ~IFF_RUNNING;
		} else if ((ifp->if_flags & IFF_UP) != 0 &&
			   (ifp->if_flags & IFF_RUNNING) == 0) {
			/*
			 * If interface it marked up and it is stopped, then
			 * start it.
			 */
			zeinit(sc);
		} else if ((ifp->if_flags & IFF_UP) != 0) {
			/*
			 * Send a new setup packet to match any new changes.
			 * (Like IFF_PROMISC etc)
			 */
			ze_setup(sc);
		}
		break;

	case SIOCADDMULTI:
	case SIOCDELMULTI:
		/*
		 * Update our multicast list.
		 */
		error = (cmd == SIOCADDMULTI) ?
			ether_addmulti(ifr, &sc->sc_ac):
			ether_delmulti(ifr, &sc->sc_ac);

		if (error == ENETRESET) {
			/*
			 * Multicast list has changed; set the hardware filter
			 * accordingly.
			 */
			if (ifp->if_flags & IFF_RUNNING)
				ze_setup(sc);
			error = 0;
		}
		break;

	default:
		error = EINVAL;

	}
	splx(s);
	return (error);
}

/*
 * Add a receive buffer to the indicated descriptor.
 */
int
ze_add_rxbuf(sc, i)
	struct ze_softc *sc;
	int i;
{
	struct mbuf *m;
	struct ze_rdes *rp;
	int error;

	splassert(IPL_NET);

	MGETHDR(m, M_DONTWAIT, MT_DATA);
	if (m == NULL)
		return (ENOBUFS);

	MCLGET(m, M_DONTWAIT);
	if ((m->m_flags & M_EXT) == 0) {
		m_freem(m);
		return (ENOBUFS);
	}

	if (sc->sc_rxmbuf[i] != NULL)
		bus_dmamap_unload(sc->sc_dmat, sc->sc_rcvmap[i]);

	error = bus_dmamap_load(sc->sc_dmat, sc->sc_rcvmap[i],
	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
	if (error)
		panic("%s: can't load rx DMA map %d, error = %d",
		    sc->sc_dev.dv_xname, i, error);
	sc->sc_rxmbuf[i] = m;

	bus_dmamap_sync(sc->sc_dmat, sc->sc_rcvmap[i], 0,
	    sc->sc_rcvmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);

	/*
	 * We know that the mbuf cluster is page aligned. Also, be sure
	 * that the IP header will be longword aligned.
	 */
	m->m_data += 2;
	rp = &sc->sc_zedata->zc_recv[i];
	rp->ze_bufsize = (m->m_ext.ext_size - 2);
	rp->ze_bufaddr = (char *)sc->sc_rcvmap[i]->dm_segs[0].ds_addr + 2;
	rp->ze_framelen = ZE_FRAMELEN_OW;

	return (0);
}

/*
 * Create a setup packet and put in queue for sending.
 */
void
ze_setup(sc)
	struct ze_softc *sc;
{
	struct ether_multi *enm;
	struct ether_multistep step;
	struct ze_cdata *zc = sc->sc_zedata;
	struct ifnet *ifp = &sc->sc_if;
	u_int8_t *enaddr = sc->sc_ac.ac_enaddr;
	int j, idx, s, reg;

	s = splnet();
	if (sc->sc_inq == (TXDESCS - 1)) {
		SET(sc->sc_flags, SGECF_SETUP);
		splx(s);
		return;
	}
	CLR(sc->sc_flags, SGECF_SETUP);

	/*
	 * Init the setup packet with valid info.
	 */
	memset(zc->zc_setup, 0xff, sizeof(zc->zc_setup)); /* Broadcast */
	bcopy(enaddr, zc->zc_setup, ETHER_ADDR_LEN);

	/*
	 * Multicast handling. The SGEC can handle up to 16 direct 
	 * ethernet addresses.
	 */
	j = 16;
	ifp->if_flags &= ~IFF_ALLMULTI;
	ETHER_FIRST_MULTI(step, &sc->sc_ac, enm);
	while (enm != NULL) {
		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, 6)) {
			ifp->if_flags |= IFF_ALLMULTI;
			break;
		}
		bcopy(enm->enm_addrlo, &zc->zc_setup[j], ETHER_ADDR_LEN);
		j += 8;
		ETHER_NEXT_MULTI(step, enm);
		if ((enm != NULL)&& (j == 128)) {
			ifp->if_flags |= IFF_ALLMULTI;
			break;
		}
	}

	/*
	 * Fiddle with the receive logic.
	 */
	reg = ZE_RCSR(ZE_CSR6);
	DELAY(10);
	ZE_WCSR(ZE_CSR6, reg & ~ZE_NICSR6_SR); /* Stop rx */
	while ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_RS) != ZE_NICSR5_RS_STOP)
		DELAY(10);
	reg &= ~ZE_NICSR6_AF;
	if (ifp->if_flags & IFF_PROMISC)
		reg |= ZE_NICSR6_AF_PROM;
	else if (ifp->if_flags & IFF_ALLMULTI)
		reg |= ZE_NICSR6_AF_ALLM;
	DELAY(10);
	ZE_WCSR(ZE_CSR6, reg);
	while ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_RS) == ZE_NICSR5_RS_STOP)
		DELAY(10);
	/*
	 * Only send a setup packet if needed.
	 */
	if ((ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) == 0) {
		idx = sc->sc_nexttx;
		zc->zc_xmit[idx].ze_tdes1 = ZE_TDES1_DT_SETUP;
		zc->zc_xmit[idx].ze_bufsize = 128;
		zc->zc_xmit[idx].ze_bufaddr = sc->sc_pzedata->zc_setup;
		zc->zc_xmit[idx].ze_tdr = ZE_TDR_OW;

		zekick(sc);

		sc->sc_inq++;
		if (++sc->sc_nexttx == TXDESCS)
			sc->sc_nexttx = 0;
	}
	splx(s);
}

/*
 * Check for dead transmit logic.
 */
void
zetimeout(ifp)
	struct ifnet *ifp;
{
	struct ze_softc *sc = ifp->if_softc;

	if (sc->sc_inq == 0)
		return;

	printf("%s: xmit logic died, resetting...\n", sc->sc_dev.dv_xname);
	/*
	 * Do a reset of interface, to get it going again.
	 * Will it work by just restart the transmit logic?
	 */
	zeinit(sc);
}

/*
 * Reset chip:
 * Set/reset the reset flag.
 *  Write interrupt vector.
 *  Write ring buffer addresses.
 *  Write SBR.
 */
int
zereset(sc)
	struct ze_softc *sc;
{
	int reg, i, s;

	ZE_WCSR(ZE_CSR6, ZE_NICSR6_RE);
	DELAY(50000);
	if (ZE_RCSR(ZE_CSR5) & ZE_NICSR5_SF) {
		printf("%s: selftest failed\n", sc->sc_dev.dv_xname);
		return 1;
	}

	/*
	 * Get the vector that were set at match time, and remember it.
	 * WHICH VECTOR TO USE? Take one unused. XXX
	 * Funny way to set vector described in the programmers manual.
	 */
	reg = ZE_NICSR0_IPL14 | sc->sc_intvec | ZE_NICSR0_MBO; /* SYNC/ASYNC??? */
	i = 10;
	s = splnet();
	do {
		if (i-- == 0) {
			printf("Failing SGEC CSR0 init\n");
			splx(s);
			return 1;
		}
		ZE_WCSR(ZE_CSR0, reg);
	} while (ZE_RCSR(ZE_CSR0) != reg);
	splx(s);

	ZE_WCSR(ZE_CSR3, (vaddr_t)sc->sc_pzedata->zc_recv);
	ZE_WCSR(ZE_CSR4, (vaddr_t)sc->sc_pzedata->zc_xmit);
	return 0;
}