[BACK]Return to fpu_emu.h CVS log [TXT][DIR] Up to [local] / sys / arch / sparc64 / fpu

Annotation of sys/arch/sparc64/fpu/fpu_emu.h, Revision 1.1.1.1

1.1       nbrk        1: /*     $OpenBSD: fpu_emu.h,v 1.5 2006/06/21 19:24:38 jason Exp $       */
                      2: /*     $NetBSD: fpu_emu.h,v 1.4 2000/08/03 18:32:07 eeh Exp $ */
                      3:
                      4: /*
                      5:  * Copyright (c) 1992, 1993
                      6:  *     The Regents of the University of California.  All rights reserved.
                      7:  *
                      8:  * This software was developed by the Computer Systems Engineering group
                      9:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
                     10:  * contributed to Berkeley.
                     11:  *
                     12:  * All advertising materials mentioning features or use of this software
                     13:  * must display the following acknowledgement:
                     14:  *     This product includes software developed by the University of
                     15:  *     California, Lawrence Berkeley Laboratory.
                     16:  *
                     17:  * Redistribution and use in source and binary forms, with or without
                     18:  * modification, are permitted provided that the following conditions
                     19:  * are met:
                     20:  * 1. Redistributions of source code must retain the above copyright
                     21:  *    notice, this list of conditions and the following disclaimer.
                     22:  * 2. Redistributions in binary form must reproduce the above copyright
                     23:  *    notice, this list of conditions and the following disclaimer in the
                     24:  *    documentation and/or other materials provided with the distribution.
                     25:  * 3. Neither the name of the University nor the names of its contributors
                     26:  *    may be used to endorse or promote products derived from this software
                     27:  *    without specific prior written permission.
                     28:  *
                     29:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
                     30:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     31:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     32:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
                     33:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     34:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     35:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     36:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     37:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     38:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     39:  * SUCH DAMAGE.
                     40:  *
                     41:  *     @(#)fpu_emu.h   8.1 (Berkeley) 6/11/93
                     42:  */
                     43:
                     44: /*
                     45:  * Floating point emulator (tailored for SPARC, but structurally
                     46:  * machine-independent).
                     47:  *
                     48:  * Floating point numbers are carried around internally in an `expanded'
                     49:  * or `unpacked' form consisting of:
                     50:  *     - sign
                     51:  *     - unbiased exponent
                     52:  *     - mantissa (`1.' + 112-bit fraction + guard + round)
                     53:  *     - sticky bit
                     54:  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
                     55:  * always nonzero.  Additional low-order `guard' and `round' bits are
                     56:  * scrunched in, making the entire mantissa 115 bits long.  This is divided
                     57:  * into four 32-bit words, with `spare' bits left over in the upper part
                     58:  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
                     59:  * number is thus kept within the half-open interval [1.0,2.0) (but see
                     60:  * the `number classes' below).  This holds even for denormalized numbers:
                     61:  * when we explode an external denorm, we normalize it, introducing low-order
                     62:  * zero bits, so that the rest of the code always sees normalized values.
                     63:  *
                     64:  * Note that a number of our algorithms use the `spare' bits at the top.
                     65:  * The most demanding algorithm---the one for sqrt---depends on two such
                     66:  * bits, so that it can represent values up to (but not including) 8.0,
                     67:  * and then it needs a carry on top of that, so that we need three `spares'.
                     68:  *
                     69:  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
                     70:  * whole words from the mantissa into it.
                     71:  *
                     72:  * All operations are done in this internal extended precision.  According
                     73:  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
                     74:  * it is OK to do a+b in extended precision and then round the result to
                     75:  * single precision---provided single, double, and extended precisions are
                     76:  * `far enough apart' (they always are), but we will try to avoid any such
                     77:  * extra work where possible.
                     78:  */
                     79: struct fpn {
                     80:        int     fp_class;               /* see below */
                     81:        int     fp_sign;                /* 0 => positive, 1 => negative */
                     82:        int     fp_exp;                 /* exponent (unbiased) */
                     83:        int     fp_sticky;              /* nonzero bits lost at right end */
                     84:        u_int   fp_mant[4];             /* 115-bit mantissa */
                     85: };
                     86:
                     87: #define        FP_NMANT        115             /* total bits in mantissa (incl g,r) */
                     88: #define        FP_NG           2               /* number of low-order guard bits */
                     89: #define        FP_LG           ((FP_NMANT - 1) & 31)   /* log2(1.0) for fp_mant[0] */
                     90: #define        FP_LG2          ((FP_NMANT - 1) & 63)   /* log2(1.0) for fp_mant[0] and fp_mant[1] */
                     91: #define        FP_QUIETBIT     (1 << (FP_LG - 1))      /* Quiet bit in NaNs (0.5) */
                     92: #define        FP_1            (1 << FP_LG)            /* 1.0 in fp_mant[0] */
                     93: #define        FP_2            (1 << (FP_LG + 1))      /* 2.0 in fp_mant[0] */
                     94:
                     95: /*
                     96:  * Number classes.  Since zero, Inf, and NaN cannot be represented using
                     97:  * the above layout, we distinguish these from other numbers via a class.
                     98:  * In addition, to make computation easier and to follow Appendix N of
                     99:  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
                    100:  */
                    101: #define        FPC_SNAN        -2              /* signalling NaN (sign irrelevant) */
                    102: #define        FPC_QNAN        -1              /* quiet NaN (sign irrelevant) */
                    103: #define        FPC_ZERO        0               /* zero (sign matters) */
                    104: #define        FPC_NUM         1               /* number (sign matters) */
                    105: #define        FPC_INF         2               /* infinity (sign matters) */
                    106:
                    107: #define        ISNAN(fp)       ((fp)->fp_class < 0)
                    108: #define        ISZERO(fp)      ((fp)->fp_class == 0)
                    109: #define        ISINF(fp)       ((fp)->fp_class == FPC_INF)
                    110:
                    111: /*
                    112:  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
                    113:  * to the `more significant' operand for our purposes.  Appendix N says that
                    114:  * the result of a computation involving two numbers are:
                    115:  *
                    116:  *     If both are SNaN: operand 2, converted to Quiet
                    117:  *     If only one is SNaN: the SNaN operand, converted to Quiet
                    118:  *     If both are QNaN: operand 2
                    119:  *     If only one is QNaN: the QNaN operand
                    120:  *
                    121:  * In addition, in operations with an Inf operand, the result is usually
                    122:  * Inf.  The class numbers are carefully arranged so that if
                    123:  *     (unsigned)class(op1) > (unsigned)class(op2)
                    124:  * then op1 is the one we want; otherwise op2 is the one we want.
                    125:  */
                    126: #define        ORDER(x, y) { \
                    127:        if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
                    128:                SWAP(x, y); \
                    129: }
                    130: #define        SWAP(x, y) { \
                    131:        register struct fpn *swap; \
                    132:        swap = (x), (x) = (y), (y) = swap; \
                    133: }
                    134:
                    135: /*
                    136:  * Emulator state.
                    137:  */
                    138: struct fpemu {
                    139:        struct  fpstate64 *fe_fpstate;  /* registers, etc */
                    140:        int     fe_fsr;                 /* fsr copy (modified during op) */
                    141:        int     fe_cx;                  /* exceptions */
                    142:        struct  fpn fe_f1;              /* operand 1 */
                    143:        struct  fpn fe_f2;              /* operand 2, if required */
                    144:        struct  fpn fe_f3;              /* available storage for result */
                    145: };
                    146:
                    147: /*
                    148:  * Arithmetic functions.
                    149:  * Each of these may modify its inputs (f1,f2) and/or the temporary.
                    150:  * Each returns a pointer to the result and/or sets exceptions.
                    151:  */
                    152: struct fpn *fpu_add(struct fpemu *);
                    153: #define        fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe))
                    154: struct fpn *fpu_mul(struct fpemu *);
                    155: struct fpn *fpu_div(struct fpemu *);
                    156: struct fpn *fpu_sqrt(struct fpemu *);
                    157:
                    158: /*
                    159:  * Other functions.
                    160:  */
                    161:
                    162: /* Perform a compare instruction (with or without unordered exception). */
                    163: void   fpu_compare(struct fpemu *, int);
                    164:
                    165: /* Build a new Quiet NaN (sign=0, frac=all 1's). */
                    166: struct fpn *fpu_newnan(struct fpemu *);
                    167:
                    168: /*
                    169:  * Shift a number right some number of bits, taking care of round/sticky.
                    170:  * Note that the result is probably not a well-formed number (it will lack
                    171:  * the normal 1-bit mant[0]&FP_1).
                    172:  */
                    173: int    fpu_shr(struct fpn *, int);
                    174:
                    175: void   fpu_explode(struct fpemu *, struct fpn *, int, int);
                    176: void   fpu_implode(struct fpemu *, struct fpn *, int, u_int *);
                    177:
                    178: #ifdef DEBUG
                    179: #define        FPE_INSN        0x1
                    180: #define        FPE_REG         0x2
                    181: #define        FPE_STATE       0x4
                    182: extern int fpe_debug;
                    183: void   fpu_dumpfpn(struct fpn *);
                    184: void   fpu_dumpstate(struct fpstate64 *);
                    185: #define        DPRINTF(x, y)   if (fpe_debug & (x)) printf y
                    186: #define DUMPFPN(x, f)  if (fpe_debug & (x)) fpu_dumpfpn((f))
                    187: #define        DUMPSTATE(x, s) if (fpe_debug & (x)) fpu_dumpstate((s))
                    188: #else
                    189: #define        DPRINTF(x, y)
                    190: #define DUMPFPN(x, f)
                    191: #define        DUMPSTATE(x, s)
                    192: #endif

CVSweb