[BACK]Return to fpu_emu.h CVS log [TXT][DIR] Up to [local] / sys / arch / sparc64 / fpu

Annotation of sys/arch/sparc64/fpu/fpu_emu.h, Revision 1.1

1.1     ! nbrk        1: /*     $OpenBSD: fpu_emu.h,v 1.5 2006/06/21 19:24:38 jason Exp $       */
        !             2: /*     $NetBSD: fpu_emu.h,v 1.4 2000/08/03 18:32:07 eeh Exp $ */
        !             3:
        !             4: /*
        !             5:  * Copyright (c) 1992, 1993
        !             6:  *     The Regents of the University of California.  All rights reserved.
        !             7:  *
        !             8:  * This software was developed by the Computer Systems Engineering group
        !             9:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
        !            10:  * contributed to Berkeley.
        !            11:  *
        !            12:  * All advertising materials mentioning features or use of this software
        !            13:  * must display the following acknowledgement:
        !            14:  *     This product includes software developed by the University of
        !            15:  *     California, Lawrence Berkeley Laboratory.
        !            16:  *
        !            17:  * Redistribution and use in source and binary forms, with or without
        !            18:  * modification, are permitted provided that the following conditions
        !            19:  * are met:
        !            20:  * 1. Redistributions of source code must retain the above copyright
        !            21:  *    notice, this list of conditions and the following disclaimer.
        !            22:  * 2. Redistributions in binary form must reproduce the above copyright
        !            23:  *    notice, this list of conditions and the following disclaimer in the
        !            24:  *    documentation and/or other materials provided with the distribution.
        !            25:  * 3. Neither the name of the University nor the names of its contributors
        !            26:  *    may be used to endorse or promote products derived from this software
        !            27:  *    without specific prior written permission.
        !            28:  *
        !            29:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
        !            30:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
        !            31:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
        !            32:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
        !            33:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
        !            34:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
        !            35:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
        !            36:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
        !            37:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
        !            38:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
        !            39:  * SUCH DAMAGE.
        !            40:  *
        !            41:  *     @(#)fpu_emu.h   8.1 (Berkeley) 6/11/93
        !            42:  */
        !            43:
        !            44: /*
        !            45:  * Floating point emulator (tailored for SPARC, but structurally
        !            46:  * machine-independent).
        !            47:  *
        !            48:  * Floating point numbers are carried around internally in an `expanded'
        !            49:  * or `unpacked' form consisting of:
        !            50:  *     - sign
        !            51:  *     - unbiased exponent
        !            52:  *     - mantissa (`1.' + 112-bit fraction + guard + round)
        !            53:  *     - sticky bit
        !            54:  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
        !            55:  * always nonzero.  Additional low-order `guard' and `round' bits are
        !            56:  * scrunched in, making the entire mantissa 115 bits long.  This is divided
        !            57:  * into four 32-bit words, with `spare' bits left over in the upper part
        !            58:  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
        !            59:  * number is thus kept within the half-open interval [1.0,2.0) (but see
        !            60:  * the `number classes' below).  This holds even for denormalized numbers:
        !            61:  * when we explode an external denorm, we normalize it, introducing low-order
        !            62:  * zero bits, so that the rest of the code always sees normalized values.
        !            63:  *
        !            64:  * Note that a number of our algorithms use the `spare' bits at the top.
        !            65:  * The most demanding algorithm---the one for sqrt---depends on two such
        !            66:  * bits, so that it can represent values up to (but not including) 8.0,
        !            67:  * and then it needs a carry on top of that, so that we need three `spares'.
        !            68:  *
        !            69:  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
        !            70:  * whole words from the mantissa into it.
        !            71:  *
        !            72:  * All operations are done in this internal extended precision.  According
        !            73:  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
        !            74:  * it is OK to do a+b in extended precision and then round the result to
        !            75:  * single precision---provided single, double, and extended precisions are
        !            76:  * `far enough apart' (they always are), but we will try to avoid any such
        !            77:  * extra work where possible.
        !            78:  */
        !            79: struct fpn {
        !            80:        int     fp_class;               /* see below */
        !            81:        int     fp_sign;                /* 0 => positive, 1 => negative */
        !            82:        int     fp_exp;                 /* exponent (unbiased) */
        !            83:        int     fp_sticky;              /* nonzero bits lost at right end */
        !            84:        u_int   fp_mant[4];             /* 115-bit mantissa */
        !            85: };
        !            86:
        !            87: #define        FP_NMANT        115             /* total bits in mantissa (incl g,r) */
        !            88: #define        FP_NG           2               /* number of low-order guard bits */
        !            89: #define        FP_LG           ((FP_NMANT - 1) & 31)   /* log2(1.0) for fp_mant[0] */
        !            90: #define        FP_LG2          ((FP_NMANT - 1) & 63)   /* log2(1.0) for fp_mant[0] and fp_mant[1] */
        !            91: #define        FP_QUIETBIT     (1 << (FP_LG - 1))      /* Quiet bit in NaNs (0.5) */
        !            92: #define        FP_1            (1 << FP_LG)            /* 1.0 in fp_mant[0] */
        !            93: #define        FP_2            (1 << (FP_LG + 1))      /* 2.0 in fp_mant[0] */
        !            94:
        !            95: /*
        !            96:  * Number classes.  Since zero, Inf, and NaN cannot be represented using
        !            97:  * the above layout, we distinguish these from other numbers via a class.
        !            98:  * In addition, to make computation easier and to follow Appendix N of
        !            99:  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
        !           100:  */
        !           101: #define        FPC_SNAN        -2              /* signalling NaN (sign irrelevant) */
        !           102: #define        FPC_QNAN        -1              /* quiet NaN (sign irrelevant) */
        !           103: #define        FPC_ZERO        0               /* zero (sign matters) */
        !           104: #define        FPC_NUM         1               /* number (sign matters) */
        !           105: #define        FPC_INF         2               /* infinity (sign matters) */
        !           106:
        !           107: #define        ISNAN(fp)       ((fp)->fp_class < 0)
        !           108: #define        ISZERO(fp)      ((fp)->fp_class == 0)
        !           109: #define        ISINF(fp)       ((fp)->fp_class == FPC_INF)
        !           110:
        !           111: /*
        !           112:  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
        !           113:  * to the `more significant' operand for our purposes.  Appendix N says that
        !           114:  * the result of a computation involving two numbers are:
        !           115:  *
        !           116:  *     If both are SNaN: operand 2, converted to Quiet
        !           117:  *     If only one is SNaN: the SNaN operand, converted to Quiet
        !           118:  *     If both are QNaN: operand 2
        !           119:  *     If only one is QNaN: the QNaN operand
        !           120:  *
        !           121:  * In addition, in operations with an Inf operand, the result is usually
        !           122:  * Inf.  The class numbers are carefully arranged so that if
        !           123:  *     (unsigned)class(op1) > (unsigned)class(op2)
        !           124:  * then op1 is the one we want; otherwise op2 is the one we want.
        !           125:  */
        !           126: #define        ORDER(x, y) { \
        !           127:        if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
        !           128:                SWAP(x, y); \
        !           129: }
        !           130: #define        SWAP(x, y) { \
        !           131:        register struct fpn *swap; \
        !           132:        swap = (x), (x) = (y), (y) = swap; \
        !           133: }
        !           134:
        !           135: /*
        !           136:  * Emulator state.
        !           137:  */
        !           138: struct fpemu {
        !           139:        struct  fpstate64 *fe_fpstate;  /* registers, etc */
        !           140:        int     fe_fsr;                 /* fsr copy (modified during op) */
        !           141:        int     fe_cx;                  /* exceptions */
        !           142:        struct  fpn fe_f1;              /* operand 1 */
        !           143:        struct  fpn fe_f2;              /* operand 2, if required */
        !           144:        struct  fpn fe_f3;              /* available storage for result */
        !           145: };
        !           146:
        !           147: /*
        !           148:  * Arithmetic functions.
        !           149:  * Each of these may modify its inputs (f1,f2) and/or the temporary.
        !           150:  * Each returns a pointer to the result and/or sets exceptions.
        !           151:  */
        !           152: struct fpn *fpu_add(struct fpemu *);
        !           153: #define        fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe))
        !           154: struct fpn *fpu_mul(struct fpemu *);
        !           155: struct fpn *fpu_div(struct fpemu *);
        !           156: struct fpn *fpu_sqrt(struct fpemu *);
        !           157:
        !           158: /*
        !           159:  * Other functions.
        !           160:  */
        !           161:
        !           162: /* Perform a compare instruction (with or without unordered exception). */
        !           163: void   fpu_compare(struct fpemu *, int);
        !           164:
        !           165: /* Build a new Quiet NaN (sign=0, frac=all 1's). */
        !           166: struct fpn *fpu_newnan(struct fpemu *);
        !           167:
        !           168: /*
        !           169:  * Shift a number right some number of bits, taking care of round/sticky.
        !           170:  * Note that the result is probably not a well-formed number (it will lack
        !           171:  * the normal 1-bit mant[0]&FP_1).
        !           172:  */
        !           173: int    fpu_shr(struct fpn *, int);
        !           174:
        !           175: void   fpu_explode(struct fpemu *, struct fpn *, int, int);
        !           176: void   fpu_implode(struct fpemu *, struct fpn *, int, u_int *);
        !           177:
        !           178: #ifdef DEBUG
        !           179: #define        FPE_INSN        0x1
        !           180: #define        FPE_REG         0x2
        !           181: #define        FPE_STATE       0x4
        !           182: extern int fpe_debug;
        !           183: void   fpu_dumpfpn(struct fpn *);
        !           184: void   fpu_dumpstate(struct fpstate64 *);
        !           185: #define        DPRINTF(x, y)   if (fpe_debug & (x)) printf y
        !           186: #define DUMPFPN(x, f)  if (fpe_debug & (x)) fpu_dumpfpn((f))
        !           187: #define        DUMPSTATE(x, s) if (fpe_debug & (x)) fpu_dumpstate((s))
        !           188: #else
        !           189: #define        DPRINTF(x, y)
        !           190: #define DUMPFPN(x, f)
        !           191: #define        DUMPSTATE(x, s)
        !           192: #endif

CVSweb