[BACK]Return to fpu_div.c CVS log [TXT][DIR] Up to [local] / sys / arch / sparc64 / fpu

Annotation of sys/arch/sparc64/fpu/fpu_div.c, Revision 1.1

1.1     ! nbrk        1: /*     $OpenBSD: fpu_div.c,v 1.2 2003/06/02 23:27:55 millert Exp $     */
        !             2: /*     $NetBSD: fpu_div.c,v 1.2 1994/11/20 20:52:38 deraadt Exp $ */
        !             3:
        !             4: /*
        !             5:  * Copyright (c) 1992, 1993
        !             6:  *     The Regents of the University of California.  All rights reserved.
        !             7:  *
        !             8:  * This software was developed by the Computer Systems Engineering group
        !             9:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
        !            10:  * contributed to Berkeley.
        !            11:  *
        !            12:  * All advertising materials mentioning features or use of this software
        !            13:  * must display the following acknowledgement:
        !            14:  *     This product includes software developed by the University of
        !            15:  *     California, Lawrence Berkeley Laboratory.
        !            16:  *
        !            17:  * Redistribution and use in source and binary forms, with or without
        !            18:  * modification, are permitted provided that the following conditions
        !            19:  * are met:
        !            20:  * 1. Redistributions of source code must retain the above copyright
        !            21:  *    notice, this list of conditions and the following disclaimer.
        !            22:  * 2. Redistributions in binary form must reproduce the above copyright
        !            23:  *    notice, this list of conditions and the following disclaimer in the
        !            24:  *    documentation and/or other materials provided with the distribution.
        !            25:  * 3. Neither the name of the University nor the names of its contributors
        !            26:  *    may be used to endorse or promote products derived from this software
        !            27:  *    without specific prior written permission.
        !            28:  *
        !            29:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
        !            30:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
        !            31:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
        !            32:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
        !            33:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
        !            34:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
        !            35:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
        !            36:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
        !            37:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
        !            38:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
        !            39:  * SUCH DAMAGE.
        !            40:  *
        !            41:  *     @(#)fpu_div.c   8.1 (Berkeley) 6/11/93
        !            42:  */
        !            43:
        !            44: /*
        !            45:  * Perform an FPU divide (return x / y).
        !            46:  */
        !            47:
        !            48: #include <sys/types.h>
        !            49:
        !            50: #include <machine/reg.h>
        !            51:
        !            52: #include <sparc64/fpu/fpu_arith.h>
        !            53: #include <sparc64/fpu/fpu_emu.h>
        !            54:
        !            55: /*
        !            56:  * Division of normal numbers is done as follows:
        !            57:  *
        !            58:  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
        !            59:  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
        !            60:  *
        !            61:  *     q = (X / Y) * 2^((x exponent) - (y exponent))
        !            62:  *
        !            63:  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
        !            64:  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
        !            65:  * if X < Y.  In that case, it will have to be shifted left one bit to
        !            66:  * become a normal number, and the exponent decremented.  Thus, the
        !            67:  * desired exponent is:
        !            68:  *
        !            69:  *     left_shift = x->fp_mant < y->fp_mant;
        !            70:  *     result_exp = x->fp_exp - y->fp_exp - left_shift;
        !            71:  *
        !            72:  * The quotient mantissa X/Y can then be computed one bit at a time
        !            73:  * using the following algorithm:
        !            74:  *
        !            75:  *     Q = 0;                  -- Initial quotient.
        !            76:  *     R = X;                  -- Initial remainder,
        !            77:  *     if (left_shift)         --   but fixed up in advance.
        !            78:  *             R *= 2;
        !            79:  *     for (bit = FP_NMANT; --bit >= 0; R *= 2) {
        !            80:  *             if (R >= Y) {
        !            81:  *                     Q |= 1 << bit;
        !            82:  *                     R -= Y;
        !            83:  *             }
        !            84:  *     }
        !            85:  *
        !            86:  * The subtraction R -= Y always removes the uppermost bit from R (and
        !            87:  * can sometimes remove additional lower-order 1 bits); this proof is
        !            88:  * left to the reader.
        !            89:  *
        !            90:  * This loop correctly calculates the guard and round bits since they are
        !            91:  * included in the expanded internal representation.  The sticky bit
        !            92:  * is to be set if and only if any other bits beyond guard and round
        !            93:  * would be set.  From the above it is obvious that this is true if and
        !            94:  * only if the remainder R is nonzero when the loop terminates.
        !            95:  *
        !            96:  * Examining the loop above, we can see that the quotient Q is built
        !            97:  * one bit at a time ``from the top down''.  This means that we can
        !            98:  * dispense with the multi-word arithmetic and just build it one word
        !            99:  * at a time, writing each result word when it is done.
        !           100:  *
        !           101:  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
        !           102:  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
        !           103:  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
        !           104:  * set, and R can be set initially to either X - Y (when X >= Y) or
        !           105:  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
        !           106:  * so we will simply calculate R - Y and see if that underflows.
        !           107:  * This leads to the following revised version of the algorithm:
        !           108:  *
        !           109:  *     R = X;
        !           110:  *     bit = FP_1;
        !           111:  *     D = R - Y;
        !           112:  *     if (D >= 0) {
        !           113:  *             result_exp = x->fp_exp - y->fp_exp;
        !           114:  *             R = D;
        !           115:  *             q = bit;
        !           116:  *             bit >>= 1;
        !           117:  *     } else {
        !           118:  *             result_exp = x->fp_exp - y->fp_exp - 1;
        !           119:  *             q = 0;
        !           120:  *     }
        !           121:  *     R <<= 1;
        !           122:  *     do  {
        !           123:  *             D = R - Y;
        !           124:  *             if (D >= 0) {
        !           125:  *                     q |= bit;
        !           126:  *                     R = D;
        !           127:  *             }
        !           128:  *             R <<= 1;
        !           129:  *     } while ((bit >>= 1) != 0);
        !           130:  *     Q[0] = q;
        !           131:  *     for (i = 1; i < 4; i++) {
        !           132:  *             q = 0, bit = 1 << 31;
        !           133:  *             do {
        !           134:  *                     D = R - Y;
        !           135:  *                     if (D >= 0) {
        !           136:  *                             q |= bit;
        !           137:  *                             R = D;
        !           138:  *                     }
        !           139:  *                     R <<= 1;
        !           140:  *             } while ((bit >>= 1) != 0);
        !           141:  *             Q[i] = q;
        !           142:  *     }
        !           143:  *
        !           144:  * This can be refined just a bit further by moving the `R <<= 1'
        !           145:  * calculations to the front of the do-loops and eliding the first one.
        !           146:  * The process can be terminated immediately whenever R becomes 0, but
        !           147:  * this is relatively rare, and we do not bother.
        !           148:  */
        !           149:
        !           150: struct fpn *
        !           151: fpu_div(fe)
        !           152:        register struct fpemu *fe;
        !           153: {
        !           154:        register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
        !           155:        register u_int q, bit;
        !           156:        register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
        !           157:        FPU_DECL_CARRY
        !           158:
        !           159:        /*
        !           160:         * Since divide is not commutative, we cannot just use ORDER.
        !           161:         * Check either operand for NaN first; if there is at least one,
        !           162:         * order the signalling one (if only one) onto the right, then
        !           163:         * return it.  Otherwise we have the following cases:
        !           164:         *
        !           165:         *      Inf / Inf = NaN, plus NV exception
        !           166:         *      Inf / num = Inf [i.e., return x]
        !           167:         *      Inf / 0   = Inf [i.e., return x]
        !           168:         *      0 / Inf = 0 [i.e., return x]
        !           169:         *      0 / num = 0 [i.e., return x]
        !           170:         *      0 / 0   = NaN, plus NV exception
        !           171:         *      num / Inf = 0
        !           172:         *      num / num = num (do the divide)
        !           173:         *      num / 0   = Inf, plus DZ exception
        !           174:         */
        !           175:        if (ISNAN(x) || ISNAN(y)) {
        !           176:                ORDER(x, y);
        !           177:                return (y);
        !           178:        }
        !           179:        if (ISINF(x) || ISZERO(x)) {
        !           180:                if (x->fp_class == y->fp_class)
        !           181:                        return (fpu_newnan(fe));
        !           182:                return (x);
        !           183:        }
        !           184:
        !           185:        /* all results at this point use XOR of operand signs */
        !           186:        x->fp_sign ^= y->fp_sign;
        !           187:        if (ISINF(y)) {
        !           188:                x->fp_class = FPC_ZERO;
        !           189:                return (x);
        !           190:        }
        !           191:        if (ISZERO(y)) {
        !           192:                fe->fe_cx = FSR_DZ;
        !           193:                x->fp_class = FPC_INF;
        !           194:                return (x);
        !           195:        }
        !           196:
        !           197:        /*
        !           198:         * Macros for the divide.  See comments at top for algorithm.
        !           199:         * Note that we expand R, D, and Y here.
        !           200:         */
        !           201:
        !           202: #define        SUBTRACT                /* D = R - Y */ \
        !           203:        FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
        !           204:        FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
        !           205:
        !           206: #define        NONNEGATIVE             /* D >= 0 */ \
        !           207:        ((int)d0 >= 0)
        !           208:
        !           209: #ifdef FPU_SHL1_BY_ADD
        !           210: #define        SHL1                    /* R <<= 1 */ \
        !           211:        FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
        !           212:        FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
        !           213: #else
        !           214: #define        SHL1 \
        !           215:        r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
        !           216:        r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
        !           217: #endif
        !           218:
        !           219: #define        LOOP                    /* do ... while (bit >>= 1) */ \
        !           220:        do { \
        !           221:                SHL1; \
        !           222:                SUBTRACT; \
        !           223:                if (NONNEGATIVE) { \
        !           224:                        q |= bit; \
        !           225:                        r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
        !           226:                } \
        !           227:        } while ((bit >>= 1) != 0)
        !           228:
        !           229: #define        WORD(r, i)                      /* calculate r->fp_mant[i] */ \
        !           230:        q = 0; \
        !           231:        bit = 1 << 31; \
        !           232:        LOOP; \
        !           233:        (x)->fp_mant[i] = q
        !           234:
        !           235:        /* Setup.  Note that we put our result in x. */
        !           236:        r0 = x->fp_mant[0];
        !           237:        r1 = x->fp_mant[1];
        !           238:        r2 = x->fp_mant[2];
        !           239:        r3 = x->fp_mant[3];
        !           240:        y0 = y->fp_mant[0];
        !           241:        y1 = y->fp_mant[1];
        !           242:        y2 = y->fp_mant[2];
        !           243:        y3 = y->fp_mant[3];
        !           244:
        !           245:        bit = FP_1;
        !           246:        SUBTRACT;
        !           247:        if (NONNEGATIVE) {
        !           248:                x->fp_exp -= y->fp_exp;
        !           249:                r0 = d0, r1 = d1, r2 = d2, r3 = d3;
        !           250:                q = bit;
        !           251:                bit >>= 1;
        !           252:        } else {
        !           253:                x->fp_exp -= y->fp_exp + 1;
        !           254:                q = 0;
        !           255:        }
        !           256:        LOOP;
        !           257:        x->fp_mant[0] = q;
        !           258:        WORD(x, 1);
        !           259:        WORD(x, 2);
        !           260:        WORD(x, 3);
        !           261:        x->fp_sticky = r0 | r1 | r2 | r3;
        !           262:
        !           263:        return (x);
        !           264: }

CVSweb