[BACK]Return to fpu_implode.c CVS log [TXT][DIR] Up to [local] / sys / arch / sparc / fpu

Annotation of sys/arch/sparc/fpu/fpu_implode.c, Revision 1.1.1.1

1.1       nbrk        1: /*     $OpenBSD: fpu_implode.c,v 1.5 2003/06/02 23:27:54 millert Exp $ */
                      2: /*     $NetBSD: fpu_implode.c,v 1.3 1996/03/14 19:41:59 christos Exp $ */
                      3:
                      4: /*
                      5:  * Copyright (c) 1992, 1993
                      6:  *     The Regents of the University of California.  All rights reserved.
                      7:  *
                      8:  * This software was developed by the Computer Systems Engineering group
                      9:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
                     10:  * contributed to Berkeley.
                     11:  *
                     12:  * All advertising materials mentioning features or use of this software
                     13:  * must display the following acknowledgement:
                     14:  *     This product includes software developed by the University of
                     15:  *     California, Lawrence Berkeley Laboratory.
                     16:  *
                     17:  * Redistribution and use in source and binary forms, with or without
                     18:  * modification, are permitted provided that the following conditions
                     19:  * are met:
                     20:  * 1. Redistributions of source code must retain the above copyright
                     21:  *    notice, this list of conditions and the following disclaimer.
                     22:  * 2. Redistributions in binary form must reproduce the above copyright
                     23:  *    notice, this list of conditions and the following disclaimer in the
                     24:  *    documentation and/or other materials provided with the distribution.
                     25:  * 3. Neither the name of the University nor the names of its contributors
                     26:  *    may be used to endorse or promote products derived from this software
                     27:  *    without specific prior written permission.
                     28:  *
                     29:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
                     30:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     31:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     32:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
                     33:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     34:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     35:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     36:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     37:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     38:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     39:  * SUCH DAMAGE.
                     40:  *
                     41:  *     @(#)fpu_implode.c       8.1 (Berkeley) 6/11/93
                     42:  */
                     43:
                     44: /*
                     45:  * FPU subroutines: `implode' internal format numbers into the machine's
                     46:  * `packed binary' format.
                     47:  */
                     48:
                     49: #include <sys/types.h>
                     50: #include <sys/systm.h>
                     51:
                     52: #include <machine/ieee.h>
                     53: #include <machine/instr.h>
                     54: #include <machine/reg.h>
                     55:
                     56: #include <sparc/fpu/fpu_arith.h>
                     57: #include <sparc/fpu/fpu_emu.h>
                     58: #include <sparc/fpu/fpu_extern.h>
                     59:
                     60: static int round(register struct fpemu *, register struct fpn *);
                     61: static int toinf(struct fpemu *, int);
                     62:
                     63: /*
                     64:  * Round a number (algorithm from Motorola MC68882 manual, modified for
                     65:  * our internal format).  Set inexact exception if rounding is required.
                     66:  * Return true iff we rounded up.
                     67:  *
                     68:  * After rounding, we discard the guard and round bits by shifting right
                     69:  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
                     70:  * This saves effort later.
                     71:  *
                     72:  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
                     73:  * responsibility to fix this if necessary.
                     74:  */
                     75: static int
                     76: round(register struct fpemu *fe, register struct fpn *fp)
                     77: {
                     78:        register u_int m0, m1, m2, m3;
                     79:        register int gr, s;
                     80:
                     81:        m0 = fp->fp_mant[0];
                     82:        m1 = fp->fp_mant[1];
                     83:        m2 = fp->fp_mant[2];
                     84:        m3 = fp->fp_mant[3];
                     85:        gr = m3 & 3;
                     86:        s = fp->fp_sticky;
                     87:
                     88:        /* mant >>= FP_NG */
                     89:        m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
                     90:        m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
                     91:        m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
                     92:        m0 >>= FP_NG;
                     93:
                     94:        if ((gr | s) == 0)      /* result is exact: no rounding needed */
                     95:                goto rounddown;
                     96:
                     97:        fe->fe_cx |= FSR_NX;    /* inexact */
                     98:
                     99:        /* Go to rounddown to round down; break to round up. */
                    100:        switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
                    101:
                    102:        case FSR_RD_RN:
                    103:        default:
                    104:                /*
                    105:                 * Round only if guard is set (gr & 2).  If guard is set,
                    106:                 * but round & sticky both clear, then we want to round
                    107:                 * but have a tie, so round to even, i.e., add 1 iff odd.
                    108:                 */
                    109:                if ((gr & 2) == 0)
                    110:                        goto rounddown;
                    111:                if ((gr & 1) || fp->fp_sticky || (m3 & 1))
                    112:                        break;
                    113:                goto rounddown;
                    114:
                    115:        case FSR_RD_RZ:
                    116:                /* Round towards zero, i.e., down. */
                    117:                goto rounddown;
                    118:
                    119:        case FSR_RD_RM:
                    120:                /* Round towards -Inf: up if negative, down if positive. */
                    121:                if (fp->fp_sign)
                    122:                        break;
                    123:                goto rounddown;
                    124:
                    125:        case FSR_RD_RP:
                    126:                /* Round towards +Inf: up if positive, down otherwise. */
                    127:                if (!fp->fp_sign)
                    128:                        break;
                    129:                goto rounddown;
                    130:        }
                    131:
                    132:        /* Bump low bit of mantissa, with carry. */
                    133: #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
                    134:        FPU_ADDS(m3, m3, 1);
                    135:        FPU_ADDCS(m2, m2, 0);
                    136:        FPU_ADDCS(m1, m1, 0);
                    137:        FPU_ADDC(m0, m0, 0);
                    138: #else
                    139:        if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
                    140:                m0++;
                    141: #endif
                    142:        fp->fp_mant[0] = m0;
                    143:        fp->fp_mant[1] = m1;
                    144:        fp->fp_mant[2] = m2;
                    145:        fp->fp_mant[3] = m3;
                    146:        return (1);
                    147:
                    148: rounddown:
                    149:        fp->fp_mant[0] = m0;
                    150:        fp->fp_mant[1] = m1;
                    151:        fp->fp_mant[2] = m2;
                    152:        fp->fp_mant[3] = m3;
                    153:        return (0);
                    154: }
                    155:
                    156: /*
                    157:  * For overflow: return true if overflow is to go to +/-Inf, according
                    158:  * to the sign of the overflowing result.  If false, overflow is to go
                    159:  * to the largest magnitude value instead.
                    160:  */
                    161: static int
                    162: toinf(struct fpemu *fe, int sign)
                    163: {
                    164:        int inf;
                    165:
                    166:        /* look at rounding direction */
                    167:        switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
                    168:
                    169:        default:
                    170:        case FSR_RD_RN:         /* the nearest value is always Inf */
                    171:                inf = 1;
                    172:                break;
                    173:
                    174:        case FSR_RD_RZ:         /* toward 0 => never towards Inf */
                    175:                inf = 0;
                    176:                break;
                    177:
                    178:        case FSR_RD_RP:         /* toward +Inf iff positive */
                    179:                inf = sign == 0;
                    180:                break;
                    181:
                    182:        case FSR_RD_RM:         /* toward -Inf iff negative */
                    183:                inf = sign;
                    184:                break;
                    185:        }
                    186:        return (inf);
                    187: }
                    188:
                    189: /*
                    190:  * fpn -> int (int value returned as return value).
                    191:  *
                    192:  * N.B.: this conversion always rounds towards zero (this is a peculiarity
                    193:  * of the SPARC instruction set).
                    194:  */
                    195: u_int
                    196: fpu_ftoi(fe, fp)
                    197:        struct fpemu *fe;
                    198:        register struct fpn *fp;
                    199: {
                    200:        register u_int i;
                    201:        register int sign, exp;
                    202:
                    203:        sign = fp->fp_sign;
                    204:        switch (fp->fp_class) {
                    205:
                    206:        case FPC_ZERO:
                    207:                return (0);
                    208:
                    209:        case FPC_NUM:
                    210:                /*
                    211:                 * If exp >= 2^32, overflow.  Otherwise shift value right
                    212:                 * into last mantissa word (this will not exceed 0xffffffff),
                    213:                 * shifting any guard and round bits out into the sticky
                    214:                 * bit.  Then ``round'' towards zero, i.e., just set an
                    215:                 * inexact exception if sticky is set (see round()).
                    216:                 * If the result is > 0x80000000, or is positive and equals
                    217:                 * 0x80000000, overflow; otherwise the last fraction word
                    218:                 * is the result.
                    219:                 */
                    220:                if ((exp = fp->fp_exp) >= 32)
                    221:                        break;
                    222:                /* NB: the following includes exp < 0 cases */
                    223:                if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
                    224:                        fe->fe_cx |= FSR_NX;
                    225:                i = fp->fp_mant[3];
                    226:                if (i >= ((u_int)0x80000000 + sign))
                    227:                        break;
                    228:                return (sign ? -i : i);
                    229:
                    230:        default:                /* Inf, qNaN, sNaN */
                    231:                break;
                    232:        }
                    233:        /* overflow: replace any inexact exception with invalid */
                    234:        fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
                    235:        return (0x7fffffff + sign);
                    236: }
                    237:
                    238: /*
                    239:  * fpn -> single (32 bit single returned as return value).
                    240:  * We assume <= 29 bits in a single-precision fraction (1.f part).
                    241:  */
                    242: u_int
                    243: fpu_ftos(fe, fp)
                    244:        struct fpemu *fe;
                    245:        register struct fpn *fp;
                    246: {
                    247:        register u_int sign = fp->fp_sign << 31;
                    248:        register int exp;
                    249:
                    250: #define        SNG_EXP(e)      ((e) << SNG_FRACBITS)   /* makes e an exponent */
                    251: #define        SNG_MASK        (SNG_EXP(1) - 1)        /* mask for fraction */
                    252:
                    253:        /* Take care of non-numbers first. */
                    254:        if (ISNAN(fp)) {
                    255:                /*
                    256:                 * Preserve upper bits of NaN, per SPARC V8 appendix N.
                    257:                 * Note that fp->fp_mant[0] has the quiet bit set,
                    258:                 * even if it is classified as a signalling NaN.
                    259:                 */
                    260:                (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
                    261:                exp = SNG_EXP_INFNAN;
                    262:                goto done;
                    263:        }
                    264:        if (ISINF(fp))
                    265:                return (sign | SNG_EXP(SNG_EXP_INFNAN));
                    266:        if (ISZERO(fp))
                    267:                return (sign);
                    268:
                    269:        /*
                    270:         * Normals (including subnormals).  Drop all the fraction bits
                    271:         * (including the explicit ``implied'' 1 bit) down into the
                    272:         * single-precision range.  If the number is subnormal, move
                    273:         * the ``implied'' 1 into the explicit range as well, and shift
                    274:         * right to introduce leading zeroes.  Rounding then acts
                    275:         * differently for normals and subnormals: the largest subnormal
                    276:         * may round to the smallest normal (1.0 x 2^minexp), or may
                    277:         * remain subnormal.  In the latter case, signal an underflow
                    278:         * if the result was inexact or if underflow traps are enabled.
                    279:         *
                    280:         * Rounding a normal, on the other hand, always produces another
                    281:         * normal (although either way the result might be too big for
                    282:         * single precision, and cause an overflow).  If rounding a
                    283:         * normal produces 2.0 in the fraction, we need not adjust that
                    284:         * fraction at all, since both 1.0 and 2.0 are zero under the
                    285:         * fraction mask.
                    286:         *
                    287:         * Note that the guard and round bits vanish from the number after
                    288:         * rounding.
                    289:         */
                    290:        if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {   /* subnormal */
                    291:                /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
                    292:                (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
                    293:                if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
                    294:                        return (sign | SNG_EXP(1) | 0);
                    295:                if ((fe->fe_cx & FSR_NX) ||
                    296:                    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
                    297:                        fe->fe_cx |= FSR_UF;
                    298:                return (sign | SNG_EXP(0) | fp->fp_mant[3]);
                    299:        }
                    300:        /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
                    301:        (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
                    302: #ifdef DIAGNOSTIC
                    303:        if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
                    304:                panic("fpu_ftos");
                    305: #endif
                    306:        if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
                    307:                exp++;
                    308:        if (exp >= SNG_EXP_INFNAN) {
                    309:                /* overflow to inf or to max single */
                    310:                fe->fe_cx |= FSR_OF | FSR_NX;
                    311:                if (toinf(fe, sign))
                    312:                        return (sign | SNG_EXP(SNG_EXP_INFNAN));
                    313:                return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
                    314:        }
                    315: done:
                    316:        /* phew, made it */
                    317:        return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
                    318: }
                    319:
                    320: /*
                    321:  * fpn -> double (32 bit high-order result returned; 32-bit low order result
                    322:  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
                    323:  *
                    324:  * This code mimics fpu_ftos; see it for comments.
                    325:  */
                    326: u_int
                    327: fpu_ftod(fe, fp, res)
                    328:        struct fpemu *fe;
                    329:        register struct fpn *fp;
                    330:        u_int *res;
                    331: {
                    332:        register u_int sign = fp->fp_sign << 31;
                    333:        register int exp;
                    334:
                    335: #define        DBL_EXP(e)      ((e) << (DBL_FRACBITS & 31))
                    336: #define        DBL_MASK        (DBL_EXP(1) - 1)
                    337:
                    338:        if (ISNAN(fp)) {
                    339:                (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
                    340:                exp = DBL_EXP_INFNAN;
                    341:                goto done;
                    342:        }
                    343:        if (ISINF(fp)) {
                    344:                sign |= DBL_EXP(DBL_EXP_INFNAN);
                    345:                goto zero;
                    346:        }
                    347:        if (ISZERO(fp)) {
                    348: zero:          res[1] = 0;
                    349:                return (sign);
                    350:        }
                    351:
                    352:        if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
                    353:                (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
                    354:                if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
                    355:                        res[1] = 0;
                    356:                        return (sign | DBL_EXP(1) | 0);
                    357:                }
                    358:                if ((fe->fe_cx & FSR_NX) ||
                    359:                    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
                    360:                        fe->fe_cx |= FSR_UF;
                    361:                exp = 0;
                    362:                goto done;
                    363:        }
                    364:        (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
                    365:        if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
                    366:                exp++;
                    367:        if (exp >= DBL_EXP_INFNAN) {
                    368:                fe->fe_cx |= FSR_OF | FSR_NX;
                    369:                if (toinf(fe, sign)) {
                    370:                        res[1] = 0;
                    371:                        return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
                    372:                }
                    373:                res[1] = ~0;
                    374:                return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
                    375:        }
                    376: done:
                    377:        res[1] = fp->fp_mant[3];
                    378:        return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
                    379: }
                    380:
                    381: /*
                    382:  * fpn -> extended (32 bit high-order result returned; low-order fraction
                    383:  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
                    384:  * our internal format *is* extended precision, plus 2 bits for guard/round,
                    385:  * so we can avoid a small bit of work.
                    386:  */
                    387: u_int
                    388: fpu_ftox(fe, fp, res)
                    389:        struct fpemu *fe;
                    390:        register struct fpn *fp;
                    391:        u_int *res;
                    392: {
                    393:        register u_int sign = fp->fp_sign << 31;
                    394:        register int exp;
                    395:
                    396: #define        EXT_EXP(e)      ((e) << (EXT_FRACBITS & 31))
                    397: #define        EXT_MASK        (EXT_EXP(1) - 1)
                    398:
                    399:        if (ISNAN(fp)) {
                    400:                (void) fpu_shr(fp, 2);  /* since we are not rounding */
                    401:                exp = EXT_EXP_INFNAN;
                    402:                goto done;
                    403:        }
                    404:        if (ISINF(fp)) {
                    405:                sign |= EXT_EXP(EXT_EXP_INFNAN);
                    406:                goto zero;
                    407:        }
                    408:        if (ISZERO(fp)) {
                    409: zero:          res[1] = res[2] = res[3] = 0;
                    410:                return (sign);
                    411:        }
                    412:
                    413:        if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
                    414:                (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
                    415:                if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
                    416:                        res[1] = res[2] = res[3] = 0;
                    417:                        return (sign | EXT_EXP(1) | 0);
                    418:                }
                    419:                if ((fe->fe_cx & FSR_NX) ||
                    420:                    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
                    421:                        fe->fe_cx |= FSR_UF;
                    422:                exp = 0;
                    423:                goto done;
                    424:        }
                    425:        /* Since internal == extended, no need to shift here. */
                    426:        if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
                    427:                exp++;
                    428:        if (exp >= EXT_EXP_INFNAN) {
                    429:                fe->fe_cx |= FSR_OF | FSR_NX;
                    430:                if (toinf(fe, sign)) {
                    431:                        res[1] = res[2] = res[3] = 0;
                    432:                        return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
                    433:                }
                    434:                res[1] = res[2] = res[3] = ~0;
                    435:                return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
                    436:        }
                    437: done:
                    438:        res[1] = fp->fp_mant[1];
                    439:        res[2] = fp->fp_mant[2];
                    440:        res[3] = fp->fp_mant[3];
                    441:        return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
                    442: }
                    443:
                    444: /*
                    445:  * Implode an fpn, writing the result into the given space.
                    446:  */
                    447: void
                    448: fpu_implode(fe, fp, type, space)
                    449:        struct fpemu *fe;
                    450:        register struct fpn *fp;
                    451:        int type;
                    452:        register u_int *space;
                    453: {
                    454:
                    455:        switch (type) {
                    456:
                    457:        case FTYPE_INT:
                    458:                space[0] = fpu_ftoi(fe, fp);
                    459:                break;
                    460:
                    461:        case FTYPE_SNG:
                    462:                space[0] = fpu_ftos(fe, fp);
                    463:                break;
                    464:
                    465:        case FTYPE_DBL:
                    466:                space[0] = fpu_ftod(fe, fp, space);
                    467:                break;
                    468:
                    469:        case FTYPE_EXT:
                    470:                /* funky rounding precision options ?? */
                    471:                space[0] = fpu_ftox(fe, fp, space);
                    472:                break;
                    473:
                    474:        default:
                    475:                panic("fpu_implode");
                    476:        }
                    477: }

CVSweb