[BACK]Return to fpu_div.c CVS log [TXT][DIR] Up to [local] / sys / arch / sparc / fpu

Annotation of sys/arch/sparc/fpu/fpu_div.c, Revision 1.1.1.1

1.1       nbrk        1: /*     $OpenBSD: fpu_div.c,v 1.3 2003/06/02 23:27:54 millert Exp $     */
                      2: /*     $NetBSD: fpu_div.c,v 1.2 1994/11/20 20:52:38 deraadt Exp $ */
                      3:
                      4: /*
                      5:  * Copyright (c) 1992, 1993
                      6:  *     The Regents of the University of California.  All rights reserved.
                      7:  *
                      8:  * This software was developed by the Computer Systems Engineering group
                      9:  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
                     10:  * contributed to Berkeley.
                     11:  *
                     12:  * All advertising materials mentioning features or use of this software
                     13:  * must display the following acknowledgement:
                     14:  *     This product includes software developed by the University of
                     15:  *     California, Lawrence Berkeley Laboratory.
                     16:  *
                     17:  * Redistribution and use in source and binary forms, with or without
                     18:  * modification, are permitted provided that the following conditions
                     19:  * are met:
                     20:  * 1. Redistributions of source code must retain the above copyright
                     21:  *    notice, this list of conditions and the following disclaimer.
                     22:  * 2. Redistributions in binary form must reproduce the above copyright
                     23:  *    notice, this list of conditions and the following disclaimer in the
                     24:  *    documentation and/or other materials provided with the distribution.
                     25:  * 3. Neither the name of the University nor the names of its contributors
                     26:  *    may be used to endorse or promote products derived from this software
                     27:  *    without specific prior written permission.
                     28:  *
                     29:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
                     30:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     31:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     32:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
                     33:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     34:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     35:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     36:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     37:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     38:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     39:  * SUCH DAMAGE.
                     40:  *
                     41:  *     @(#)fpu_div.c   8.1 (Berkeley) 6/11/93
                     42:  */
                     43:
                     44: /*
                     45:  * Perform an FPU divide (return x / y).
                     46:  */
                     47:
                     48: #include <sys/types.h>
                     49:
                     50: #include <machine/reg.h>
                     51:
                     52: #include <sparc/fpu/fpu_arith.h>
                     53: #include <sparc/fpu/fpu_emu.h>
                     54:
                     55: /*
                     56:  * Division of normal numbers is done as follows:
                     57:  *
                     58:  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
                     59:  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
                     60:  *
                     61:  *     q = (X / Y) * 2^((x exponent) - (y exponent))
                     62:  *
                     63:  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
                     64:  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
                     65:  * if X < Y.  In that case, it will have to be shifted left one bit to
                     66:  * become a normal number, and the exponent decremented.  Thus, the
                     67:  * desired exponent is:
                     68:  *
                     69:  *     left_shift = x->fp_mant < y->fp_mant;
                     70:  *     result_exp = x->fp_exp - y->fp_exp - left_shift;
                     71:  *
                     72:  * The quotient mantissa X/Y can then be computed one bit at a time
                     73:  * using the following algorithm:
                     74:  *
                     75:  *     Q = 0;                  -- Initial quotient.
                     76:  *     R = X;                  -- Initial remainder,
                     77:  *     if (left_shift)         --   but fixed up in advance.
                     78:  *             R *= 2;
                     79:  *     for (bit = FP_NMANT; --bit >= 0; R *= 2) {
                     80:  *             if (R >= Y) {
                     81:  *                     Q |= 1 << bit;
                     82:  *                     R -= Y;
                     83:  *             }
                     84:  *     }
                     85:  *
                     86:  * The subtraction R -= Y always removes the uppermost bit from R (and
                     87:  * can sometimes remove additional lower-order 1 bits); this proof is
                     88:  * left to the reader.
                     89:  *
                     90:  * This loop correctly calculates the guard and round bits since they are
                     91:  * included in the expanded internal representation.  The sticky bit
                     92:  * is to be set if and only if any other bits beyond guard and round
                     93:  * would be set.  From the above it is obvious that this is true if and
                     94:  * only if the remainder R is nonzero when the loop terminates.
                     95:  *
                     96:  * Examining the loop above, we can see that the quotient Q is built
                     97:  * one bit at a time ``from the top down''.  This means that we can
                     98:  * dispense with the multi-word arithmetic and just build it one word
                     99:  * at a time, writing each result word when it is done.
                    100:  *
                    101:  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
                    102:  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
                    103:  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
                    104:  * set, and R can be set initially to either X - Y (when X >= Y) or
                    105:  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
                    106:  * so we will simply calculate R - Y and see if that underflows.
                    107:  * This leads to the following revised version of the algorithm:
                    108:  *
                    109:  *     R = X;
                    110:  *     bit = FP_1;
                    111:  *     D = R - Y;
                    112:  *     if (D >= 0) {
                    113:  *             result_exp = x->fp_exp - y->fp_exp;
                    114:  *             R = D;
                    115:  *             q = bit;
                    116:  *             bit >>= 1;
                    117:  *     } else {
                    118:  *             result_exp = x->fp_exp - y->fp_exp - 1;
                    119:  *             q = 0;
                    120:  *     }
                    121:  *     R <<= 1;
                    122:  *     do  {
                    123:  *             D = R - Y;
                    124:  *             if (D >= 0) {
                    125:  *                     q |= bit;
                    126:  *                     R = D;
                    127:  *             }
                    128:  *             R <<= 1;
                    129:  *     } while ((bit >>= 1) != 0);
                    130:  *     Q[0] = q;
                    131:  *     for (i = 1; i < 4; i++) {
                    132:  *             q = 0, bit = 1 << 31;
                    133:  *             do {
                    134:  *                     D = R - Y;
                    135:  *                     if (D >= 0) {
                    136:  *                             q |= bit;
                    137:  *                             R = D;
                    138:  *                     }
                    139:  *                     R <<= 1;
                    140:  *             } while ((bit >>= 1) != 0);
                    141:  *             Q[i] = q;
                    142:  *     }
                    143:  *
                    144:  * This can be refined just a bit further by moving the `R <<= 1'
                    145:  * calculations to the front of the do-loops and eliding the first one.
                    146:  * The process can be terminated immediately whenever R becomes 0, but
                    147:  * this is relatively rare, and we do not bother.
                    148:  */
                    149:
                    150: struct fpn *
                    151: fpu_div(fe)
                    152:        register struct fpemu *fe;
                    153: {
                    154:        register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
                    155:        register u_int q, bit;
                    156:        register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
                    157:        FPU_DECL_CARRY
                    158:
                    159:        /*
                    160:         * Since divide is not commutative, we cannot just use ORDER.
                    161:         * Check either operand for NaN first; if there is at least one,
                    162:         * order the signalling one (if only one) onto the right, then
                    163:         * return it.  Otherwise we have the following cases:
                    164:         *
                    165:         *      Inf / Inf = NaN, plus NV exception
                    166:         *      Inf / num = Inf [i.e., return x]
                    167:         *      Inf / 0   = Inf [i.e., return x]
                    168:         *      0 / Inf = 0 [i.e., return x]
                    169:         *      0 / num = 0 [i.e., return x]
                    170:         *      0 / 0   = NaN, plus NV exception
                    171:         *      num / Inf = 0
                    172:         *      num / num = num (do the divide)
                    173:         *      num / 0   = Inf, plus DZ exception
                    174:         */
                    175:        if (ISNAN(x) || ISNAN(y)) {
                    176:                ORDER(x, y);
                    177:                return (y);
                    178:        }
                    179:        if (ISINF(x) || ISZERO(x)) {
                    180:                if (x->fp_class == y->fp_class)
                    181:                        return (fpu_newnan(fe));
                    182:                return (x);
                    183:        }
                    184:
                    185:        /* all results at this point use XOR of operand signs */
                    186:        x->fp_sign ^= y->fp_sign;
                    187:        if (ISINF(y)) {
                    188:                x->fp_class = FPC_ZERO;
                    189:                return (x);
                    190:        }
                    191:        if (ISZERO(y)) {
                    192:                fe->fe_cx = FSR_DZ;
                    193:                x->fp_class = FPC_INF;
                    194:                return (x);
                    195:        }
                    196:
                    197:        /*
                    198:         * Macros for the divide.  See comments at top for algorithm.
                    199:         * Note that we expand R, D, and Y here.
                    200:         */
                    201:
                    202: #define        SUBTRACT                /* D = R - Y */ \
                    203:        FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
                    204:        FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
                    205:
                    206: #define        NONNEGATIVE             /* D >= 0 */ \
                    207:        ((int)d0 >= 0)
                    208:
                    209: #ifdef FPU_SHL1_BY_ADD
                    210: #define        SHL1                    /* R <<= 1 */ \
                    211:        FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
                    212:        FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
                    213: #else
                    214: #define        SHL1 \
                    215:        r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
                    216:        r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
                    217: #endif
                    218:
                    219: #define        LOOP                    /* do ... while (bit >>= 1) */ \
                    220:        do { \
                    221:                SHL1; \
                    222:                SUBTRACT; \
                    223:                if (NONNEGATIVE) { \
                    224:                        q |= bit; \
                    225:                        r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
                    226:                } \
                    227:        } while ((bit >>= 1) != 0)
                    228:
                    229: #define        WORD(r, i)                      /* calculate r->fp_mant[i] */ \
                    230:        q = 0; \
                    231:        bit = 1 << 31; \
                    232:        LOOP; \
                    233:        (x)->fp_mant[i] = q
                    234:
                    235:        /* Setup.  Note that we put our result in x. */
                    236:        r0 = x->fp_mant[0];
                    237:        r1 = x->fp_mant[1];
                    238:        r2 = x->fp_mant[2];
                    239:        r3 = x->fp_mant[3];
                    240:        y0 = y->fp_mant[0];
                    241:        y1 = y->fp_mant[1];
                    242:        y2 = y->fp_mant[2];
                    243:        y3 = y->fp_mant[3];
                    244:
                    245:        bit = FP_1;
                    246:        SUBTRACT;
                    247:        if (NONNEGATIVE) {
                    248:                x->fp_exp -= y->fp_exp;
                    249:                r0 = d0, r1 = d1, r2 = d2, r3 = d3;
                    250:                q = bit;
                    251:                bit >>= 1;
                    252:        } else {
                    253:                x->fp_exp -= y->fp_exp + 1;
                    254:                q = 0;
                    255:        }
                    256:        LOOP;
                    257:        x->fp_mant[0] = q;
                    258:        WORD(x, 1);
                    259:        WORD(x, 2);
                    260:        WORD(x, 3);
                    261:        x->fp_sticky = r0 | r1 | r2 | r3;
                    262:
                    263:        return (x);
                    264: }

CVSweb