[BACK]Return to setox.sa CVS log [TXT][DIR] Up to [local] / sys / arch / m68k / fpsp

Annotation of sys/arch/m68k/fpsp/setox.sa, Revision 1.1.1.1

1.1       nbrk        1: *      $OpenBSD: setox.sa,v 1.2 1996/05/29 21:05:37 niklas Exp $
                      2: *      $NetBSD: setox.sa,v 1.3 1994/10/26 07:49:42 cgd Exp $
                      3:
                      4: *      MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
                      5: *      M68000 Hi-Performance Microprocessor Division
                      6: *      M68040 Software Package
                      7: *
                      8: *      M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
                      9: *      All rights reserved.
                     10: *
                     11: *      THE SOFTWARE is provided on an "AS IS" basis and without warranty.
                     12: *      To the maximum extent permitted by applicable law,
                     13: *      MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
                     14: *      INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
                     15: *      PARTICULAR PURPOSE and any warranty against infringement with
                     16: *      regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
                     17: *      and any accompanying written materials.
                     18: *
                     19: *      To the maximum extent permitted by applicable law,
                     20: *      IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
                     21: *      (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
                     22: *      PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
                     23: *      OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
                     24: *      SOFTWARE.  Motorola assumes no responsibility for the maintenance
                     25: *      and support of the SOFTWARE.
                     26: *
                     27: *      You are hereby granted a copyright license to use, modify, and
                     28: *      distribute the SOFTWARE so long as this entire notice is retained
                     29: *      without alteration in any modified and/or redistributed versions,
                     30: *      and that such modified versions are clearly identified as such.
                     31: *      No licenses are granted by implication, estoppel or otherwise
                     32: *      under any patents or trademarks of Motorola, Inc.
                     33:
                     34: *
                     35: *      setox.sa 3.1 12/10/90
                     36: *
                     37: *      The entry point setox computes the exponential of a value.
                     38: *      setoxd does the same except the input value is a denormalized
                     39: *      number. setoxm1 computes exp(X)-1, and setoxm1d computes
                     40: *      exp(X)-1 for denormalized X.
                     41: *
                     42: *      INPUT
                     43: *      -----
                     44: *      Double-extended value in memory location pointed to by address
                     45: *      register a0.
                     46: *
                     47: *      OUTPUT
                     48: *      ------
                     49: *      exp(X) or exp(X)-1 returned in floating-point register fp0.
                     50: *
                     51: *      ACCURACY and MONOTONICITY
                     52: *      -------------------------
                     53: *      The returned result is within 0.85 ulps in 64 significant bit, i.e.
                     54: *      within 0.5001 ulp to 53 bits if the result is subsequently rounded
                     55: *      to double precision. The result is provably monotonic in double
                     56: *      precision.
                     57: *
                     58: *      SPEED
                     59: *      -----
                     60: *      Two timings are measured, both in the copy-back mode. The
                     61: *      first one is measured when the function is invoked the first time
                     62: *      (so the instructions and data are not in cache), and the
                     63: *      second one is measured when the function is reinvoked at the same
                     64: *      input argument.
                     65: *
                     66: *      The program setox takes approximately 210/190 cycles for input
                     67: *      argument X whose magnitude is less than 16380 log2, which
                     68: *      is the usual situation. For the less common arguments,
                     69: *      depending on their values, the program may run faster or slower --
                     70: *      but no worse than 10% slower even in the extreme cases.
                     71: *
                     72: *      The program setoxm1 takes approximately ???/??? cycles for input
                     73: *      argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
                     74: *      approximately ???/??? cycles. For the less common arguments,
                     75: *      depending on their values, the program may run faster or slower --
                     76: *      but no worse than 10% slower even in the extreme cases.
                     77: *
                     78: *      ALGORITHM and IMPLEMENTATION NOTES
                     79: *      ----------------------------------
                     80: *
                     81: *      setoxd
                     82: *      ------
                     83: *      Step 1. Set ans := 1.0
                     84: *
                     85: *      Step 2. Return  ans := ans + sign(X)*2^(-126). Exit.
                     86: *      Notes:  This will always generate one exception -- inexact.
                     87: *
                     88: *
                     89: *      setox
                     90: *      -----
                     91: *
                     92: *      Step 1. Filter out extreme cases of input argument.
                     93: *              1.1     If |X| >= 2^(-65), go to Step 1.3.
                     94: *              1.2     Go to Step 7.
                     95: *              1.3     If |X| < 16380 log(2), go to Step 2.
                     96: *              1.4     Go to Step 8.
                     97: *      Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.
                     98: *               To avoid the use of floating-point comparisons, a
                     99: *               compact representation of |X| is used. This format is a
                    100: *               32-bit integer, the upper (more significant) 16 bits are
                    101: *               the sign and biased exponent field of |X|; the lower 16
                    102: *               bits are the 16 most significant fraction (including the
                    103: *               explicit bit) bits of |X|. Consequently, the comparisons
                    104: *               in Steps 1.1 and 1.3 can be performed by integer comparison.
                    105: *               Note also that the constant 16380 log(2) used in Step 1.3
                    106: *               is also in the compact form. Thus taking the branch
                    107: *               to Step 2 guarantees |X| < 16380 log(2). There is no harm
                    108: *               to have a small number of cases where |X| is less than,
                    109: *               but close to, 16380 log(2) and the branch to Step 9 is
                    110: *               taken.
                    111: *
                    112: *      Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
                    113: *              2.1     Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
                    114: *              2.2     N := round-to-nearest-integer( X * 64/log2 ).
                    115: *              2.3     Calculate       J = N mod 64; so J = 0,1,2,..., or 63.
                    116: *              2.4     Calculate       M = (N - J)/64; so N = 64M + J.
                    117: *              2.5     Calculate the address of the stored value of 2^(J/64).
                    118: *              2.6     Create the value Scale = 2^M.
                    119: *      Notes:  The calculation in 2.2 is really performed by
                    120: *
                    121: *                      Z := X * constant
                    122: *                      N := round-to-nearest-integer(Z)
                    123: *
                    124: *               where
                    125: *
                    126: *                      constant := single-precision( 64/log 2 ).
                    127: *
                    128: *               Using a single-precision constant avoids memory access.
                    129: *               Another effect of using a single-precision "constant" is
                    130: *               that the calculated value Z is
                    131: *
                    132: *                      Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
                    133: *
                    134: *               This error has to be considered later in Steps 3 and 4.
                    135: *
                    136: *      Step 3. Calculate X - N*log2/64.
                    137: *              3.1     R := X + N*L1, where L1 := single-precision(-log2/64).
                    138: *              3.2     R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
                    139: *      Notes:  a) The way L1 and L2 are chosen ensures L1+L2 approximate
                    140: *               the value      -log2/64        to 88 bits of accuracy.
                    141: *               b) N*L1 is exact because N is no longer than 22 bits and
                    142: *               L1 is no longer than 24 bits.
                    143: *               c) The calculation X+N*L1 is also exact due to cancellation.
                    144: *               Thus, R is practically X+N(L1+L2) to full 64 bits.
                    145: *               d) It is important to estimate how large can |R| be after
                    146: *               Step 3.2.
                    147: *
                    148: *                      N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
                    149: *                      X*64/log2 (1+eps)       =       N + f,  |f| <= 0.5
                    150: *                      X*64/log2 - N   =       f - eps*X 64/log2
                    151: *                      X - N*log2/64   =       f*log2/64 - eps*X
                    152: *
                    153: *
                    154: *               Now |X| <= 16446 log2, thus
                    155: *
                    156: *                      |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
                    157: *                                      <= 0.57 log2/64.
                    158: *               This bound will be used in Step 4.
                    159: *
                    160: *      Step 4. Approximate exp(R)-1 by a polynomial
                    161: *                      p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
                    162: *      Notes:  a) In order to reduce memory access, the coefficients are
                    163: *               made as "short" as possible: A1 (which is 1/2), A4 and A5
                    164: *               are single precision; A2 and A3 are double precision.
                    165: *               b) Even with the restrictions above,
                    166: *                      |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
                    167: *               Note that 0.0062 is slightly bigger than 0.57 log2/64.
                    168: *               c) To fully utilize the pipeline, p is separated into
                    169: *               two independent pieces of roughly equal complexities
                    170: *                      p = [ R + R*S*(A2 + S*A4) ]     +
                    171: *                              [ S*(A1 + S*(A3 + S*A5)) ]
                    172: *               where S = R*R.
                    173: *
                    174: *      Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
                    175: *                              ans := T + ( T*p + t)
                    176: *               where T and t are the stored values for 2^(J/64).
                    177: *      Notes:  2^(J/64) is stored as T and t where T+t approximates
                    178: *               2^(J/64) to roughly 85 bits; T is in extended precision
                    179: *               and t is in single precision. Note also that T is rounded
                    180: *               to 62 bits so that the last two bits of T are zero. The
                    181: *               reason for such a special form is that T-1, T-2, and T-8
                    182: *               will all be exact --- a property that will give much
                    183: *               more accurate computation of the function EXPM1.
                    184: *
                    185: *      Step 6. Reconstruction of exp(X)
                    186: *                      exp(X) = 2^M * 2^(J/64) * exp(R).
                    187: *              6.1     If AdjFlag = 0, go to 6.3
                    188: *              6.2     ans := ans * AdjScale
                    189: *              6.3     Restore the user FPCR
                    190: *              6.4     Return ans := ans * Scale. Exit.
                    191: *      Notes:  If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
                    192: *               |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
                    193: *               neither overflow nor underflow. If AdjFlag = 1, that
                    194: *               means that
                    195: *                      X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
                    196: *               Hence, exp(X) may overflow or underflow or neither.
                    197: *               When that is the case, AdjScale = 2^(M1) where M1 is
                    198: *               approximately M. Thus 6.2 will never cause over/underflow.
                    199: *               Possible exception in 6.4 is overflow or underflow.
                    200: *               The inexact exception is not generated in 6.4. Although
                    201: *               one can argue that the inexact flag should always be
                    202: *               raised, to simulate that exception cost to much than the
                    203: *               flag is worth in practical uses.
                    204: *
                    205: *      Step 7. Return 1 + X.
                    206: *              7.1     ans := X
                    207: *              7.2     Restore user FPCR.
                    208: *              7.3     Return ans := 1 + ans. Exit
                    209: *      Notes:  For non-zero X, the inexact exception will always be
                    210: *               raised by 7.3. That is the only exception raised by 7.3.
                    211: *               Note also that we use the FMOVEM instruction to move X
                    212: *               in Step 7.1 to avoid unnecessary trapping. (Although
                    213: *               the FMOVEM may not seem relevant since X is normalized,
                    214: *               the precaution will be useful in the library version of
                    215: *               this code where the separate entry for denormalized inputs
                    216: *               will be done away with.)
                    217: *
                    218: *      Step 8. Handle exp(X) where |X| >= 16380log2.
                    219: *              8.1     If |X| > 16480 log2, go to Step 9.
                    220: *              (mimic 2.2 - 2.6)
                    221: *              8.2     N := round-to-integer( X * 64/log2 )
                    222: *              8.3     Calculate J = N mod 64, J = 0,1,...,63
                    223: *              8.4     K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
                    224: *              8.5     Calculate the address of the stored value 2^(J/64).
                    225: *              8.6     Create the values Scale = 2^M, AdjScale = 2^M1.
                    226: *              8.7     Go to Step 3.
                    227: *      Notes:  Refer to notes for 2.2 - 2.6.
                    228: *
                    229: *      Step 9. Handle exp(X), |X| > 16480 log2.
                    230: *              9.1     If X < 0, go to 9.3
                    231: *              9.2     ans := Huge, go to 9.4
                    232: *              9.3     ans := Tiny.
                    233: *              9.4     Restore user FPCR.
                    234: *              9.5     Return ans := ans * ans. Exit.
                    235: *      Notes:  Exp(X) will surely overflow or underflow, depending on
                    236: *               X's sign. "Huge" and "Tiny" are respectively large/tiny
                    237: *               extended-precision numbers whose square over/underflow
                    238: *               with an inexact result. Thus, 9.5 always raises the
                    239: *               inexact together with either overflow or underflow.
                    240: *
                    241: *
                    242: *      setoxm1d
                    243: *      --------
                    244: *
                    245: *      Step 1. Set ans := 0
                    246: *
                    247: *      Step 2. Return  ans := X + ans. Exit.
                    248: *      Notes:  This will return X with the appropriate rounding
                    249: *               precision prescribed by the user FPCR.
                    250: *
                    251: *      setoxm1
                    252: *      -------
                    253: *
                    254: *      Step 1. Check |X|
                    255: *              1.1     If |X| >= 1/4, go to Step 1.3.
                    256: *              1.2     Go to Step 7.
                    257: *              1.3     If |X| < 70 log(2), go to Step 2.
                    258: *              1.4     Go to Step 10.
                    259: *      Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.
                    260: *               However, it is conceivable |X| can be small very often
                    261: *               because EXPM1 is intended to evaluate exp(X)-1 accurately
                    262: *               when |X| is small. For further details on the comparisons,
                    263: *               see the notes on Step 1 of setox.
                    264: *
                    265: *      Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
                    266: *              2.1     N := round-to-nearest-integer( X * 64/log2 ).
                    267: *              2.2     Calculate       J = N mod 64; so J = 0,1,2,..., or 63.
                    268: *              2.3     Calculate       M = (N - J)/64; so N = 64M + J.
                    269: *              2.4     Calculate the address of the stored value of 2^(J/64).
                    270: *              2.5     Create the values Sc = 2^M and OnebySc := -2^(-M).
                    271: *      Notes:  See the notes on Step 2 of setox.
                    272: *
                    273: *      Step 3. Calculate X - N*log2/64.
                    274: *              3.1     R := X + N*L1, where L1 := single-precision(-log2/64).
                    275: *              3.2     R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
                    276: *      Notes:  Applying the analysis of Step 3 of setox in this case
                    277: *               shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
                    278: *               this case).
                    279: *
                    280: *      Step 4. Approximate exp(R)-1 by a polynomial
                    281: *                      p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
                    282: *      Notes:  a) In order to reduce memory access, the coefficients are
                    283: *               made as "short" as possible: A1 (which is 1/2), A5 and A6
                    284: *               are single precision; A2, A3 and A4 are double precision.
                    285: *               b) Even with the restriction above,
                    286: *                      |p - (exp(R)-1)| <      |R| * 2^(-72.7)
                    287: *               for all |R| <= 0.0055.
                    288: *               c) To fully utilize the pipeline, p is separated into
                    289: *               two independent pieces of roughly equal complexity
                    290: *                      p = [ R*S*(A2 + S*(A4 + S*A6)) ]        +
                    291: *                              [ R + S*(A1 + S*(A3 + S*A5)) ]
                    292: *               where S = R*R.
                    293: *
                    294: *      Step 5. Compute 2^(J/64)*p by
                    295: *                              p := T*p
                    296: *               where T and t are the stored values for 2^(J/64).
                    297: *      Notes:  2^(J/64) is stored as T and t where T+t approximates
                    298: *               2^(J/64) to roughly 85 bits; T is in extended precision
                    299: *               and t is in single precision. Note also that T is rounded
                    300: *               to 62 bits so that the last two bits of T are zero. The
                    301: *               reason for such a special form is that T-1, T-2, and T-8
                    302: *               will all be exact --- a property that will be exploited
                    303: *               in Step 6 below. The total relative error in p is no
                    304: *               bigger than 2^(-67.7) compared to the final result.
                    305: *
                    306: *      Step 6. Reconstruction of exp(X)-1
                    307: *                      exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
                    308: *              6.1     If M <= 63, go to Step 6.3.
                    309: *              6.2     ans := T + (p + (t + OnebySc)). Go to 6.6
                    310: *              6.3     If M >= -3, go to 6.5.
                    311: *              6.4     ans := (T + (p + t)) + OnebySc. Go to 6.6
                    312: *              6.5     ans := (T + OnebySc) + (p + t).
                    313: *              6.6     Restore user FPCR.
                    314: *              6.7     Return ans := Sc * ans. Exit.
                    315: *      Notes:  The various arrangements of the expressions give accurate
                    316: *               evaluations.
                    317: *
                    318: *      Step 7. exp(X)-1 for |X| < 1/4.
                    319: *              7.1     If |X| >= 2^(-65), go to Step 9.
                    320: *              7.2     Go to Step 8.
                    321: *
                    322: *      Step 8. Calculate exp(X)-1, |X| < 2^(-65).
                    323: *              8.1     If |X| < 2^(-16312), goto 8.3
                    324: *              8.2     Restore FPCR; return ans := X - 2^(-16382). Exit.
                    325: *              8.3     X := X * 2^(140).
                    326: *              8.4     Restore FPCR; ans := ans - 2^(-16382).
                    327: *               Return ans := ans*2^(140). Exit
                    328: *      Notes:  The idea is to return "X - tiny" under the user
                    329: *               precision and rounding modes. To avoid unnecessary
                    330: *               inefficiency, we stay away from denormalized numbers the
                    331: *               best we can. For |X| >= 2^(-16312), the straightforward
                    332: *               8.2 generates the inexact exception as the case warrants.
                    333: *
                    334: *      Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
                    335: *                      p = X + X*X*(B1 + X*(B2 + ... + X*B12))
                    336: *      Notes:  a) In order to reduce memory access, the coefficients are
                    337: *               made as "short" as possible: B1 (which is 1/2), B9 to B12
                    338: *               are single precision; B3 to B8 are double precision; and
                    339: *               B2 is double extended.
                    340: *               b) Even with the restriction above,
                    341: *                      |p - (exp(X)-1)| < |X| 2^(-70.6)
                    342: *               for all |X| <= 0.251.
                    343: *               Note that 0.251 is slightly bigger than 1/4.
                    344: *               c) To fully preserve accuracy, the polynomial is computed
                    345: *               as     X + ( S*B1 +    Q ) where S = X*X and
                    346: *                      Q       =       X*S*(B2 + X*(B3 + ... + X*B12))
                    347: *               d) To fully utilize the pipeline, Q is separated into
                    348: *               two independent pieces of roughly equal complexity
                    349: *                      Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
                    350: *                              [ S*S*(B3 + S*(B5 + ... + S*B11)) ]
                    351: *
                    352: *      Step 10.        Calculate exp(X)-1 for |X| >= 70 log 2.
                    353: *              10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
                    354: *               purposes. Therefore, go to Step 1 of setox.
                    355: *              10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
                    356: *               ans := -1
                    357: *               Restore user FPCR
                    358: *               Return ans := ans + 2^(-126). Exit.
                    359: *      Notes:  10.2 will always create an inexact and return -1 + tiny
                    360: *               in the user rounding precision and mode.
                    361: *
                    362:
                    363: setox  IDNT    2,1 Motorola 040 Floating Point Software Package
                    364:
                    365:        section 8
                    366:
                    367:        include fpsp.h
                    368:
                    369: L2     DC.L    $3FDC0000,$82E30865,$4361C4C6,$00000000
                    370:
                    371: EXPA3  DC.L    $3FA55555,$55554431
                    372: EXPA2  DC.L    $3FC55555,$55554018
                    373:
                    374: HUGE   DC.L    $7FFE0000,$FFFFFFFF,$FFFFFFFF,$00000000
                    375: TINY   DC.L    $00010000,$FFFFFFFF,$FFFFFFFF,$00000000
                    376:
                    377: EM1A4  DC.L    $3F811111,$11174385
                    378: EM1A3  DC.L    $3FA55555,$55554F5A
                    379:
                    380: EM1A2  DC.L    $3FC55555,$55555555,$00000000,$00000000
                    381:
                    382: EM1B8  DC.L    $3EC71DE3,$A5774682
                    383: EM1B7  DC.L    $3EFA01A0,$19D7CB68
                    384:
                    385: EM1B6  DC.L    $3F2A01A0,$1A019DF3
                    386: EM1B5  DC.L    $3F56C16C,$16C170E2
                    387:
                    388: EM1B4  DC.L    $3F811111,$11111111
                    389: EM1B3  DC.L    $3FA55555,$55555555
                    390:
                    391: EM1B2  DC.L    $3FFC0000,$AAAAAAAA,$AAAAAAAB
                    392:        DC.L    $00000000
                    393:
                    394: TWO140 DC.L    $48B00000,$00000000
                    395: TWON140        DC.L    $37300000,$00000000
                    396:
                    397: EXPTBL
                    398:        DC.L    $3FFF0000,$80000000,$00000000,$00000000
                    399:        DC.L    $3FFF0000,$8164D1F3,$BC030774,$9F841A9B
                    400:        DC.L    $3FFF0000,$82CD8698,$AC2BA1D8,$9FC1D5B9
                    401:        DC.L    $3FFF0000,$843A28C3,$ACDE4048,$A0728369
                    402:        DC.L    $3FFF0000,$85AAC367,$CC487B14,$1FC5C95C
                    403:        DC.L    $3FFF0000,$871F6196,$9E8D1010,$1EE85C9F
                    404:        DC.L    $3FFF0000,$88980E80,$92DA8528,$9FA20729
                    405:        DC.L    $3FFF0000,$8A14D575,$496EFD9C,$A07BF9AF
                    406:        DC.L    $3FFF0000,$8B95C1E3,$EA8BD6E8,$A0020DCF
                    407:        DC.L    $3FFF0000,$8D1ADF5B,$7E5BA9E4,$205A63DA
                    408:        DC.L    $3FFF0000,$8EA4398B,$45CD53C0,$1EB70051
                    409:        DC.L    $3FFF0000,$9031DC43,$1466B1DC,$1F6EB029
                    410:        DC.L    $3FFF0000,$91C3D373,$AB11C338,$A0781494
                    411:        DC.L    $3FFF0000,$935A2B2F,$13E6E92C,$9EB319B0
                    412:        DC.L    $3FFF0000,$94F4EFA8,$FEF70960,$2017457D
                    413:        DC.L    $3FFF0000,$96942D37,$20185A00,$1F11D537
                    414:        DC.L    $3FFF0000,$9837F051,$8DB8A970,$9FB952DD
                    415:        DC.L    $3FFF0000,$99E04593,$20B7FA64,$1FE43087
                    416:        DC.L    $3FFF0000,$9B8D39B9,$D54E5538,$1FA2A818
                    417:        DC.L    $3FFF0000,$9D3ED9A7,$2CFFB750,$1FDE494D
                    418:        DC.L    $3FFF0000,$9EF53260,$91A111AC,$20504890
                    419:        DC.L    $3FFF0000,$A0B0510F,$B9714FC4,$A073691C
                    420:        DC.L    $3FFF0000,$A2704303,$0C496818,$1F9B7A05
                    421:        DC.L    $3FFF0000,$A43515AE,$09E680A0,$A0797126
                    422:        DC.L    $3FFF0000,$A5FED6A9,$B15138EC,$A071A140
                    423:        DC.L    $3FFF0000,$A7CD93B4,$E9653568,$204F62DA
                    424:        DC.L    $3FFF0000,$A9A15AB4,$EA7C0EF8,$1F283C4A
                    425:        DC.L    $3FFF0000,$AB7A39B5,$A93ED338,$9F9A7FDC
                    426:        DC.L    $3FFF0000,$AD583EEA,$42A14AC8,$A05B3FAC
                    427:        DC.L    $3FFF0000,$AF3B78AD,$690A4374,$1FDF2610
                    428:        DC.L    $3FFF0000,$B123F581,$D2AC2590,$9F705F90
                    429:        DC.L    $3FFF0000,$B311C412,$A9112488,$201F678A
                    430:        DC.L    $3FFF0000,$B504F333,$F9DE6484,$1F32FB13
                    431:        DC.L    $3FFF0000,$B6FD91E3,$28D17790,$20038B30
                    432:        DC.L    $3FFF0000,$B8FBAF47,$62FB9EE8,$200DC3CC
                    433:        DC.L    $3FFF0000,$BAFF5AB2,$133E45FC,$9F8B2AE6
                    434:        DC.L    $3FFF0000,$BD08A39F,$580C36C0,$A02BBF70
                    435:        DC.L    $3FFF0000,$BF1799B6,$7A731084,$A00BF518
                    436:        DC.L    $3FFF0000,$C12C4CCA,$66709458,$A041DD41
                    437:        DC.L    $3FFF0000,$C346CCDA,$24976408,$9FDF137B
                    438:        DC.L    $3FFF0000,$C5672A11,$5506DADC,$201F1568
                    439:        DC.L    $3FFF0000,$C78D74C8,$ABB9B15C,$1FC13A2E
                    440:        DC.L    $3FFF0000,$C9B9BD86,$6E2F27A4,$A03F8F03
                    441:        DC.L    $3FFF0000,$CBEC14FE,$F2727C5C,$1FF4907D
                    442:        DC.L    $3FFF0000,$CE248C15,$1F8480E4,$9E6E53E4
                    443:        DC.L    $3FFF0000,$D06333DA,$EF2B2594,$1FD6D45C
                    444:        DC.L    $3FFF0000,$D2A81D91,$F12AE45C,$A076EDB9
                    445:        DC.L    $3FFF0000,$D4F35AAB,$CFEDFA20,$9FA6DE21
                    446:        DC.L    $3FFF0000,$D744FCCA,$D69D6AF4,$1EE69A2F
                    447:        DC.L    $3FFF0000,$D99D15C2,$78AFD7B4,$207F439F
                    448:        DC.L    $3FFF0000,$DBFBB797,$DAF23754,$201EC207
                    449:        DC.L    $3FFF0000,$DE60F482,$5E0E9124,$9E8BE175
                    450:        DC.L    $3FFF0000,$E0CCDEEC,$2A94E110,$20032C4B
                    451:        DC.L    $3FFF0000,$E33F8972,$BE8A5A50,$2004DFF5
                    452:        DC.L    $3FFF0000,$E5B906E7,$7C8348A8,$1E72F47A
                    453:        DC.L    $3FFF0000,$E8396A50,$3C4BDC68,$1F722F22
                    454:        DC.L    $3FFF0000,$EAC0C6E7,$DD243930,$A017E945
                    455:        DC.L    $3FFF0000,$ED4F301E,$D9942B84,$1F401A5B
                    456:        DC.L    $3FFF0000,$EFE4B99B,$DCDAF5CC,$9FB9A9E3
                    457:        DC.L    $3FFF0000,$F281773C,$59FFB138,$20744C05
                    458:        DC.L    $3FFF0000,$F5257D15,$2486CC2C,$1F773A19
                    459:        DC.L    $3FFF0000,$F7D0DF73,$0AD13BB8,$1FFE90D5
                    460:        DC.L    $3FFF0000,$FA83B2DB,$722A033C,$A041ED22
                    461:        DC.L    $3FFF0000,$FD3E0C0C,$F486C174,$1F853F3A
                    462:
                    463: ADJFLAG        equ L_SCR2
                    464: SCALE  equ FP_SCR1
                    465: ADJSCALE equ FP_SCR2
                    466: SC     equ FP_SCR3
                    467: ONEBYSC        equ FP_SCR4
                    468:
                    469:        xref    t_frcinx
                    470:        xref    t_extdnrm
                    471:        xref    t_unfl
                    472:        xref    t_ovfl
                    473:
                    474:        xdef    setoxd
                    475: setoxd:
                    476: *--entry point for EXP(X), X is denormalized
                    477:        MOVE.L          (a0),d0
                    478:        ANDI.L          #$80000000,d0
                    479:        ORI.L           #$00800000,d0           ...sign(X)*2^(-126)
                    480:        MOVE.L          d0,-(sp)
                    481:        FMOVE.S         #:3F800000,fp0
                    482:        fmove.l         d1,fpcr
                    483:        FADD.S          (sp)+,fp0
                    484:        bra             t_frcinx
                    485:
                    486:        xdef    setox
                    487: setox:
                    488: *--entry point for EXP(X), here X is finite, non-zero, and not NaN's
                    489:
                    490: *--Step 1.
                    491:        MOVE.L          (a0),d0  ...load part of input X
                    492:        ANDI.L          #$7FFF0000,d0   ...biased expo. of X
                    493:        CMPI.L          #$3FBE0000,d0   ...2^(-65)
                    494:        BGE.B           EXPC1           ...normal case
                    495:        BRA.W           EXPSM
                    496:
                    497: EXPC1:
                    498: *--The case |X| >= 2^(-65)
                    499:        MOVE.W          4(a0),d0        ...expo. and partial sig. of |X|
                    500:        CMPI.L          #$400CB167,d0   ...16380 log2 trunc. 16 bits
                    501:        BLT.B           EXPMAIN  ...normal case
                    502:        BRA.W           EXPBIG
                    503:
                    504: EXPMAIN:
                    505: *--Step 2.
                    506: *--This is the normal branch:  2^(-65) <= |X| < 16380 log2.
                    507:        FMOVE.X         (a0),fp0        ...load input from (a0)
                    508:
                    509:        FMOVE.X         fp0,fp1
                    510:        FMUL.S          #:42B8AA3B,fp0  ...64/log2 * X
                    511:        fmovem.x        fp2/fp3,-(a7)           ...save fp2
                    512:        CLR.L           ADJFLAG(a6)
                    513:        FMOVE.L         fp0,d0          ...N = int( X * 64/log2 )
                    514:        LEA             EXPTBL,a1
                    515:        FMOVE.L         d0,fp0          ...convert to floating-format
                    516:
                    517:        MOVE.L          d0,L_SCR1(a6)   ...save N temporarily
                    518:        ANDI.L          #$3F,d0         ...D0 is J = N mod 64
                    519:        LSL.L           #4,d0
                    520:        ADDA.L          d0,a1           ...address of 2^(J/64)
                    521:        MOVE.L          L_SCR1(a6),d0
                    522:        ASR.L           #6,d0           ...D0 is M
                    523:        ADDI.W          #$3FFF,d0       ...biased expo. of 2^(M)
                    524:        MOVE.W          L2,L_SCR1(a6)   ...prefetch L2, no need in CB
                    525:
                    526: EXPCONT1:
                    527: *--Step 3.
                    528: *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
                    529: *--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
                    530:        FMOVE.X         fp0,fp2
                    531:        FMUL.S          #:BC317218,fp0  ...N * L1, L1 = lead(-log2/64)
                    532:        FMUL.X          L2,fp2          ...N * L2, L1+L2 = -log2/64
                    533:        FADD.X          fp1,fp0         ...X + N*L1
                    534:        FADD.X          fp2,fp0         ...fp0 is R, reduced arg.
                    535: *      MOVE.W          #$3FA5,EXPA3    ...load EXPA3 in cache
                    536:
                    537: *--Step 4.
                    538: *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
                    539: *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
                    540: *--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
                    541: *--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
                    542:
                    543:        FMOVE.X         fp0,fp1
                    544:        FMUL.X          fp1,fp1         ...fp1 IS S = R*R
                    545:
                    546:        FMOVE.S         #:3AB60B70,fp2  ...fp2 IS A5
                    547: *      CLR.W           2(a1)           ...load 2^(J/64) in cache
                    548:
                    549:        FMUL.X          fp1,fp2         ...fp2 IS S*A5
                    550:        FMOVE.X         fp1,fp3
                    551:        FMUL.S          #:3C088895,fp3  ...fp3 IS S*A4
                    552:
                    553:        FADD.D          EXPA3,fp2       ...fp2 IS A3+S*A5
                    554:        FADD.D          EXPA2,fp3       ...fp3 IS A2+S*A4
                    555:
                    556:        FMUL.X          fp1,fp2         ...fp2 IS S*(A3+S*A5)
                    557:        MOVE.W          d0,SCALE(a6)    ...SCALE is 2^(M) in extended
                    558:        clr.w           SCALE+2(a6)
                    559:        move.l          #$80000000,SCALE+4(a6)
                    560:        clr.l           SCALE+8(a6)
                    561:
                    562:        FMUL.X          fp1,fp3         ...fp3 IS S*(A2+S*A4)
                    563:
                    564:        FADD.S          #:3F000000,fp2  ...fp2 IS A1+S*(A3+S*A5)
                    565:        FMUL.X          fp0,fp3         ...fp3 IS R*S*(A2+S*A4)
                    566:
                    567:        FMUL.X          fp1,fp2         ...fp2 IS S*(A1+S*(A3+S*A5))
                    568:        FADD.X          fp3,fp0         ...fp0 IS R+R*S*(A2+S*A4),
                    569: *                                      ...fp3 released
                    570:
                    571:        FMOVE.X         (a1)+,fp1       ...fp1 is lead. pt. of 2^(J/64)
                    572:        FADD.X          fp2,fp0         ...fp0 is EXP(R) - 1
                    573: *                                      ...fp2 released
                    574:
                    575: *--Step 5
                    576: *--final reconstruction process
                    577: *--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
                    578:
                    579:        FMUL.X          fp1,fp0         ...2^(J/64)*(Exp(R)-1)
                    580:        fmovem.x        (a7)+,fp2/fp3   ...fp2 restored
                    581:        FADD.S          (a1),fp0        ...accurate 2^(J/64)
                    582:
                    583:        FADD.X          fp1,fp0         ...2^(J/64) + 2^(J/64)*...
                    584:        MOVE.L          ADJFLAG(a6),d0
                    585:
                    586: *--Step 6
                    587:        TST.L           D0
                    588:        BEQ.B           NORMAL
                    589: ADJUST:
                    590:        FMUL.X          ADJSCALE(a6),fp0
                    591: NORMAL:
                    592:        FMOVE.L         d1,FPCR         ...restore user FPCR
                    593:        FMUL.X          SCALE(a6),fp0   ...multiply 2^(M)
                    594:        bra             t_frcinx
                    595:
                    596: EXPSM:
                    597: *--Step 7
                    598:        FMOVEM.X        (a0),fp0        ...in case X is denormalized
                    599:        FMOVE.L         d1,FPCR
                    600:        FADD.S          #:3F800000,fp0  ...1+X in user mode
                    601:        bra             t_frcinx
                    602:
                    603: EXPBIG:
                    604: *--Step 8
                    605:        CMPI.L          #$400CB27C,d0   ...16480 log2
                    606:        BGT.B           EXP2BIG
                    607: *--Steps 8.2 -- 8.6
                    608:        FMOVE.X         (a0),fp0        ...load input from (a0)
                    609:
                    610:        FMOVE.X         fp0,fp1
                    611:        FMUL.S          #:42B8AA3B,fp0  ...64/log2 * X
                    612:        fmovem.x         fp2/fp3,-(a7)          ...save fp2
                    613:        MOVE.L          #1,ADJFLAG(a6)
                    614:        FMOVE.L         fp0,d0          ...N = int( X * 64/log2 )
                    615:        LEA             EXPTBL,a1
                    616:        FMOVE.L         d0,fp0          ...convert to floating-format
                    617:        MOVE.L          d0,L_SCR1(a6)                   ...save N temporarily
                    618:        ANDI.L          #$3F,d0          ...D0 is J = N mod 64
                    619:        LSL.L           #4,d0
                    620:        ADDA.L          d0,a1                   ...address of 2^(J/64)
                    621:        MOVE.L          L_SCR1(a6),d0
                    622:        ASR.L           #6,d0                   ...D0 is K
                    623:        MOVE.L          d0,L_SCR1(a6)                   ...save K temporarily
                    624:        ASR.L           #1,d0                   ...D0 is M1
                    625:        SUB.L           d0,L_SCR1(a6)                   ...a1 is M
                    626:        ADDI.W          #$3FFF,d0               ...biased expo. of 2^(M1)
                    627:        MOVE.W          d0,ADJSCALE(a6)         ...ADJSCALE := 2^(M1)
                    628:        clr.w           ADJSCALE+2(a6)
                    629:        move.l          #$80000000,ADJSCALE+4(a6)
                    630:        clr.l           ADJSCALE+8(a6)
                    631:        MOVE.L          L_SCR1(a6),d0                   ...D0 is M
                    632:        ADDI.W          #$3FFF,d0               ...biased expo. of 2^(M)
                    633:        BRA.W           EXPCONT1                ...go back to Step 3
                    634:
                    635: EXP2BIG:
                    636: *--Step 9
                    637:        FMOVE.L         d1,FPCR
                    638:        MOVE.L          (a0),d0
                    639:        bclr.b          #sign_bit,(a0)          ...setox always returns positive
                    640:        TST.L           d0
                    641:        BLT             t_unfl
                    642:        BRA             t_ovfl
                    643:
                    644:        xdef    setoxm1d
                    645: setoxm1d:
                    646: *--entry point for EXPM1(X), here X is denormalized
                    647: *--Step 0.
                    648:        bra             t_extdnrm
                    649:
                    650:
                    651:        xdef    setoxm1
                    652: setoxm1:
                    653: *--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
                    654:
                    655: *--Step 1.
                    656: *--Step 1.1
                    657:        MOVE.L          (a0),d0  ...load part of input X
                    658:        ANDI.L          #$7FFF0000,d0   ...biased expo. of X
                    659:        CMPI.L          #$3FFD0000,d0   ...1/4
                    660:        BGE.B           EM1CON1  ...|X| >= 1/4
                    661:        BRA.W           EM1SM
                    662:
                    663: EM1CON1:
                    664: *--Step 1.3
                    665: *--The case |X| >= 1/4
                    666:        MOVE.W          4(a0),d0        ...expo. and partial sig. of |X|
                    667:        CMPI.L          #$4004C215,d0   ...70log2 rounded up to 16 bits
                    668:        BLE.B           EM1MAIN  ...1/4 <= |X| <= 70log2
                    669:        BRA.W           EM1BIG
                    670:
                    671: EM1MAIN:
                    672: *--Step 2.
                    673: *--This is the case:   1/4 <= |X| <= 70 log2.
                    674:        FMOVE.X         (a0),fp0        ...load input from (a0)
                    675:
                    676:        FMOVE.X         fp0,fp1
                    677:        FMUL.S          #:42B8AA3B,fp0  ...64/log2 * X
                    678:        fmovem.x        fp2/fp3,-(a7)           ...save fp2
                    679: *      MOVE.W          #$3F81,EM1A4            ...prefetch in CB mode
                    680:        FMOVE.L         fp0,d0          ...N = int( X * 64/log2 )
                    681:        LEA             EXPTBL,a1
                    682:        FMOVE.L         d0,fp0          ...convert to floating-format
                    683:
                    684:        MOVE.L          d0,L_SCR1(a6)                   ...save N temporarily
                    685:        ANDI.L          #$3F,d0          ...D0 is J = N mod 64
                    686:        LSL.L           #4,d0
                    687:        ADDA.L          d0,a1                   ...address of 2^(J/64)
                    688:        MOVE.L          L_SCR1(a6),d0
                    689:        ASR.L           #6,d0                   ...D0 is M
                    690:        MOVE.L          d0,L_SCR1(a6)                   ...save a copy of M
                    691: *      MOVE.W          #$3FDC,L2               ...prefetch L2 in CB mode
                    692:
                    693: *--Step 3.
                    694: *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
                    695: *--a0 points to 2^(J/64), D0 and a1 both contain M
                    696:        FMOVE.X         fp0,fp2
                    697:        FMUL.S          #:BC317218,fp0  ...N * L1, L1 = lead(-log2/64)
                    698:        FMUL.X          L2,fp2          ...N * L2, L1+L2 = -log2/64
                    699:        FADD.X          fp1,fp0  ...X + N*L1
                    700:        FADD.X          fp2,fp0  ...fp0 is R, reduced arg.
                    701: *      MOVE.W          #$3FC5,EM1A2            ...load EM1A2 in cache
                    702:        ADDI.W          #$3FFF,d0               ...D0 is biased expo. of 2^M
                    703:
                    704: *--Step 4.
                    705: *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
                    706: *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
                    707: *--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
                    708: *--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
                    709:
                    710:        FMOVE.X         fp0,fp1
                    711:        FMUL.X          fp1,fp1         ...fp1 IS S = R*R
                    712:
                    713:        FMOVE.S         #:3950097B,fp2  ...fp2 IS a6
                    714: *      CLR.W           2(a1)           ...load 2^(J/64) in cache
                    715:
                    716:        FMUL.X          fp1,fp2         ...fp2 IS S*A6
                    717:        FMOVE.X         fp1,fp3
                    718:        FMUL.S          #:3AB60B6A,fp3  ...fp3 IS S*A5
                    719:
                    720:        FADD.D          EM1A4,fp2       ...fp2 IS A4+S*A6
                    721:        FADD.D          EM1A3,fp3       ...fp3 IS A3+S*A5
                    722:        MOVE.W          d0,SC(a6)               ...SC is 2^(M) in extended
                    723:        clr.w           SC+2(a6)
                    724:        move.l          #$80000000,SC+4(a6)
                    725:        clr.l           SC+8(a6)
                    726:
                    727:        FMUL.X          fp1,fp2         ...fp2 IS S*(A4+S*A6)
                    728:        MOVE.L          L_SCR1(a6),d0           ...D0 is        M
                    729:        NEG.W           D0              ...D0 is -M
                    730:        FMUL.X          fp1,fp3         ...fp3 IS S*(A3+S*A5)
                    731:        ADDI.W          #$3FFF,d0       ...biased expo. of 2^(-M)
                    732:        FADD.D          EM1A2,fp2       ...fp2 IS A2+S*(A4+S*A6)
                    733:        FADD.S          #:3F000000,fp3  ...fp3 IS A1+S*(A3+S*A5)
                    734:
                    735:        FMUL.X          fp1,fp2         ...fp2 IS S*(A2+S*(A4+S*A6))
                    736:        ORI.W           #$8000,d0       ...signed/expo. of -2^(-M)
                    737:        MOVE.W          d0,ONEBYSC(a6)  ...OnebySc is -2^(-M)
                    738:        clr.w           ONEBYSC+2(a6)
                    739:        move.l          #$80000000,ONEBYSC+4(a6)
                    740:        clr.l           ONEBYSC+8(a6)
                    741:        FMUL.X          fp3,fp1         ...fp1 IS S*(A1+S*(A3+S*A5))
                    742: *                                      ...fp3 released
                    743:
                    744:        FMUL.X          fp0,fp2         ...fp2 IS R*S*(A2+S*(A4+S*A6))
                    745:        FADD.X          fp1,fp0         ...fp0 IS R+S*(A1+S*(A3+S*A5))
                    746: *                                      ...fp1 released
                    747:
                    748:        FADD.X          fp2,fp0         ...fp0 IS EXP(R)-1
                    749: *                                      ...fp2 released
                    750:        fmovem.x        (a7)+,fp2/fp3   ...fp2 restored
                    751:
                    752: *--Step 5
                    753: *--Compute 2^(J/64)*p
                    754:
                    755:        FMUL.X          (a1),fp0        ...2^(J/64)*(Exp(R)-1)
                    756:
                    757: *--Step 6
                    758: *--Step 6.1
                    759:        MOVE.L          L_SCR1(a6),d0           ...retrieve M
                    760:        CMPI.L          #63,d0
                    761:        BLE.B           MLE63
                    762: *--Step 6.2    M >= 64
                    763:        FMOVE.S         12(a1),fp1      ...fp1 is t
                    764:        FADD.X          ONEBYSC(a6),fp1 ...fp1 is t+OnebySc
                    765:        FADD.X          fp1,fp0         ...p+(t+OnebySc), fp1 released
                    766:        FADD.X          (a1),fp0        ...T+(p+(t+OnebySc))
                    767:        BRA.B           EM1SCALE
                    768: MLE63:
                    769: *--Step 6.3    M <= 63
                    770:        CMPI.L          #-3,d0
                    771:        BGE.B           MGEN3
                    772: MLTN3:
                    773: *--Step 6.4    M <= -4
                    774:        FADD.S          12(a1),fp0      ...p+t
                    775:        FADD.X          (a1),fp0        ...T+(p+t)
                    776:        FADD.X          ONEBYSC(a6),fp0 ...OnebySc + (T+(p+t))
                    777:        BRA.B           EM1SCALE
                    778: MGEN3:
                    779: *--Step 6.5    -3 <= M <= 63
                    780:        FMOVE.X         (a1)+,fp1       ...fp1 is T
                    781:        FADD.S          (a1),fp0        ...fp0 is p+t
                    782:        FADD.X          ONEBYSC(a6),fp1 ...fp1 is T+OnebySc
                    783:        FADD.X          fp1,fp0         ...(T+OnebySc)+(p+t)
                    784:
                    785: EM1SCALE:
                    786: *--Step 6.6
                    787:        FMOVE.L         d1,FPCR
                    788:        FMUL.X          SC(a6),fp0
                    789:
                    790:        bra             t_frcinx
                    791:
                    792: EM1SM:
                    793: *--Step 7      |X| < 1/4.
                    794:        CMPI.L          #$3FBE0000,d0   ...2^(-65)
                    795:        BGE.B           EM1POLY
                    796:
                    797: EM1TINY:
                    798: *--Step 8      |X| < 2^(-65)
                    799:        CMPI.L          #$00330000,d0   ...2^(-16312)
                    800:        BLT.B           EM12TINY
                    801: *--Step 8.2
                    802:        MOVE.L          #$80010000,SC(a6)       ...SC is -2^(-16382)
                    803:        move.l          #$80000000,SC+4(a6)
                    804:        clr.l           SC+8(a6)
                    805:        FMOVE.X         (a0),fp0
                    806:        FMOVE.L         d1,FPCR
                    807:        FADD.X          SC(a6),fp0
                    808:
                    809:        bra             t_frcinx
                    810:
                    811: EM12TINY:
                    812: *--Step 8.3
                    813:        FMOVE.X         (a0),fp0
                    814:        FMUL.D          TWO140,fp0
                    815:        MOVE.L          #$80010000,SC(a6)
                    816:        move.l          #$80000000,SC+4(a6)
                    817:        clr.l           SC+8(a6)
                    818:        FADD.X          SC(a6),fp0
                    819:        FMOVE.L         d1,FPCR
                    820:        FMUL.D          TWON140,fp0
                    821:
                    822:        bra             t_frcinx
                    823:
                    824: EM1POLY:
                    825: *--Step 9      exp(X)-1 by a simple polynomial
                    826:        FMOVE.X         (a0),fp0        ...fp0 is X
                    827:        FMUL.X          fp0,fp0         ...fp0 is S := X*X
                    828:        fmovem.x        fp2/fp3,-(a7)   ...save fp2
                    829:        FMOVE.S         #:2F30CAA8,fp1  ...fp1 is B12
                    830:        FMUL.X          fp0,fp1         ...fp1 is S*B12
                    831:        FMOVE.S         #:310F8290,fp2  ...fp2 is B11
                    832:        FADD.S          #:32D73220,fp1  ...fp1 is B10+S*B12
                    833:
                    834:        FMUL.X          fp0,fp2         ...fp2 is S*B11
                    835:        FMUL.X          fp0,fp1         ...fp1 is S*(B10 + ...
                    836:
                    837:        FADD.S          #:3493F281,fp2  ...fp2 is B9+S*...
                    838:        FADD.D          EM1B8,fp1       ...fp1 is B8+S*...
                    839:
                    840:        FMUL.X          fp0,fp2         ...fp2 is S*(B9+...
                    841:        FMUL.X          fp0,fp1         ...fp1 is S*(B8+...
                    842:
                    843:        FADD.D          EM1B7,fp2       ...fp2 is B7+S*...
                    844:        FADD.D          EM1B6,fp1       ...fp1 is B6+S*...
                    845:
                    846:        FMUL.X          fp0,fp2         ...fp2 is S*(B7+...
                    847:        FMUL.X          fp0,fp1         ...fp1 is S*(B6+...
                    848:
                    849:        FADD.D          EM1B5,fp2       ...fp2 is B5+S*...
                    850:        FADD.D          EM1B4,fp1       ...fp1 is B4+S*...
                    851:
                    852:        FMUL.X          fp0,fp2         ...fp2 is S*(B5+...
                    853:        FMUL.X          fp0,fp1         ...fp1 is S*(B4+...
                    854:
                    855:        FADD.D          EM1B3,fp2       ...fp2 is B3+S*...
                    856:        FADD.X          EM1B2,fp1       ...fp1 is B2+S*...
                    857:
                    858:        FMUL.X          fp0,fp2         ...fp2 is S*(B3+...
                    859:        FMUL.X          fp0,fp1         ...fp1 is S*(B2+...
                    860:
                    861:        FMUL.X          fp0,fp2         ...fp2 is S*S*(B3+...)
                    862:        FMUL.X          (a0),fp1        ...fp1 is X*S*(B2...
                    863:
                    864:        FMUL.S          #:3F000000,fp0  ...fp0 is S*B1
                    865:        FADD.X          fp2,fp1         ...fp1 is Q
                    866: *                                      ...fp2 released
                    867:
                    868:        fmovem.x        (a7)+,fp2/fp3   ...fp2 restored
                    869:
                    870:        FADD.X          fp1,fp0         ...fp0 is S*B1+Q
                    871: *                                      ...fp1 released
                    872:
                    873:        FMOVE.L         d1,FPCR
                    874:        FADD.X          (a0),fp0
                    875:
                    876:        bra             t_frcinx
                    877:
                    878: EM1BIG:
                    879: *--Step 10     |X| > 70 log2
                    880:        MOVE.L          (a0),d0
                    881:        TST.L           d0
                    882:        BGT.W           EXPC1
                    883: *--Step 10.2
                    884:        FMOVE.S         #:BF800000,fp0  ...fp0 is -1
                    885:        FMOVE.L         d1,FPCR
                    886:        FADD.S          #:00800000,fp0  ...-1 + 2^(-126)
                    887:
                    888:        bra             t_frcinx
                    889:
                    890:        end

CVSweb