[BACK]Return to jornada_machdep.c CVS log [TXT][DIR] Up to [local] / sys / arch / jornada / jornada

File: [local] / sys / arch / jornada / jornada / jornada_machdep.c (download)

Revision 1.2, Sun May 11 09:26:12 2008 UTC (16 years ago) by nbrk
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +1 -1 lines

Sync up my latest modifications related to OpenBSD/jornada.
At this point PCMCIA is not done (this is primary goal since it's only
expansion bus for SA-1110) but some other chip subsystems rather work.
One of most recent problems sit in ported NetBSD pcic driver. It cause memory
abort passing odd addr to bus_space_write_2 (APB transactions are word-wide,
but I try to emulate 2-bytes accesses in bus_space_map for sa1111).
Other problematic/untested areas: sacic, saic. UART driver is a stub and not
really useful.
But even with this problems I have overdone my plans with this porting effort.

/*	$OpenBSD: armish_machdep.c,v 1.10 2007/05/19 15:49:05 miod Exp $ */
/*	$NetBSD: lubbock_machdep.c,v 1.2 2003/07/15 00:25:06 lukem Exp $ */

/*
 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
 * All rights reserved.
 *
 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed for the NetBSD Project by
 *	Wasabi Systems, Inc.
 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
 *    or promote products derived from this software without specific prior
 *    written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 1997,1998 Mark Brinicombe.
 * Copyright (c) 1997,1998 Causality Limited.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Mark Brinicombe
 *	for the NetBSD Project.
 * 4. The name of the company nor the name of the author may be used to
 *    endorse or promote products derived from this software without specific
 *    prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Machine dependant functions for kernel setup for Intel IQ80321 evaluation
 * boards using RedBoot firmware.
 */

/*
 * DIP switches:
 *
 * S19: no-dot: set RB_KDB.  enter kgdb session.
 * S20: no-dot: set RB_SINGLE. don't go multi user mode.
 */

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/kcore.h>

#include <uvm/uvm_extern.h>

#include <sys/conf.h>
#include <sys/queue.h>
#include <sys/device.h>
#include <dev/cons.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>

#include <machine/bootconfig.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <arm/kcore.h>
#include <arm/undefined.h>
#include <arm/machdep.h>

#include <arm/sa11x0/sa11x0_reg.h>
#include <arm/sa11x0/sa11x0_var.h>
#include <machine/jornada_reg.h>

/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x10000000)

/*
 * The range 0xc1000000 - 0xcfffffff is available for kernel VM space
 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
 */
#define KERNEL_VM_SIZE		0x20000000


/*
 * Address to call from cpu_reset() to reset the machine.
 * This is machine architecture dependant as it varies depending
 * on where the ROM appears when you turn the MMU off.
 */

u_int cpu_reset_address = 0;

/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE	1
#define ABT_STACK_SIZE	1
#ifdef IPKDB
#define UND_STACK_SIZE	2
#else
#define UND_STACK_SIZE	1
#endif

BootConfig bootconfig;		/* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;

paddr_t physical_start;
paddr_t physical_freestart;
paddr_t physical_freeend;
paddr_t physical_end;
u_int free_pages;
paddr_t pagetables_start;
int physmem = 0;

/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64;			/* Default number */
#endif	/* !PMAP_STATIC_L1S */

/* Physical and virtual addresses for some global pages */
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
extern pv_addr_t kernelstack;
pv_addr_t minidataclean;

#define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
extern unsigned int sa1_cache_clean_addr;
extern unsigned int sa1_cache_clean_size;
static vaddr_t sa1_cc_base;

paddr_t msgbufphys;

extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;

#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif

#define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
#define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
#define	KERNEL_PT_KERNEL_NUM	8
/* L2 table for mapping peripherals */
#define	KERNEL_PT_IO		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
/* L2 tables for mapping kernel VM */ 
#define KERNEL_PT_VMDATA	(KERNEL_PT_IO + 1)
#define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
#define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)

pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];

extern struct user *proc0paddr;

/* Prototypes */

#define	BOOT_STRING_MAGIC 0x4f425344

char	bootargs[MAX_BOOT_STRING];
void	process_kernel_args(char *);

void	consinit(void);
void	fakecninit(bus_addr_t paddr);

#ifdef BOOTCONSOLE_COM
int	sacomcnattach(bus_space_tag_t bust, bus_addr_t busa, int speed);
void	sacomfakecnattach(bus_addr_t addr);
#else /* !BOOTCONSOLE_COM */
#include <arch/jornada/dev/jfbreg.h>
void	jfbfakecnattach(bus_addr_t addr);
int	jfbcnattach(bus_space_tag_t bust, bus_addr_t busa);
#endif /* BOOTCONSOLE_COM */

#ifndef CONSPEED
#define CONSPEED 115200
#endif

int comcnspeed = CONSPEED;


/*
 * void boot(int howto, char *bootstr)
 *
 * Reboots the system
 *
 * Deal with any syncing, unmounting, dumping and shutdown hooks,
 * then reset the CPU.
 */
void	board_reset(void);
void	board_powerdown(void);
void
boot(int howto)
{
	/*
	 * If we are still cold then hit the air brakes
	 * and crash to earth fast
	 */
	if (cold) {
		doshutdownhooks();
		if ((howto & (RB_HALT | RB_USERREQ)) != RB_USERREQ) {
			printf("The operating system has halted.\n");
			printf("Please press any key to reboot.\n\n");
			cngetc();
		}
#ifndef DO_NOT_RESET_SA1
		printf("rebooting...\n");
		delay(60000);
		cpu_reset();
		printf("reboot failed; spinning\n");
#else /* DO_NOT_RESET_SA1 */
		printf("will not reset CPU; spinning\n");
#endif /* !DO_NOT_RESET_SA1 */
		while(1);
		/*NOTREACHED*/
	}

	/* Disable console buffering */
/*	cnpollc(1);*/

	/*
	 * If RB_NOSYNC was not specified sync the discs.
	 * Note: Unless cold is set to 1 here, syslogd will die during the
	 * unmount.  It looks like syslogd is getting woken up only to find
	 * that it cannot page part of the binary in as the filesystem has
	 * been unmounted.
	 */
	if (!(howto & RB_NOSYNC))
		bootsync(howto);

	/* Say NO to interrupts */
	splhigh();

	/* Do a dump if requested. */
	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
		dumpsys();
	
	/* Run any shutdown hooks */
	doshutdownhooks();

	/* Make sure IRQ's are disabled */
	IRQdisable;

	if (howto & RB_HALT) {
		if (howto & RB_POWERDOWN) {
			/* TODO */
			//board_powerdown();
			printf("WARNING: powerdown failed!\n");
		}

		printf("The operating system has halted.\n");
		printf("Please press any key to reboot.\n\n");
		cngetc();
	}

#ifndef DO_NOT_RESET_SA1
	printf("rebooting...\n");

/* TODO board_reset */
	cpu_reset();
	printf("reboot failed; spinning\n");
#else /* DO_NOT_RESET_SA1 */
	printf("will not reset CPU; spinning\n");
#endif /* !DO_NOT_RESET_SA1 */
	while(1)
		;
	/*NOTREACHED*/
}

/*
 * Mapping table for core kernel memory. These areas are mapped in
 * init time at fixed virtual address with section mappings. 
 */
const struct pmap_devmap jornada_devmap[] = {
    /*
     * Map the on-board devices VA == PA so that we can access them
     * with the MMU on or off.
     */
    {
	SACOM3_BASE,
	SACOM3_HW_BASE,
	0x24 /*	SACOM3_SIZE, */,
	VM_PROT_READ|VM_PROT_WRITE,
	PTE_NOCACHE,
    },
    {
	SAIPIC_VBASE,
	SAIPIC_BASE,
	0x24 /*	SAIPIC_SIZE, */,
	VM_PROT_READ|VM_PROT_WRITE,
	PTE_NOCACHE,
    },
#ifndef BOOTCONSOLE_COM
    {
	JFB_VBASE,
	JFB_BASE,
	JFB_SIZE,
	VM_PROT_READ|VM_PROT_WRITE,
	PTE_NOCACHE,
    },
#endif /* !BOOTCONSOLE_COM */
    {0, 0, 0, 0, 0}
};


/*
 * u_int initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
u_int
initarm(void *arg)
{
	extern cpu_kcore_hdr_t cpu_kcore_hdr;
	int loop;
	int loop1;
	u_int l1pagetable;
	pv_addr_t kernel_l1pt;
	paddr_t memstart;
	psize_t memsize;
	extern u_int32_t esym;	/* &_end if no symbols are loaded */

	/* get ready for splfoo() */
	sa11x0_intr_bootstrap(SAIPIC_BASE);

	pmap_devmap_register(jornada_devmap);

	/* setup a serial console for very early boot */
#ifdef BOOTCONSOLE_COM
	fakecninit(SACOM3_HW_BASE);
#else
	fakecninit(JFB_BASE);
#endif

	/*
	 * Heads up ... Setup the CPU / MMU / TLB functions
	 */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	/*
	 * Examine the boot args string for options we need to know about
	 * now.
	 */
	/* XXX should really be done after setting up the console, but we
	 * XXX need to parse the console selection flags right now. */
	process_kernel_args((char *)0xc0200000 - MAX_BOOT_STRING - 1);
#ifdef RAMDISK_HOOKS
        boothowto |= RB_DFLTROOT;
#endif /* RAMDISK_HOOKS */

	/* Talk to the user */
	printf("\nOpenBSD/jornada booting ...\n");

#define VERBOSE_INIT_ARM

	/* Ugly hardcode DRAM bounds */
	/* TODO */
	memstart = (paddr_t)0xc0000000;
	memsize = (psize_t)(32 * 1024 * 1024);

//#define DEBUG
#ifdef DEBUG
	printf("initarm: Configuring system ...\n");
#endif

	/* Fake bootconfig structure for the benefit of pmap.c */
	/* XXX must make the memory description h/w independant */
	bootconfig.dramblocks = 1;
	bootconfig.dram[0].address = memstart;
	bootconfig.dram[0].pages = memsize / PAGE_SIZE;

	/*
	 * Set up the variables that define the availablilty of
	 * physical memory.  For now, we're going to set
	 * physical_freestart to 0xc0200000 (where the kernel
	 * was loaded), and allocate the memory we need downwards.
	 * We will update physical_freestart and physical_freeend 
	 * later to reflect what pmap_bootstrap() wants to see.
	 *
	 * XXX pmap_bootstrap() needs an enema.
	 */
	physical_start = bootconfig.dram[0].address;
	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);

	physical_freestart = 0xc0200000UL;
	physical_freeend = physical_end;

	physmem = (physical_end - physical_start) / PAGE_SIZE;

#if defined(DEBUG) || defined(VERBOSE_INIT_ARM)
	/* Tell the user about the memory */
	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
	    physical_start, physical_end - 1);
#endif

	/*
	 * Okay, the kernel starts 2MB in from the bottom of physical
	 * memory.  We are going to allocate our bootstrap pages downwards
	 * from there.
	 *
	 * We need to allocate some fixed page tables to get the kernel
	 * going.  We allocate one page directory and a number of page
	 * tables and store the physical addresses in the kernel_pt_table
	 * array.
	 *
	 * The kernel page directory must be on a 16K boundary.  The page
	 * tables must be on 4K boundaries.  What we do is allocate the
	 * page directory on the first 16K boundary that we encounter, and
	 * the page tables on 4K boundaries otherwise.  Since we allocate
	 * at least 3 L2 page tables, we are guaranteed to encounter at
	 * least one 16K aligned region.
	 */

#ifdef VERBOSE_INIT_ARM
	printf("Allocating page tables\n");
#endif

	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
	       physical_freestart, free_pages, free_pages);
#endif

	/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)				\
	alloc_pages((var).pv_pa, (np));			\
	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)				\
	physical_freeend -= ((np) * PAGE_SIZE);		\
	if (physical_freeend < physical_freestart)	\
		panic("initarm: out of memory");	\
	(var) = physical_freeend;			\
	free_pages -= (np);				\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	loop1 = 0;
	kernel_l1pt.pv_pa = 0;
	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
		/* Are we 16KB aligned for an L1 ? */
		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
		    && kernel_l1pt.pv_pa == 0) {
			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
		} else {
			valloc_pages(kernel_pt_table[loop1],
			    L2_TABLE_SIZE / PAGE_SIZE);
			++loop1;
		}
	}

	/* This should never be able to happen but better confirm that. */
	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
		panic("initarm: Failed to align the kernel page directory");

	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	alloc_pages(systempage.pv_pa, 1);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, UPAGES);

#ifdef VERBOSE_INIT_ARM
	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
	    irqstack.pv_va); 
	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
	    abtstack.pv_va); 
	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
	    undstack.pv_va); 
	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
	    kernelstack.pv_va); 
#endif

	/*
	 * XXX Defer this to later so that we can reclaim the memory
	 * XXX used by the RedBoot page tables.
	 */
	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

	/*
	 * XXX Actually, we only need virtual space and don't need
	 * XXX physical memory for sa110_cc_base and sa11x0_idle_mem.
	 */
	/*
	 * XXX totally stuffed hack to work round problems introduced
	 * in recent versions of the pmap code. Due to the calls used there
	 * we cannot allocate virtual memory during bootstrap.
	 */
	for (;;) {
		alloc_pages(sa1_cc_base, 1);
		if (!(sa1_cc_base & (CPU_SA110_CACHE_CLEAN_SIZE - 1)))
			break;
	}
	{
		vaddr_t dummy;
		alloc_pages(dummy, CPU_SA110_CACHE_CLEAN_SIZE / PAGE_SIZE - 1);
	}
	sa1_cache_clean_addr = sa1_cc_base;
	sa1_cache_clean_size = CPU_SA110_CACHE_CLEAN_SIZE / 2;


	/*
	 * Ok we have allocated physical pages for the primary kernel
	 * page tables
	 */

#ifdef VERBOSE_INIT_ARM
	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_pa;

#ifdef HIGH_VECT
	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
#else
	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, 0x00000000,
	    &kernel_pt_table[KERNEL_PT_SYS]);
#endif
	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);

	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

	/* link devices */
	pmap_link_l2pt(l1pagetable, 0xfd000000/* XXX XXX */,
	    &kernel_pt_table[KERNEL_PT_IO]);

	/* update the top of the kernel VM */
	pmap_curmaxkvaddr =
	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
	printf("Mapping kernel\n");
#endif

	/* Now we fill in the L2 pagetable for the kernel static code/data
	 * and the symbol table. */
	{
		extern char etext[];
#ifdef VERBOSE_INIT_ARM
		extern char _end[];
#endif
		size_t textsize = (u_int32_t) etext - KERNEL_TEXT_BASE;
		size_t totalsize = esym - KERNEL_TEXT_BASE;
		u_int logical;

#ifdef VERBOSE_INIT_ARM
		printf("kernelsize text %x total %x end %x esym %x\n",
		    textsize, totalsize, _end, esym);
#endif

		textsize = round_page(textsize);
		totalsize = round_page(totalsize);
		
		logical = 0x00200000;	/* offset of kernel in RAM */

		/* Update dump information */
		cpu_kcore_hdr.kernelbase = KERNEL_BASE;
		cpu_kcore_hdr.kerneloffs = logical;
		cpu_kcore_hdr.staticsize = totalsize;

		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
		pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, totalsize - textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	}

#ifdef VERBOSE_INIT_ARM
	printf("Constructing L2 page tables\n");
#endif

	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	pmap_map_chunk(l1pagetable, sa1_cache_clean_addr, 0xe0000000,
	    CPU_SA110_CACHE_CLEAN_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	/* Map the vector page. */
#ifdef HIGH_VECT
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#else
        pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif

	/* XXX XXX */
	pmap_devmap_bootstrap(l1pagetable, jornada_devmap);

	/*
	 * Now we have the real page tables in place so we can switch to them.
	 * Once this is done we will be running with the REAL kernel page
	 * tables.
	 */

	/*
	 * Update the physical_freestart/physical_freeend/free_pages
	 * variables.
	 */
	{
		physical_freestart = physical_start - KERNEL_BASE +
		    round_page(esym);
		physical_freeend = physical_end;
		free_pages =
		    (physical_freeend - physical_freestart) / PAGE_SIZE;
	}
#ifdef VERBOSE_INIT_ARM
	printf("physical_freestart %x end %x\n", physical_freestart,
	    physical_freeend);
#endif

	/* be a client to all domains */
	cpu_domains(0x55555555);
	/* Switch tables */
#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
	       physical_freestart, free_pages, free_pages);
	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif

	/* set new intc register address so that splfoo() doesn't
		touch illegal address.  */
	sa11x0_intr_bootstrap(SAIPIC_VBASE);

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/* update with our virtual address */
#ifdef BOOTCONSOLE_COM
	fakecninit(SACOM3_BASE);
#else
	fakecninit(JFB_VBASE);
#endif /* BOOTCONSOLE_COM */
	/*
	 * Moved from cpu_startup() as data_abort_handler() references
	 * this during uvm init
	 */
	proc0paddr = (struct user *)kernelstack.pv_va;
	proc0.p_addr = proc0paddr;

#ifdef VERBOSE_INIT_ARM
	printf("bootstrap done.\n");
#endif

#ifdef HIGH_VECT
	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
#else
	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
#endif

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("init subsystems: stacks ");
#endif

	set_stackptr(PSR_IRQ32_MODE,
	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE,
	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE,
	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler.
	 * Until then we will use a handler that just panics but tells us
	 * why.
	 * Initialisation of the vectors will just panic on a data abort.
	 * This just fills in a slightly better one.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("vectors ");
#endif
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;

	/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
	printf("undefined ");
#endif
	undefined_init();

	/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
	printf("page ");
#endif
	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
	    atop(physical_freestart), atop(physical_freeend),
	    VM_FREELIST_DEFAULT);

	/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
	printf("pmap ");
#endif
	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
	    KERNEL_VM_BASE + KERNEL_VM_SIZE);

	/* Update dump information */
	cpu_kcore_hdr.pmap_kernel_l1 = (u_int32_t)pmap_kernel()->pm_l1;
	cpu_kcore_hdr.pmap_kernel_l2 = (u_int32_t)&(pmap_kernel()->pm_l2);

	/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
	printf("irq ");
#endif
	sa11x0_init_interrupt_masks();

#ifdef VERBOSE_INIT_ARM
	printf("done.\n");
#endif

#ifdef DDB
	db_machine_init();

	/* Firmware doesn't load symbols. */
	ddb_init();

	if (boothowto & RB_KDB)
		Debugger();
#endif

	/* We return the new stack pointer address */
	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}

void
process_kernel_args(char *args)
{
	char *cp = args;

	if (cp == NULL || *(int *)cp != BOOT_STRING_MAGIC) {
		boothowto = RB_AUTOBOOT;
		return;
	}

	/* Eat the cookie */
	*(int *)cp = 0;
	cp += sizeof(int);

	boothowto = 0;

	/* Make a local copy of the bootargs */
	strncpy(bootargs, cp, MAX_BOOT_STRING - sizeof(int));

	cp = bootargs;
	boot_file = bootargs;

	/* Skip the kernel image filename */
	while (*cp != ' ' && *cp != 0)
		++cp;

	if (*cp != 0)
		*cp++ = 0;

	while (*cp == ' ')
		++cp;

	boot_args = cp;

#if 0
	printf("bootfile: %s\n", boot_file);
	printf("bootargs: %s\n", boot_args);
#endif

	/* Setup pointer to boot flags */
	while (*cp != '-')
		if (*cp++ == '\0')
			return;

	for (;*++cp;) {
		int fl;

		fl = 0;
		switch(*cp) {
		case 'a':
			fl |= RB_ASKNAME;
			break;
		case 'c':
			fl |= RB_CONFIG;
			break;
		case 'd':
			fl |= RB_KDB;
			break;
		case 's':
			fl |= RB_SINGLE;
			break;
		default:
			printf("unknown option `%c'\n", *cp);
			break;
		}
		boothowto |= fl;
	}
}


void
consinit(void)
{
	/* XXX defer console attachment to autoconf */
	return;
}

void
fakecninit(bus_addr_t addr)
{
	/*
	 * Early console initialization.
	 * XXX cn_getc stuff
	 */
	switch(addr) {
#ifdef BOOTCONSOLE_COM
		case SACOM3_HW_BASE:
		case SACOM3_BASE:
			sacomfakecnattach(addr);
			break;
#else
		case JFB_BASE:
		case JFB_VBASE:
			jfbfakecnattach(addr);
			break;
#endif /* BOOTCONSOLE_COM */
		default:
			panic("serial console not configured");
	}
}

void
board_startup(void)
{
        if (boothowto & RB_CONFIG) {
#ifdef BOOT_CONFIG
		user_config();
#else
		printf("kernel does not support -c; continuing..\n");
#endif
	}
}