[BACK]Return to pmap.h CVS log [TXT][DIR] Up to [local] / sys / arch / i386 / include

Annotation of sys/arch/i386/include/pmap.h, Revision 1.1.1.1

1.1       nbrk        1: /*     $OpenBSD: pmap.h,v 1.47 2007/05/29 18:18:20 tom Exp $   */
                      2: /*     $NetBSD: pmap.h,v 1.44 2000/04/24 17:18:18 thorpej Exp $        */
                      3:
                      4: /*
                      5:  *
                      6:  * Copyright (c) 1997 Charles D. Cranor and Washington University.
                      7:  * All rights reserved.
                      8:  *
                      9:  * Redistribution and use in source and binary forms, with or without
                     10:  * modification, are permitted provided that the following conditions
                     11:  * are met:
                     12:  * 1. Redistributions of source code must retain the above copyright
                     13:  *    notice, this list of conditions and the following disclaimer.
                     14:  * 2. Redistributions in binary form must reproduce the above copyright
                     15:  *    notice, this list of conditions and the following disclaimer in the
                     16:  *    documentation and/or other materials provided with the distribution.
                     17:  * 3. All advertising materials mentioning features or use of this software
                     18:  *    must display the following acknowledgment:
                     19:  *      This product includes software developed by Charles D. Cranor and
                     20:  *      Washington University.
                     21:  * 4. The name of the author may not be used to endorse or promote products
                     22:  *    derived from this software without specific prior written permission.
                     23:  *
                     24:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
                     25:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
                     26:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
                     27:  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
                     28:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
                     29:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
                     30:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
                     31:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
                     32:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
                     33:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     34:  */
                     35:
                     36: /*
                     37:  * pmap.h: see pmap.c for the history of this pmap module.
                     38:  */
                     39:
                     40: #ifndef        _I386_PMAP_H_
                     41: #define        _I386_PMAP_H_
                     42:
                     43: #include <machine/cpufunc.h>
                     44: #include <machine/pte.h>
                     45: #include <machine/segments.h>
                     46: #include <uvm/uvm_pglist.h>
                     47: #include <uvm/uvm_object.h>
                     48:
                     49: /*
                     50:  * See pte.h for a description of i386 MMU terminology and hardware
                     51:  * interface.
                     52:  *
                     53:  * A pmap describes a process' 4GB virtual address space.  This
                     54:  * virtual address space can be broken up into 1024 4MB regions which
                     55:  * are described by PDEs in the PDP.  The PDEs are defined as follows:
                     56:  *
                     57:  * Ranges are inclusive -> exclusive, just like vm_map_entry start/end.
                     58:  * The following assumes that KERNBASE is 0xd0000000.
                     59:  *
                     60:  * PDE#s       VA range                Usage
                     61:  * 0->831      0x0 -> 0xcfc00000       user address space, note that the
                     62:  *                                     max user address is 0xcfbfe000
                     63:  *                                     the final two pages in the last 4MB
                     64:  *                                     used to be reserved for the UAREA
                     65:  *                                     but now are no longer used.
                     66:  * 831         0xcfc00000->            recursive mapping of PDP (used for
                     67:  *                     0xd0000000      linear mapping of PTPs).
                     68:  * 832->1023   0xd0000000->            kernel address space (constant
                     69:  *                     0xffc00000      across all pmaps/processes).
                     70:  * 1023                0xffc00000->            "alternate" recursive PDP mapping
                     71:  *                     <end>           (for other pmaps).
                     72:  *
                     73:  *
                     74:  * Note: A recursive PDP mapping provides a way to map all the PTEs for
                     75:  * a 4GB address space into a linear chunk of virtual memory.  In other
                     76:  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
                     77:  * area.  The PTE for page 1 is the second int.  The very last int in the
                     78:  * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
                     79:  * address).
                     80:  *
                     81:  * All pmaps' PDs must have the same values in slots 832->1023 so that
                     82:  * the kernel is always mapped in every process.  These values are loaded
                     83:  * into the PD at pmap creation time.
                     84:  *
                     85:  * At any one time only one pmap can be active on a processor.  This is
                     86:  * the pmap whose PDP is pointed to by processor register %cr3.  This pmap
                     87:  * will have all its PTEs mapped into memory at the recursive mapping
                     88:  * point (slot #831 as show above).  When the pmap code wants to find the
                     89:  * PTE for a virtual address, all it has to do is the following:
                     90:  *
                     91:  * Address of PTE = (831 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
                     92:  *                = 0xcfc00000 + (VA / 4096) * 4
                     93:  *
                     94:  * What happens if the pmap layer is asked to perform an operation
                     95:  * on a pmap that is not the one which is currently active?  In that
                     96:  * case we take the PA of the PDP of non-active pmap and put it in
                     97:  * slot 1023 of the active pmap.  This causes the non-active pmap's
                     98:  * PTEs to get mapped in the final 4MB of the 4GB address space
                     99:  * (e.g. starting at 0xffc00000).
                    100:  *
                    101:  * The following figure shows the effects of the recursive PDP mapping:
                    102:  *
                    103:  *   PDP (%cr3)
                    104:  *   +----+
                    105:  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
                    106:  *   |    |
                    107:  *   |    |
                    108:  *   | 831| -> points back to PDP (%cr3) mapping VA 0xcfc00000 -> 0xd0000000
                    109:  *   | 832| -> first kernel PTP (maps 0xd0000000 -> 0xe0400000)
                    110:  *   |    |
                    111:  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
                    112:  *   +----+
                    113:  *
                    114:  * Note that the PDE#831 VA (0xcfc00000) is defined as "PTE_BASE".
                    115:  * Note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE".
                    116:  *
                    117:  * Starting at VA 0xcfc00000 the current active PDP (%cr3) acts as a
                    118:  * PTP:
                    119:  *
                    120:  * PTP#831 == PDP(%cr3) => maps VA 0xcfc00000 -> 0xd0000000
                    121:  *   +----+
                    122:  *   |   0| -> maps the contents of PTP#0 at VA 0xcfc00000->0xcfc01000
                    123:  *   |    |
                    124:  *   |    |
                    125:  *   | 831| -> maps the contents of PTP#831 (the PDP) at VA 0xcff3f000
                    126:  *   | 832| -> maps the contents of first kernel PTP
                    127:  *   |    |
                    128:  *   |1023|
                    129:  *   +----+
                    130:  *
                    131:  * Note that mapping of the PDP at PTP#831's VA (0xcff3f000) is
                    132:  * defined as "PDP_BASE".... within that mapping there are two
                    133:  * defines:
                    134:  *   "PDP_PDE" (0xcff3fcfc) is the VA of the PDE in the PDP
                    135:  *      which points back to itself.
                    136:  *   "APDP_PDE" (0xcff3fffc) is the VA of the PDE in the PDP which
                    137:  *      establishes the recursive mapping of the alternate pmap.
                    138:  *      To set the alternate PDP, one just has to put the correct
                    139:  *     PA info in *APDP_PDE.
                    140:  *
                    141:  * Note that in the APTE_BASE space, the APDP appears at VA
                    142:  * "APDP_BASE" (0xfffff000).
                    143:  */
                    144:
                    145: /*
                    146:  * The following defines identify the slots used as described above.
                    147:  */
                    148:
                    149: #define PDSLOT_PTE     ((KERNBASE/NBPD)-1) /* 831: for recursive PDP map */
                    150: #define PDSLOT_KERN    (KERNBASE/NBPD)     /* 832: start of kernel space */
                    151: #define PDSLOT_APTE    ((unsigned)1023) /* 1023: alternative recursive slot */
                    152:
                    153: /*
                    154:  * The following defines give the virtual addresses of various MMU
                    155:  * data structures:
                    156:  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
                    157:  * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
                    158:  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
                    159:  */
                    160:
                    161: #define PTE_BASE       ((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
                    162: #define APTE_BASE      ((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
                    163: #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
                    164: #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
                    165: #define PDP_PDE                (PDP_BASE + PDSLOT_PTE)
                    166: #define APDP_PDE       (PDP_BASE + PDSLOT_APTE)
                    167:
                    168: /*
                    169:  * The following define determines how many PTPs should be set up for the
                    170:  * kernel by locore.s at boot time.  This should be large enough to
                    171:  * get the VM system running.  Once the VM system is running, the
                    172:  * pmap module can add more PTPs to the kernel area on demand.
                    173:  */
                    174:
                    175: #ifndef NKPTP
                    176: #define NKPTP          4       /* 16MB to start */
                    177: #endif
                    178: #define NKPTP_MIN      4       /* smallest value we allow */
                    179: #define NKPTP_MAX      (1024 - (KERNBASE/NBPD) - 1)
                    180:                                /* largest value (-1 for APTP space) */
                    181:
                    182: /*
                    183:  * various address macros
                    184:  *
                    185:  *  vtopte: return a pointer to the PTE mapping a VA
                    186:  *  kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
                    187:  *  ptetov: given a pointer to a PTE, return the VA that it maps
                    188:  *  vtophys: translate a VA to the PA mapped to it
                    189:  *
                    190:  * plus alternative versions of the above
                    191:  */
                    192:
                    193: #define vtopte(VA)     (PTE_BASE + atop(VA))
                    194: #define kvtopte(VA)    vtopte(VA)
                    195: #define ptetov(PT)     (ptoa(PT - PTE_BASE))
                    196: #define        vtophys(VA)     ((*vtopte(VA) & PG_FRAME) | \
                    197:                         ((unsigned)(VA) & ~PG_FRAME))
                    198: #define        avtopte(VA)     (APTE_BASE + atop(VA))
                    199: #define        ptetoav(PT)     (ptoa(PT - APTE_BASE))
                    200: #define        avtophys(VA)    ((*avtopte(VA) & PG_FRAME) | \
                    201:                         ((unsigned)(VA) & ~PG_FRAME))
                    202:
                    203: /*
                    204:  * pdei/ptei: generate index into PDP/PTP from a VA
                    205:  */
                    206: #define        pdei(VA)        (((VA) & PD_MASK) >> PDSHIFT)
                    207: #define        ptei(VA)        (((VA) & PT_MASK) >> PGSHIFT)
                    208:
                    209: /*
                    210:  * PTP macros:
                    211:  *   A PTP's index is the PD index of the PDE that points to it.
                    212:  *   A PTP's offset is the byte-offset in the PTE space that this PTP is at.
                    213:  *   A PTP's VA is the first VA mapped by that PTP.
                    214:  *
                    215:  * Note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
                    216:  *           NBPD == number of bytes a PTP can map (4MB)
                    217:  */
                    218:
                    219: #define ptp_i2o(I)     ((I) * NBPG)    /* index => offset */
                    220: #define ptp_o2i(O)     ((O) / NBPG)    /* offset => index */
                    221: #define ptp_i2v(I)     ((I) * NBPD)    /* index => VA */
                    222: #define ptp_v2i(V)     ((V) / NBPD)    /* VA => index (same as pdei) */
                    223:
                    224: /*
                    225:  * PG_AVAIL usage: we make use of the ignored bits of the PTE
                    226:  */
                    227:
                    228: #define PG_W           PG_AVAIL1       /* "wired" mapping */
                    229: #define PG_PVLIST      PG_AVAIL2       /* mapping has entry on pvlist */
                    230: #define        PG_X            PG_AVAIL3       /* executable mapping */
                    231:
                    232: /*
                    233:  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
                    234:  * Used to avoid false sharing of cache lines.
                    235:  */
                    236: #define NPTECL                 8
                    237:
                    238: #ifdef _KERNEL
                    239: /*
                    240:  * pmap data structures: see pmap.c for details of locking.
                    241:  */
                    242:
                    243: struct pmap;
                    244: typedef struct pmap *pmap_t;
                    245:
                    246: /*
                    247:  * We maintain a list of all non-kernel pmaps.
                    248:  */
                    249:
                    250: LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
                    251:
                    252: /*
                    253:  * The pmap structure
                    254:  *
                    255:  * Note that the pm_obj contains the simple_lock, the reference count,
                    256:  * page list, and number of PTPs within the pmap.
                    257:  */
                    258:
                    259: struct pmap {
                    260:        struct uvm_object pm_obj;       /* object (lck by object lock) */
                    261: #define        pm_lock pm_obj.vmobjlock
                    262:        LIST_ENTRY(pmap) pm_list;       /* list (lck by pm_list lock) */
                    263:        pd_entry_t *pm_pdir;            /* VA of PD (lck by object lock) */
                    264:        paddr_t pm_pdirpa;              /* PA of PD (read-only after create) */
                    265:        struct vm_page *pm_ptphint;     /* pointer to a PTP in our pmap */
                    266:        struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
                    267:
                    268:        vaddr_t pm_hiexec;              /* highest executable mapping */
                    269:        int pm_flags;                   /* see below */
                    270:
                    271:        struct  segment_descriptor pm_codeseg;  /* cs descriptor for process */
                    272:        union descriptor *pm_ldt;       /* user-set LDT */
                    273:        int pm_ldt_len;                 /* number of LDT entries */
                    274:        int pm_ldt_sel;                 /* LDT selector */
                    275:        uint32_t pm_cpus;               /* mask of CPUs using map */
                    276: };
                    277:
                    278: /* pm_flags */
                    279: #define        PMF_USER_LDT    0x01    /* pmap has user-set LDT */
                    280:
                    281: /*
                    282:  * For each managed physical page we maintain a list of <PMAP,VA>s
                    283:  * which it is mapped at.  The list is headed by a pv_head structure.
                    284:  * there is one pv_head per managed phys page (allocated at boot time).
                    285:  * The pv_head structure points to a list of pv_entry structures (each
                    286:  * describes one mapping).
                    287:  */
                    288:
                    289: struct pv_entry {                      /* locked by its list's pvh_lock */
                    290:        struct pv_entry *pv_next;       /* next entry */
                    291:        struct pmap *pv_pmap;           /* the pmap */
                    292:        vaddr_t pv_va;                  /* the virtual address */
                    293:        struct vm_page *pv_ptp;         /* the vm_page of the PTP */
                    294: };
                    295:
                    296: /*
                    297:  * We keep mod/ref flags in struct vm_page->pg_flags.
                    298:  */
                    299: #define PG_PMAP_MOD    PG_PMAP0
                    300: #define        PG_PMAP_REF     PG_PMAP1
                    301:
                    302: /*
                    303:  * pv_entrys are dynamically allocated in chunks from a single page.
                    304:  * we keep track of how many pv_entrys are in use for each page and
                    305:  * we can free pv_entry pages if needed.  There is one lock for the
                    306:  * entire allocation system.
                    307:  */
                    308:
                    309: struct pv_page_info {
                    310:        TAILQ_ENTRY(pv_page) pvpi_list;
                    311:        struct pv_entry *pvpi_pvfree;
                    312:        int pvpi_nfree;
                    313: };
                    314:
                    315: /*
                    316:  * number of pv_entries in a pv_page
                    317:  * (note: won't work on systems where NPBG isn't a constant)
                    318:  */
                    319:
                    320: #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
                    321:                        sizeof(struct pv_entry))
                    322:
                    323: /*
                    324:  * a pv_page: where pv_entrys are allocated from
                    325:  */
                    326:
                    327: struct pv_page {
                    328:        struct pv_page_info pvinfo;
                    329:        struct pv_entry pvents[PVE_PER_PVPAGE];
                    330: };
                    331:
                    332: /*
                    333:  * global kernel variables
                    334:  */
                    335:
                    336: extern pd_entry_t      PTD[];
                    337:
                    338: /* PTDpaddr: is the physical address of the kernel's PDP */
                    339: extern u_int32_t PTDpaddr;
                    340:
                    341: extern struct pmap kernel_pmap_store;  /* kernel pmap */
                    342: extern int nkpde;                      /* current # of PDEs for kernel */
                    343: extern int pmap_pg_g;                  /* do we support PG_G? */
                    344:
                    345: /*
                    346:  * Macros
                    347:  */
                    348:
                    349: #define        pmap_kernel()                   (&kernel_pmap_store)
                    350: #define        pmap_resident_count(pmap)       ((pmap)->pm_stats.resident_count)
                    351: #define        pmap_update(pm)                 /* nada */
                    352:
                    353: #define pmap_clear_modify(pg)          pmap_clear_attrs(pg, PG_M)
                    354: #define pmap_clear_reference(pg)       pmap_clear_attrs(pg, PG_U)
                    355: #define pmap_copy(DP,SP,D,L,S)
                    356: #define pmap_is_modified(pg)           pmap_test_attrs(pg, PG_M)
                    357: #define pmap_is_referenced(pg)         pmap_test_attrs(pg, PG_U)
                    358: #define pmap_phys_address(ppn)         ptoa(ppn)
                    359: #define pmap_valid_entry(E)            ((E) & PG_V) /* is PDE or PTE valid? */
                    360:
                    361: #define pmap_proc_iflush(p,va,len)     /* nothing */
                    362: #define pmap_unuse_final(p)            /* nothing */
                    363:
                    364:
                    365: /*
                    366:  * Prototypes
                    367:  */
                    368:
                    369: void           pmap_bootstrap(vaddr_t);
                    370: boolean_t      pmap_clear_attrs(struct vm_page *, int);
                    371: static void    pmap_page_protect(struct vm_page *, vm_prot_t);
                    372: void           pmap_page_remove(struct vm_page *);
                    373: static void    pmap_protect(struct pmap *, vaddr_t,
                    374:                                vaddr_t, vm_prot_t);
                    375: void           pmap_remove(struct pmap *, vaddr_t, vaddr_t);
                    376: boolean_t      pmap_test_attrs(struct vm_page *, int);
                    377: void           pmap_write_protect(struct pmap *, vaddr_t,
                    378:                                vaddr_t, vm_prot_t);
                    379: int            pmap_exec_fixup(struct vm_map *, struct trapframe *,
                    380:                    struct pcb *);
                    381:
                    382: vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
                    383:
                    384: void   pmap_tlb_shootpage(struct pmap *, vaddr_t);
                    385: void   pmap_tlb_shootrange(struct pmap *, vaddr_t, vaddr_t);
                    386: void   pmap_tlb_shoottlb(void);
                    387: #ifdef MULTIPROCESSOR
                    388: void   pmap_tlb_shootwait(void);
                    389: #else
                    390: #define pmap_tlb_shootwait()
                    391: #endif
                    392:
                    393: #define PMAP_GROWKERNEL                /* turn on pmap_growkernel interface */
                    394:
                    395: /*
                    396:  * Do idle page zero'ing uncached to avoid polluting the cache.
                    397:  */
                    398: boolean_t      pmap_zero_page_uncached(paddr_t);
                    399: #define        PMAP_PAGEIDLEZERO(pg)   pmap_zero_page_uncached(VM_PAGE_TO_PHYS(pg))
                    400:
                    401: /*
                    402:  * Inline functions
                    403:  */
                    404:
                    405: /*
                    406:  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
                    407:  *     if hardware doesn't support one-page flushing)
                    408:  */
                    409:
                    410: #define pmap_update_pg(va)     invlpg((u_int)(va))
                    411:
                    412: /*
                    413:  * pmap_update_2pg: flush two pages from the TLB
                    414:  */
                    415:
                    416: #define pmap_update_2pg(va, vb) { invlpg((u_int)(va)); invlpg((u_int)(vb)); }
                    417:
                    418: /*
                    419:  * pmap_page_protect: change the protection of all recorded mappings
                    420:  *     of a managed page
                    421:  *
                    422:  * => This function is a front end for pmap_page_remove/pmap_clear_attrs
                    423:  * => We only have to worry about making the page more protected.
                    424:  *     Unprotecting a page is done on-demand at fault time.
                    425:  */
                    426:
                    427: __inline static void
                    428: pmap_page_protect(pg, prot)
                    429:        struct vm_page *pg;
                    430:        vm_prot_t prot;
                    431: {
                    432:        if ((prot & VM_PROT_WRITE) == 0) {
                    433:                if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
                    434:                        (void) pmap_clear_attrs(pg, PG_RW);
                    435:                } else {
                    436:                        pmap_page_remove(pg);
                    437:                }
                    438:        }
                    439: }
                    440:
                    441: /*
                    442:  * pmap_protect: change the protection of pages in a pmap
                    443:  *
                    444:  * => This function is a front end for pmap_remove/pmap_write_protect.
                    445:  * => We only have to worry about making the page more protected.
                    446:  *     Unprotecting a page is done on-demand at fault time.
                    447:  */
                    448:
                    449: __inline static void
                    450: pmap_protect(pmap, sva, eva, prot)
                    451:        struct pmap *pmap;
                    452:        vaddr_t sva, eva;
                    453:        vm_prot_t prot;
                    454: {
                    455:        if ((prot & VM_PROT_WRITE) == 0) {
                    456:                if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
                    457:                        pmap_write_protect(pmap, sva, eva, prot);
                    458:                } else {
                    459:                        pmap_remove(pmap, sva, eva);
                    460:                }
                    461:        }
                    462: }
                    463:
                    464: #if defined(USER_LDT)
                    465: void   pmap_ldt_cleanup(struct proc *);
                    466: #define        PMAP_FORK
                    467: #endif /* USER_LDT */
                    468:
                    469: #endif /* _KERNEL */
                    470: #endif /* _I386_PMAP_H_ */

CVSweb